直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

学习新手从哪几个维度了解知识库

回答

对于学习新手来说,可以从以下几个维度了解知识库:

  1. 知识库的整体构成:
    • 知识库是一整套领域知识,是 Bot 加载的最小单位。
    • 单元是知识库的一部分,可上传的最小内容单位可以是一个.txt、.pdf、.csv 文件或一个网页。
    • 分段是一个单元切分成多个分段,是模型查询的最小单位,分段内容的完整度和准确性会影响模型回答问题的准确性。
  2. 具体知识内容:
    • 如关于 transformer 的知识,计划从算法 1(NLP 中的 transformer 网络结构)、算法 2(CV 中的 transformer 网络结构)、算法 3(多模态下的 transformer 网络结构)、训练(transformer 的分布式训练)、部署(transformer 的 tvm 量化与推理)这五个方面进行介绍。
    • 常见的 LLM 基座模型里的 3 种 transformer 架构,包括 encoder-only、encoder-decoder 和 decoder-only。
  3. 与其他元素的关系:
    • 在商业化问答场景中,模型、提示词、知识库三者相互配合。大语言模型像一个学习过无数知识的人,提示词是告知其角色和专注技能,使其成为所需“员工”,知识库则是给“员工”的工作手册。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

创建并使用知识库

扣子的知识库功能提供了简单易用的方式来存储和管理外部数据,让你的Bot可以与指定的数据进行交互。将数据上传到知识库后,扣子会自动将你的文档分割成一个个内容片段进行存储,并通过向量搜索来检索最相关的内容来回答用户问题。知识库由大到小可分为:知识库:一整套领域知识,是Bot加载的最小单位。单元:知识库的一部分,可上传的最小内容单位可以是一个.txt、.pdf、.csv文件或一个网页。分段:一个单元切分成多个分段,模型查询的最小单位。分段内容的完整度和准确性度会影响模型回答问题的准确性。

小A-技术开发/大模型

|标题|备注|作者|链接|发布日期|附件(1)|单选|<br>|-|-|-|-|-|-|-|<br>|Perplexity指标究竟是什么?|笔者小A从自己实际入坑的经验出发,尝试总结梳理出新手友好的transformer入坑指南。一方面能倒逼自己理清知识脉络,另一方面希望能让后面的新同学少走弯路,更快拿到自己想要的知识。<br>本系列计划从以下五个方面对transformer进行介绍<br>算法1:NLP中的transformer网络结构<br>算法2:CV中的transformer网络结构<br>算法3:多模态下的transformer网络结构<br>训练:transformer的分布式训练<br>部署:transformer的tvm量化与推理|[aaronxic](https://www.zhihu.com/people/aaronxic)|[(1)Perplexity指标究竟是什么?](https://ywh1bkansf.feishu.cn/wiki/E1pjwy9OMirKTdkFQDEcDDlfnTh)|2023/07/05|||<br>|初探LLM基座模型|本篇内容主要介绍LLM基座模型里常见的3种transformer架构,encoder-only,encoder-decoder和decoder-only|[aaronxic](https://www.zhihu.com/people/aaronxic)|[(2)初探LLM基座模型](https://ywh1bkansf.feishu.cn/wiki/UU9pwtOFtiKIqAkQiSVc3Zdun7e)|2023/07/06|||

【AI+知识库】商业化问答场景,让AI回复更准确,一篇专为所有“小白”讲透RAG的实例教程(上篇)

上方页面左侧画红框的地方,是这个“问答机器人”的配置,右侧是与“机器人”的一轮对话。左侧有三处配置:AI模型提示词知识库。模型、提示词、知识库三者可以想象成:大语言模型:是一个学习过无数本书、拥有无穷智慧的人。他读过无数的书、看过无数的段子,因此对公共知识、学识技能、日常聊天十分擅长。然而,在工作场景下,只会聊天侃大山可不行,你想让他帮你干活。这个时候,就需要“提示词”出场了,提示词:是你告诉这个全知全能的人,他是一个什么样的角色、他要专注于哪些技能,让他能够按照你的想法,变成一个你需要的“员工”。知识库:相当于你给这个“聪明”员工的发放了一本工作手册。即使是看过再多的书、浏览过再多的文字,也不会准确的知道见到老板娘过来吃饭要打三折,张梦飞过去吃饭要打骨折。而知识库,就是把这些内容写在了工作手册上。让这个聪明的员工,见到有人来的时候,就翻一翻手册,然后再做出反应。我的设定:AI模型:这里使用的是阿里千问模型。

其他人在问
哪几个AI工具擅长网站前端网页设计?
