直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

如何部署并微调BERT模型

回答

部署并微调 BERT 模型的步骤如下:

  1. 选择合适的部署方式:
    • 本地环境部署。
    • 云计算平台部署。
    • 分布式部署。
    • 模型压缩和量化。
    • 公共云服务商部署。根据自身的资源、安全和性能需求选择合适的部署方式。
  2. 准备训练所需的数据和计算资源:
    • 确保有足够的训练数据覆盖目标应用场景。
    • 准备足够的计算资源,如 GPU 服务器或云计算资源。
  3. 选择合适的预训练模型作为基础:
    • 可以使用开源的预训练模型如 BERT 等作为基础。
  4. 针对目标任务进行模型微调训练:
    • 根据具体应用场景对预训练模型进行微调训练。
    • 优化模型结构和训练过程以提高性能。
  5. 部署和调试模型:
    • 将训练好的模型部署到生产环境。
    • 对部署的模型进行在线调试和性能优化。
  6. 注意安全性和隐私保护:大模型涉及大量数据和隐私信息,需要重视安全性和合规性。

总的来说,部署和微调 BERT 模型需要综合考虑多方面因素,包括部署方式、数据准备、模型训练、部署调试以及安全性等。需要根据具体需求选择合适的方法,并注意优化各个环节以提高模型性能和应用效果。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

7. Transformer 模型和 BERT 模型

我们将学习如何从TensorFlow Hub加载预训练的BERT模型,并使用预训练的BERT模型构建我们自己的分类。我们还将学习如何在开始之前通过微调来训练BERT模型。

生成式人工智能如何改变创意工作

这些模型在很大程度上仅限于大型科技公司,因为训练它们需要大量数据和计算能力。例如,GPT-3最初使用45 TB的数据进行训练,并使用1750亿个参数或系数进行预测; GPT-3的单次训练花费了1200万美元。中国模型无道2.0拥有1.75万亿个参数。大多数公司没有数据中心能力或云计算预算来从头开始训练自己的此类模型。但是,一旦生成模型经过训练,就可以使用更少的数据针对特定内容领域进行“微调”。这催生了用于生物医学内容([BioBERT](https://arxiv.org/abs/1901.08746))、法律内容([Legal-BERT](https://arxiv.org/abs/2010.02559))和法语文本([CamemBERT](https://camembert-model.fr/))的BERT专用模型,以及用于各种特定目的的GPT-3。NVIDIA的[BioNeMo](https://www.nvidia.com/en-us/gpu-cloud/bionemo/)是一个用于在超级计算规模上训练、构建和部署大型语言模型的框架,适用于生成化学、蛋白质组学和DNA/RNA。OpenAI发现,只需100个特定领域数据的具体示例即可大幅提高准确性和相关性GPT-3的输出。

问:如何部署和训练自己的AI开源模型

根据搜索结果,以下是部署和训练自己的大模型的主要步骤:1.选择合适的部署方式本地环境部署云计算平台部署分布式部署模型压缩和量化公共云服务商部署根据自身的资源、安全和性能需求选择合适的部署方式。1.准备训练所需的数据和计算资源确保有足够的训练数据覆盖目标应用场景准备足够的计算资源,如GPU服务器或云计算资源1.选择合适的预训练模型作为基础可以使用开源的预训练模型如BERT、GPT等作为基础也可以自行训练一个基础模型1.针对目标任务进行模型微调训练根据具体应用场景对预训练模型进行微调训练优化模型结构和训练过程以提高性能1.部署和调试模型将训练好的模型部署到生产环境对部署的模型进行在线调试和性能优化1.注意安全性和隐私保护大模型涉及大量数据和隐私信息,需要重视安全性和合规性总的来说,部署和训练自己的大模型需要综合考虑多方面因素,包括部署方式、数据准备、模型训练、部署调试以及安全性等。需要根据具体需求选择合适的方法,并注意优化各个环节以提高模型性能和应用效果。内容由AI大模型生成,请仔细甄别