以下是一些擅长网站前端网页设计的 AI 工具: 1. Wix ADI(Artificial Design Intelligence) 网址:https://www.wix.com/ 特点:基于用户提供的信息自动生成定制化网站,提供多个设计选项和布局,集成了 SEO 工具和分析功能。 2. Bookmark 网址:https://www.bookmark.com/ 特点:AIDA(Artificial Intelligence Design Assistant)通过询问用户几个简单问题快速生成网站,提供直观的拖放编辑器,包括多种行业模板和自动化营销工具。 3. Firedrop 网址:https://firedrop.ai/ 特点:Sacha 是 Firedrop 的 AI 设计助手,可根据用户指示创建和修改网站设计,提供实时编辑和预览功能,包含多种现代设计风格和自定义选项。 4. The Grid 网址:https://thegrid.io/ 特点:Molly 是 The Grid 的 AI 设计助手,可自动调整网站的设计和布局,基于内容和用户互动进行优化,支持多种内容类型。 5. Zyro 网址:https://zyro.com/ 特点:使用 AI 生成网站内容,包括文本、图像和布局建议,提供 AI 驱动的品牌和标志生成器,包含 SEO 和营销工具。 6. 10Web 网址:https://10web.io/ 特点:基于 AI 的 WordPress 网站构建工具,可自动生成网站布局和设计,提供一键迁移功能,集成了 AI 驱动的 SEO 分析和优化工具。 7. Jimdo Dolphin 网址:https://www.jimdo.com/ 特点:Dolphin 是 Jimdo 的 AI 网站构建器,通过询问用户问题定制网站,提供自动生成的内容和图像,包含电子商务功能。 8. Site123 网址:https://www.site123.com/ 特点:简单易用,适合初学者,提供多种设计模板和布局,包括内置的 SEO 和分析工具。 此外,以下是一些推荐的网页原型图生成工具: 1. 即时设计:https://js.design/ 一款可在线使用的「专业 UI 设计工具」,为设计师提供更加本土化的功能和服务,注重云端文件管理、团队协作,并将设计工具与更多平台整合,一站搞定全流程工作。 2. V0.dev:https://v0.dev/ Vercel Labs 推出的 AI 生成式用户界面系统。每个人都能通过文本或图像生成代码化的用户界面。它基于 Shadcn UI 和 Tailwind CSS 生成复制粘贴友好的 React 代码。 3. Wix:https://wix.com/ Wix 是一款用户友好的 AI 工具,可在没有任何编码知识的情况下轻松创建和自定义自己的网站,提供广泛的模板和设计供选择,以及移动优化和集成电子商务功能等功能。Wix 建站工具通过拖放编辑、优秀模板和 250 多种 app,能帮助不同领域的用户创建所有种类的网站。 4. Dora:https://www.dora.run/ 使用 Dora AI,可以通过一个 prompt,借助 AI 3D 动画,生成强大网站。支持文字转网站,生成式 3D 互动,高级 AI 动画。但内容由 AI 大模型生成,请仔细甄别。
2024-10-31
阿里巴巴开发的AI有哪几个
阿里巴巴开发的 AI 包括以下几个: 1. 通义灵码:一款基于通义大模型的智能编程辅助工具,提供行级/函数级实时续写、自然语言生成代码、单元测试生成、代码注释生成、代码解释、研发智能问答、异常报错排查等能力。 2. CodeFuse:蚂蚁集团支付宝团队为国内开发者提供智能研发服务的免费 AI 代码助手,该产品是基于蚂蚁集团自研的基础大模型进行微调的代码大模型。 此外,在其他领域,阿里巴巴和蚂蚁集团也有相关的 AIGC 实践,例如: 电商设计师视角下的 AI 解读与应用 AI 引领,畅想未来办公的无限可能 当 AI 成为大众的新朋友 AI 新形态,数字人带你探索未来生活体验升级 让 AI 模型更加平易近人|ModelScope 模型开源社区设计实践 S03E05:当设计遇见 AI,智能设计的践行者——2022 阿里云设计中心年鉴 一览无遗,让收银更快捷支付宝智能 AI 秤 玩转 AI,探索绘图新世界 在编程辅助方面,还有其他一些常见的 AI 工具,如 GitHub Copilot(由 GitHub 联合 OpenAI 和微软 Azure 团队推出)、CodeWhisperer(亚马逊 AWS 团队推出)、CodeGeeX(智谱 AI 推出)、Cody(代码搜索平台 Sourcegraph 推出)、Codeium 等。每个工具的功能和适用场景可能会有所不同,您可以根据自己的需求来选择最适合您的工具。 如果您想使用 AI 完成阿里巴巴营销技巧和产品页面优化,可以采取以下步骤: 1. 市场分析:利用 AI 分析工具来研究市场趋势、消费者行为和竞争对手情况。 2. 关键词优化:AI 可以分析和推荐高流量、高转化的关键词,帮助卖家优化产品标题和描述,提高搜索排名和可见度。 3. 产品页面设计:AI 设计工具可以根据市场趋势和用户偏好自动生成吸引人的产品页面布局。 4. 内容生成:AI 文案工具可以撰写有说服力的产品描述和营销文案,提高转化率。 5. 图像识别和优化:AI 图像识别技术可以帮助选择或生成高质量的产品图片,这些图片能够更好地吸引顾客并展示产品特点。 6. 价格策略:AI 可以分析不同价格点对销量的影响,帮助卖家制定有竞争力的价格策略。 7. 客户反馈分析:AI 可以分析客户评价和反馈,帮助卖家了解客户需求,优化产品和服务。 8. 个性化推荐:AI 可以根据用户的购买历史和偏好提供个性化的产品推荐,增加销售额。 9. 聊天机器人:AI 驱动的聊天机器人可以提供 24/7 的客户服务,解答疑问,提高客户满意度。 10. 营销活动分析:AI 可以分析不同营销活动的效果,帮助卖家了解哪些活动更能吸引顾客并产生销售。 11. 库存管理:AI 可以帮助预测需求,优化库存管理,减少积压和缺货情况。 12. 支付和交易优化:AI 可以分析不同的支付方式对交易成功率的影响,优化支付流程。 13. 社交媒体营销:AI 可以帮助卖家在社交媒体上找到目标客户群体,通过精准营销提高品牌知名度。 14. 直播和视频营销:AI 可以分析观众行为,帮助卖家优化直播和视频内容,提高观众参与度和转化率。
2024-10-20
0基础中老年学习者必须知道的AI基本概念和知识 是哪几个
对于 0 基础的中老年学习者,以下是必须知道的 AI 基本概念和知识: 一、Python 基础 1. 基本语法:包括变量命名、缩进等规则。 2. 数据类型:如字符串、整数、浮点数、列表、元组、字典等。 3. 控制流:条件语句(if)、循环语句(for 和 while)控制程序执行流程。 4. 函数:定义和调用函数,理解参数和返回值,以及作用域和命名空间。 5. 模块和包:导入模块,使用包来扩展程序功能。 6. 面向对象编程(OOP):类和对象的定义与实例化,属性和方法的定义与调用。 二、AI 背景知识 1. 基础理论:了解人工智能、机器学习、深度学习的定义及相互关系。 2. 历史发展:回顾 AI 的发展历程和重要里程碑。 三、数学基础 1. 统计学基础:熟悉均值、中位数、方差等统计概念。 2. 线性代数:了解向量、矩阵等基本概念。 3. 概率论:掌握基础的概率论知识,如条件概率、贝叶斯定理。 四、算法和模型 1. 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 2. 无监督学习:熟悉聚类、降维等算法。 3. 强化学习:了解其基本概念。 五、评估和调优 1. 性能评估:知道如何评估模型性能,如交叉验证、精确度、召回率等。 2. 模型调优:学习使用网格搜索等技术优化模型参数。 六、文件操作 1. 文件读写:学习打开文件、读取文件内容和写入文件。 2. 文件与路径操作:理解如何处理文件路径,列举目录下的文件。 七、异常处理 1. 理解异常:了解什么是异常以及在 Python 中的工作方式。 2. 异常处理:学会使用 try 和 except 语句处理程序错误。
2024-09-13
大模型的应用需要通过哪几个步骤
构建一个有效的大型语言模型应用并非易事,这一过程从框架选择到最终应用的搭建,涉及一系列复杂的步骤和环节,许多细节和阶段往往在实际操作中才会逐渐显现。在整个过程中,提示词的设计尤为重要,精心的设计和调试是确保流程顺畅运行以及保证应用具有实际价值的基础,这并非只是在对话窗口输入文字或发送指令并接收输出那么简单,其设计直接影响模型的输出质量和应用效果。为了构建这样的应用,我们需要: 1. 谨慎选择框架。 2. 注重实际操作中细节和阶段的处理。 3. 精细设计和调试提示词。
2024-08-10
在WAY TO AGI 知识库有没有适合老师备课用的AI?请推荐
以下是为老师备课推荐的一些 AI 相关内容: B 站 up 主 Nally 的课程,免费且每节 15 分钟,内容很棒。 14、15 号左右白马老师和麦菊老师将带大家用 AI 做生图、毛毡字、光影字、机甲字等。 16 号晚上中老师将带大家动手操作炼丹,炼丹可能需要准备一些图,后续会让中老师提前发布内容方便大家准备。 工程生产有很多可控性,AI 视频相关内容丰富,文档会列出工具优劣及操作。很多工具每天有免费积分,共学课程基本不用花钱。每周有 AI 视频挑战赛。 有 AI 音乐的流派和 prompt 电子书,格林同学做了翻译。 此外,还有以下相关信息: 高效 PB 及相关案例:高效 PB 投入力度大,有厉害的伙伴,案例在社区,有多种 battle 方式,会有菩萨老师专门介绍。 11 月 2 号左右将开展博物馆奇妙日主题活动,在各地博物馆进行新创意。 关于 AI 知识库及学习路径的介绍,包括时代杂志评选的领军人物、AI 相关名词解释、知识库的信息来源、社区共创项目、学习路径、经典必读文章、初学者入门推荐、历史脉络类资料等。
2024-12-20
我想用coze搭建一个智能体,关于自然语言课程的期末复习指南,要将我的教材导入扣子作为知识库,智能体支持用户提问,搜索知识点,结合知识库和互联网搜索的内容给出问答,需要使用多智能体或工作流,使用卡片功能进行显示,请给出我搭建这个智能体的步骤
以下是使用 Coze 搭建一个关于自然语言课程期末复习指南智能体的步骤: 1. 访问 Coze 官网(https://www.coze.cn),注册并登录。 2. 点击页面左上角的⊕,通过【标准创建】填入智能体的基本信息。 3. 了解 Bot 开发调试界面: 人设与回复逻辑(左侧区域):设定智能体的对话风格、专业领域定位,配置回复的逻辑规则和限制条件,调整回复的语气和专业程度。 功能模块(中间区域): 技能配置: 插件:扩展智能体的专业能力,如计算器、日历等工具。 工作流:设置固定的处理流程和业务逻辑。 图像流:处理和生成图像的相关功能。 触发器:设置自动化响应条件。 知识库管理: 文本:存储文字类知识材料。 表格:结构化数据的存储和调用。 照片:图像素材库。 记忆系统: 变量:存储对话过程中的临时信息。 数据库:管理持久化的结构化数据。 长期记忆:保存重要的历史对话信息。 文件盒子:管理各类文档资料。 交互优化(底部区域): 开场白:设置初次对话的问候语。 用户问题建议:配置智能推荐的后续问题。 快捷指令:设置常用功能的快速访问。 背景图片:自定义对话界面的视觉效果。 预览与调试(右侧区域):实时测试智能体的各项功能,调试响应效果,优化交互体验。 4. 设定智能体的人设与回复逻辑后,为智能体配置对应的技能,以保证其可以按照预期完成目标任务。例如,以获取 AI 新闻的智能体为例,需要为它添加一个搜索新闻的接口来获取相关新闻。具体操作如下: 在智能体编排页面的技能区域,单击插件功能对应的+图标。 在添加插件页面,选择相关功能,然后单击新增。 修改人设与回复逻辑,指示智能体使用相应插件来搜索所需内容。 (可选)为智能体添加开场白,让用户更好地了解智能体的功能。开场白功能目前支持豆包、微信公众号(服务号)。 5. 配置好智能体后,在预览与调试区域中测试智能体是否符合预期。可单击清除图标清除对话记录。 6. 完成测试后,将智能体发布到社交渠道中使用。具体操作如下: 在智能体的编排页面右上角,单击发布。 在发布页面输入发布记录,并勾选发布渠道。 单击发布。 更多内容,请访问 Coze 官方文档: 英文版:https://www.coze.com/docs/welcome.html 中文版:https://www.coze.cn/docs/guides/welcome
2024-12-20
怎么构建个人本地知识库
构建个人本地知识库可以按照以下步骤进行: 1. 了解 RAG 技术: 利用大模型的能力搭建知识库是 RAG 技术的应用。 大模型训练数据有截止日期,RAG 可解决依靠不在训练集中的数据的问题。 RAG 应用包括文档加载、文本分割、存储、检索和输出 5 个过程。 文档加载可从多种来源加载,如 PDF 等非结构化数据、SQL 等结构化数据和代码等。 文本分割将文档切分为指定大小的块。 存储涉及将文档块嵌入转换为向量形式并存储到向量数据库。 检索通过算法找到与输入问题相似的嵌入片。 输出是将问题和检索出的嵌入片提交给 LLM 生成答案。 文本加载器将用户提供的文本加载到内存以便后续处理。 2. 准备软件: 需要一个额外的软件 AnythingLLM,它包含所有 Open WebUI 的能力,并额外支持选择文本嵌入模型和向量数据库。 3. 安装和配置: 安装地址:https://useanything.com/download 。 安装完成后进入配置页面,主要分为三步:选择大模型、选择文本嵌入模型、选择向量数据库。 4. 构建本地知识库: 在 AnythingLLM 中创建自己独有的 Workspace 与其他项目数据隔离。 首先创建一个工作空间。 上传文档并在工作空间中进行文本嵌入。 选择对话模式,AnythingLLM 提供 Chat 模式(大模型根据训练数据和上传文档综合给出答案)和 Query 模式(大模型仅依靠文档中的数据给出答案)。 完成配置后进行测试对话。 本文的思路来源于视频号博主黄益贺,作者按照其视频进行了实操并附加了一些关于 RAG 的额外知识。
2024-12-19
可不可以提供一个本地化的大模型方法,让我建立这个合规法律的知识库
以下是为您提供的本地化大模型及搭建合规法律知识库的方法: 一、通过 Open WebUI 使用大模型 1. 首先访问相关网址。打开页面时需使用邮箱注册账号。 2. 登陆成功后,若您使用过类似 ChatGPT 的大模型对话网站,对该页面不会陌生。 3. Open WebUI 一般有两种使用方式: 聊天对话。 RAG 能力,即让模型根据文档内容回答问题,这是构建知识库的基础之一。 4. 如果要求不高,此时已搭建本地大模型,并通过 Web UI 实现对话功能。 5. ChatGPT 访问速度快且回答效果好的原因: 速度快是因为 GPT 大模型部署的服务器配置高。 效果好是因为 GPT 大模型的训练参数多、数据更优及训练算法更好。 二、您的硬件达标了么 运行大模型需要很高的机器配置,个人玩家大多负担不起。以下是不同类型大模型的配置要求: 1. 生成文字大模型: 最低配置:8G RAM + 4G VRAM 建议配置:16G RAM + 8G VRAM 理想配置:32G RAM + 24G VRAM(如果要跑 GPT3.5 差不多性能的大模型) 2. 生成图片大模型(比如跑 SD): 最低配置:16G RAM + 4G VRAM 建议配置:32G RAM + 12G VRAM 3. 生成音频大模型: 最低配置:8G VRAM 建议配置:24G VRAM 最低配置运行非常慢,不建议使用。但这不妨碍我们亲自实操一遍,以加深对大模型构建知识库底层原理的了解。若想要更顺滑的体验知识库,可以参考文章: 三、本地知识库进阶 若要更灵活掌控知识库,需额外软件 AnythingLLM。它包含 Open WebUI 的所有能力,并额外支持以下能力: 1. 选择文本嵌入模型。 2. 选择向量数据库。 AnythingLLM 安装和配置 安装地址:https://useanything.com/download 。安装完成后进入配置页面,主要分为三步: 1. 第一步:选择大模型。 2. 第二步:选择文本嵌入模型。 3. 第三步:选择向量数据库。 构建本地知识库 AnythingLLM 中有 Workspace 的概念,可创建独有的 Workspace 与其他项目数据隔离。具体步骤: 1. 首先创建一个工作空间。 2. 上传文档并在工作空间中进行文本嵌入。 3. 选择对话模式。AnythingLLM 提供两种对话模式: Chat 模式:大模型会根据自己的训练数据和上传的文档数据综合给出答案。 Query 模式:大模型仅依靠文档中的数据给出答案。 4. 测试对话。完成上述配置后,即可与大模型进行对话。 四、写在最后 “看十遍不如实操一遍,实操十遍不如分享一遍”。若您对 AI Agent 技术感兴趣,可以联系我或者加我的免费知识星球(备注 AGI 知识库)。
2024-12-18
基于知识库系统的人工智能
基于知识库系统的人工智能包括以下方面: 专家系统: 是符号人工智能的早期成就之一,为充当有限问题领域的专家而设计。 基于从人类专家提取的知识库,并包含推理引擎。 像人类推理系统一样,包含短期记忆(问题记忆)和长期记忆(知识库)。 问题记忆包含与当前要解决问题有关的知识,称为静态知识。 知识库代表问题领域的长期知识,是动态知识。 推理引擎协调问题状态空间中的搜索过程,必要时向用户提问并找到适用规则。 例如,可根据动物物理特征判断动物的专家系统,其图称为 ANDOR 树,早期提取知识时绘制树形图有用,计算机中用规则表示更方便。 FastGPT: 基于 LLM 技术,能理解自然语言并生成高质量答案。 支持连接外部知识库获取更全面信息。 具有可视化工作流编排工具,方便创建复杂问答场景。 具备开箱即用的数据处理和模型调用功能,上手速度快。 是功能强大、易于使用的知识库问答系统,可帮助企业构建智能客服、知识库搜索、文档生成等应用。 相关资源: 您可以为喜欢的主题写一个 ANDOR 树。同时,可参见了解实施正向推理和反向推理的专家系统示例。需注意,此例简单,规则达一定数量(约 200 多条)时才会有智能行为,规则复杂时可能难以牢记,基于知识的系统重要特点是能准确解释任何决定的做出过程。
2024-12-17
我是一个投资人,我想针对每个项目建立知识库,类似一个个对话的形式,我把关于某个项目的材料全部丢进一个对话中,然后可以针对每个项目进行提问,或者要求AI帮我产出某种类型的文件。哪个App可以最好的满足我的需求?
以下是一些可能满足您需求的 App 选项: 1. WaytoAGI 网站: 提供和 AI 知识库对话的功能,您可以在此询问任何关于 AI 的问题。 集合了精选的 AI 网站,方便您按需求找到适合的工具。 有精选的 AI 提示词,可复制到 AI 对话网站使用。 会将每天知识库的精华内容呈现给大家。 2. 阿里千问模型:可以作为 AI 模型用于问答机器人的配置。 在配置问答机器人时,需要注意模型、提示词和知识库的协同作用。模型就像拥有无穷智慧的人,提示词能设定其角色和专注技能,知识库则如同工作手册,为其提供特定项目的详细信息。
2024-12-17
图生图时,如何多维度多参数进行生图
以下是关于图生图时多维度多参数进行生图的方法: 1. 设置文生图提示词: 大模型:majicmixRealistic_v6.safetensors 正向提示词:,auburn hair,eyes open,cinematic lighting,Hyperrealism,depth of field,photography,ultra highres,photorealistic,8k,hyperrealism,studio lighting,photography 负向提示词:EasyNegative,canvasframe,canvas frame,eyes shut,wink,blurry,hands,closed eyes,,lowres,sig,signature,watermark,username,bad,immature,cartoon,anime,3d,painting,b&w 2. 设置参数: 迭代步数:50 采样方法:DPM++ 2M Karras 尺寸:1328×800px 3. 除了文本提词框,图生图功能还有图片框输入口,可通过图片给与 AI 创作灵感。 例如随便照一张照片拖入,文本输入框旁有两个反推提示词的按钮:CLIP 可通过图片反推出完整含义的句子;DeepBooru 可反推出关键词组。 两种反推方式生成的提示词可能有瑕疵,需手动补充提示词信息。 写好提示词后,调整宽度和高度使红框刚好匹配图片。 注意两个重要参数:提示词相关性和重绘幅度。
2024-12-03
大模型排名以及排名的评测标准维度是什么
以下是一些常见的大模型排名及评测标准维度: FlagEval(天秤)大模型评测体系及开放平台: 地址: 简介:旨在建立科学、公正、开放的评测基准、方法、工具集,协助研究人员全方位评估基础模型及训练算法的性能,同时探索利用 AI 方法实现对主观评测的辅助,大幅提升评测的效率和客观性。创新构建了“能力任务指标”三维评测框架,细粒度刻画基础模型的认知能力边界,可视化呈现评测结果。 CEval: 地址: 简介:构造了一个覆盖人文,社科,理工,其他专业四个大方向,52 个学科(微积分,线代…),从中学到大学研究生以及职业考试,一共 13948 道题目的中文知识和推理型测试集。此外还给出了当前主流中文 LLM 的评测结果。 SuperCLUElyb: 地址: 简介:中文通用大模型匿名对战评价基准,这是一个中文通用大模型对战评价基准,它以众包的方式提供匿名、随机的对战。他们发布了初步的结果和基于 Elo 评级系统的排行榜。 斯坦福发布的大模型排行榜 AlpacaEval: 项目链接:https://github.com/tatsulab/alpaca_eval 排行榜链接:https://tatsulab.github.io/alpaca_eval/ 该研究团队选择了目前在开源社区很火的开源模型,还有 GPT4、PaLM 2 等众多「闭源」模型,甚至还开设了一个「准中文」排行榜。 AlpacaEval 分为以 GPT4 和 Claude 为元标注器的两个子榜单。 在斯坦福的这个 GPT4 评估榜单中: GPT4 稳居第一,胜率超过了 95%;胜率都在 80%以上的 Claude 和 ChatGPT 分别排名第二和第三,其中 Claude 以不到 3%的优势超越 ChatGPT。 值得关注的是,获得第四名的是一位排位赛新人——微软华人团队发布的 WizardLM。在所有开源模型中,WizardLM 以仅 130 亿的参数版本排名第一,击败了 650 亿参数量的 Guanaco。 而在开源模型中的佼佼者 Vicuna 发挥依然稳定,凭借着超过 70%的胜率排在第六,胜率紧追 Guanaco 65B。 最近大火的 Falcon Instruct 40B 表现不佳,仅位居 12 名,略高于 Alpaca Farm 7B。 AlpacaEval 的技术细节: 人类一致性:标注者与交叉标注集中人类多数票之间的一致性。 价格:每 1000 个标注的平均价格。 时间:计算 1000 个标注所需的平均时间。相对于人工标注,全自动化的 AlpacaEval 仅需花费约 1/22 的经济成本和 1/25 的时间成本。 AlpacaEval 评估模型的方式: alpaca_eval:直接根据目标模型输出的响应来评估模型。 alpaca_eval evaluate_from_model:根据 HuggingFace 已注册模型或这 API 提供商来端到端评测模型。 评测过程分为以下 3 步: 1. 选择一个评估集,并计算指定为 model_outputs 的输出。默认情况下,使用来自 AlpacaEval 的 805 个示例。 2. 计算 golden 输出 reference_outputs。默认情况下,在 AlpacaEval 上使用 textdavinci003 的输出。 3. 通过 annotators_config 选择指定的自动标注器,它将根据 model_outputs 和 reference_outputs 计算胜率。这里建议使用 alpaca_eval_gpt4 或 claude。根据不同的标注器,使用者还需要在环境配置中设定 API_KEY。
2024-11-12
“AI治理与法律”的维度
以下是关于“AI 治理与法律”维度的相关内容: 在全球范围内,对于 AI 的立法、监管、伦理讨论大范围落后于技术发展。 美国方面,对于中国的硬件科技限制进一步升级。最先进的 AGI 世界模型不开源,开源模型会落后闭源一个代际,但会服务更广泛的各种专业应用。AGI 将对全行业科技发展起到推动作用,有更好 AGI 的国家会有更快的全面技术进步。 欧洲是目前唯一对 AI 治理有一定讨论的地区,但也大多停留在纸面。 英国的情况是,AI 可能增加不公平偏见或歧视的风险,可能会削弱公众对 AI 的信任。产品安全法确保在英国制造和投放市场的商品是安全的,特定产品的立法可能适用于一些包含集成 AI 的产品,但 AI 技术的特定安全风险应密切监测。消费者权利法可能在消费者签订基于 AI 的产品和服务销售合同时提供保护。 欧盟方面,自 1956 年“人工智能”概念提出后,其理论范围和技术方法不断扩展。2021 年《AI 法案》提案对人工智能的定义更宽泛,而 2022 年《AI 法案》妥协版本中,欧盟理事会及欧洲议会认为“AI 系统”的定义范围应适当缩窄,并侧重强调机器学习的方法。 我国相关法规讨论的出发点完全在于“对于舆论的影响”,根本没有触及 AGI 本身的伦理问题,决策路径大概是政治>经济>>AI 伦理。
2024-10-01
AI治理的维度
AI 治理涵盖多个维度,以下为您梳理的相关内容: 国际合作:拜登政府在推进国内 AI 议程的同时,将与国外盟友和伙伴合作,构建强有力的国际框架来管理 AI 的开发和使用。过去几个月已与多国广泛协商 AI 治理框架。 政策发展:英国在 AI 治理方面,参与者提到了隐私原则,该原则嵌入在更广泛的监管考虑中,要求监管机构和 AI 生命周期参与者遵守英国的数据保护框架。 安全与治理:监管机构可能需要考虑解决安全性、稳健性和安全性的技术标准,以对 AI 系统的安全和稳健性能进行基准测试,并为 AI 生命周期参与者提供实施原则的指导。 透明度和可解释性:AI 系统应具有适当的透明度和可解释性,透明度指向相关人员传达适当的信息,解释性指相关方能够访问、解释和理解决策过程。 公平性:AI 可能增加在一系列指标或特征上的不公平偏见或歧视风险,可能会破坏公众对 AI 的信任。 法律保护:产品安全法确保在英国制造和投放市场的商品是安全的,消费者权益法可能在消费者签订基于 AI 的产品和服务销售合同时提供保护。
2024-10-01
如果让新手小白知道合理使用GPT
以下是一些让新手小白合理使用 GPT 的建议: 1. 理解 Token 限制:形成“当前消耗了多少 Token”的自然体感,把握一次有效记忆的长度,避免在超过限制时还继续提问最初的问题。编写 Prompt 时珍惜 Token,秉承奥卡姆剃刀原理,精简句子和措辞,尤其是在连续多轮对话中。 2. 熟练使用中英文切换:Prompt 太长时,可用英文设定并要求用中文输出,节省 Token 用于更多对话。了解自带方法论的英文短语或句子,如“Chain of thought”。 3. 相信 GPT 的能力,大胆提要求:不问问怎么知道它不会呢。 4. 明确自身需求:跟 GPT 提的要求尽量准确,像给员工安排工作那样。 5. 不断追问:只要不明白,就目标明确、表达精确地追问。 6. 提供准确信息:若需要贴身保姆级帮助,把自身准确信息给 GPT。 7. 规划、记忆和使用工具:GPT 可以在一个会话里根据用户需求和上下文自行选择工具并做出行动。若选择最容易上手的 Action,Webpilot 应当首当其冲,使用方法为在新建的 GPT 里把 Web Browsing 勾掉,点击添加 Actions(Add actions),再点击 import from URL 并填入相应网址。 提问的逻辑和准确度是能否用好 GPT 的核心竞争力。
2024-12-22
新手如何使用kimi
新手使用 Kimi 的方法如下: 浏览器 Kimi 插件: 安装后,在浏览网络文章时点击插件图标,或使用快捷键 Ctrl/Cmd+Shift+K,即可一键召唤 Kimi 总结网页内容。 特点: 极简,点击一键总结,无其他花里胡哨的功能。 Kimi 无法访问的网页也能进行总结,如推特等。 英文文章直接用中文总结要点。 支持 Dark Mode。 注意事项: 本插件为第三方爱好者开发,不是 Kimi 或月之暗面官方产品。 由于 Arc 等浏览器没有所需的 API,所以本插件在 Arc 等浏览器无法使用。 Kimi 阅读助手: 这个插件支持快捷调用 Kimi,然后将当前页面打包成一个.md 文件喂给 Kimi,历史会话中能看到刚才的记录。 总结模型可自己选择。 注意事项: 需要 Chrome 114 及以上版本才能正常使用扩展。 暂不支持 Arc 游览器(Arc 缺少相关 API)。 对于新手,Kimi 是 Chatgpt 的国产平替,实际上手体验好,适合入门学习和体验 AI。 优势: 不用科学上网、不用付费、支持实时联网。 是国内最早支持 20 万字无损上下文的 AI,也是目前对长文理解做得最好的 Ai 产品。 能一次搜索几十个数据来源,无广告,能定向指定搜索源(如小红书、学术搜索)。 下载方式: PC 端: 移动端 Android/ios:
2024-12-19
新手小白入门AI
新手小白入门 AI 可以参考以下步骤: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,能找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 6. 持续学习和跟进: AI 是一个快速发展的领域,新的研究成果和技术不断涌现。关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。 考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 此外,还推荐【野菩萨的 AIGC 资深课】,这门课程由工信部下属单位【人民邮电出版社】开设,是市面上为数不多的值得推荐的 AI 课程之一,也是全网技术更新最快的课程!课程内容涵盖 AI 绘画、视听语言和 ChatGPT 等多个体系的知识。无论您是 AI 初学者还是进阶者,这门课程都能满足您的学习需求。扫码添加菩萨老师助理,了解更多信息。
2024-12-16
新手学习AI方法
以下是为新手提供的学习 AI 的方法: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据自身兴趣选择特定模块深入学习。 掌握提示词的技巧,其上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 6. 持续学习和跟进: AI 是快速发展的领域,新的研究成果和技术不断涌现。关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。 考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2024-12-15
新手小白怎么学习AI
对于新手小白学习 AI,以下是一些建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出自己的作品。 在知识库中有很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人进行互动,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 6. 持续学习和跟进: AI 是快速发展的领域,新的研究成果和技术不断涌现。关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。 考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2024-12-12
作为新手,如何掌握AI?要掌握到什么程度?
对于新手掌握 AI,您可以参考以下步骤和内容: 一、了解 AI 基本概念 1. 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 2. 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 1. 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 2. 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。建议一定要掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 1. 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 2. 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 五、体验 AI 产品 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 六、如果希望继续精进 1. 了解 AI 背景知识 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 掌握数学基础 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 熟悉算法和模型 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 评估和调优:了解如何评估模型性能,包括交叉验证、精确度、召回率等;学习如何使用网格搜索等技术优化模型参数。 神经网络基础:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN);了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 4. 掌握 Python 基础 基本语法:了解 Python 的基本语法规则,比如变量命名、缩进等。 数据类型:熟悉 Python 中的基本数据类型,如字符串(String)、整数(Integer)、浮点数(Float)、列表(List)、元组(Tuple)、字典(Dictionary)等。 控制流:学习如何使用条件语句(if)、循环语句(for 和 while)来控制程序的执行流程。 函数:定义和调用函数,理解函数如何接收参数和返回结果;了解作用域和命名空间,包括局部变量和全局变量的概念,以及它们是如何在 Python 中工作的。 模块和包:学习如何导入 Python 标准库中的模块或者第三方库,理解如何安装和使用 Python 包来扩展程序的功能。 面向对象编程(OOP):了解面向对象编程的基本概念,包括类的定义和实例化;学习如何为类定义属性和方法,以及如何通过对象来调用它们,了解类之间的继承关系以及如何实现多态。 异常处理:理解什么是异常,以及它们在 Python 中是如何工作的;学习如何使用 try 和 except 语句来处理程序中可能发生的错误。 文件操作:学习如何打开文件、读取文件内容以及写入文件,理解如何使用 Python 来处理文件路径,以及如何列举目录下的文件。 至于要掌握到什么程度,这取决于您的具体需求和目标。如果您只是想初步了解和应用一些简单的 AI 技术,掌握基本概念和一些常用工具的使用就可以。如果您希望在 AI 领域深入发展,可能需要系统地学习数学、算法、编程等知识,并不断实践和研究。
2024-12-11