其他人在问
AI 增量训练和模型微调的区别
AI 增量训练和模型微调存在以下区别: 目的:增量训练通常是为了持续更新模型以适应新的数据和任务,而模型微调主要是为了使模型在特定的小领域数据集上针对特定任务达到更好的性能。 范围:增量训练可能涉及对模型的较大范围的更新,而微调往往集中在较小范围的参数调整。 方式:增量训练可能会对全量的模型参数进行训练,而微调存在全量微调(FFT)和参数高效微调(PEFT)两种技术路线,PEFT 只对部分模型参数进行训练,且目前在业界较为流行。 成本和效果:从成本和效果综合考虑,PEFT 是较好的微调方案。微调可以大幅提高模型在特定任务中的性能,但可能会使模型失去一些通用性。 数据使用:增量训练可能需要更多新的数据,而微调是在较小的、特定领域的数据集上进行。 如需了解更多关于微调的内容,可参考 OpenAI 官方微调教程:https://github.com/openai/openaicookbook/blob/main/examples/How_to_finetune_chat_models.ipynb
2024-09-13
模型微调都有哪些方式?
模型微调主要有以下方式: 1. 使用微调模型:当作业成功时,`fine_tuned_model`字段将填充模型名称。您现在可以将此模型指定为我们的`Completions API`的参数,并使用`Playground`向它发出请求。在您的工作首次完成后,您的模型可能需要几分钟时间才能准备好处理请求。如果对您的模型的完成请求超时,可能是因为您的模型仍在加载中。如果发生这种情况,请在几分钟后重试。您可以通过将模型名称作为`model`完成请求的参数传递来开始发出请求,包括`OpenAI`命令行界面、`cURL`、`Python`、`Node.js`等方式。您还可以继续使用所有其他完成参数,如`temperature`、`frequency_penalty`、`presence_penalty`等对这些请求进行微调模型。 2. 介绍:微调可让您从`API`提供的模型中获得更多收益,比如比即时设计更高质量的结果、能够训练比提示中更多的例子、由于更短的提示而节省了`Token`、更低的延迟请求。`GPT3`已经在来自开放互联网的大量文本上进行了预训练。当给出仅包含几个示例的提示时,它通常可以凭直觉判断出您要执行的任务并生成合理的完成,这通常称为“小样本学习”。微调通过训练比提示中更多的示例来改进小样本学习,让您在大量任务中取得更好的结果。对模型进行微调后,您将不再需要在提示中提供示例,这样可以节省成本并实现更低延迟的请求。在高层次上,微调涉及以下步骤:准备和上传训练数据、训练新的微调模型、使用您的微调模型。 3. 通义千问团队的微调方式:大规模预训练后,通义千问团队对模型进行精细的微调,以提升其智能水平,让其表现更接近人类。这个过程进一步提升了代码、数学、推理、指令遵循、多语言理解等能力。此外,模型学会对齐人类价值观,它也随之变得更加对人类有帮助、诚实以及安全。通义千问团队的微调过程遵循的原则是使训练尽可能规模化的同时并且尽可能减少人工标注。团队探索了如何采用多种自动方法以获取高质量、可靠、有创造力的指令和偏好数据,其中包括针对数学的的方法减少对齐税。不久后,通义千问团队将推出`Qwen2`的技术报告。
2024-09-11
在条件生成场景,怎么做微调比较好
在条件生成场景中,进行微调可以参考以下指南: 1. 在提示末尾使用分隔符,例如\n\n\n\n。当最终向模型发出请求时,也要附加此分隔符。 2. 在完成结束时使用结束 token,例如 END。在推理过程中将结束 token 添加为停止序列,例如 stop=。 3. 目标是至少约 500 个示例。 4. 确保提示+完成不超过 2048 个 token,包括分隔符。 5. 确保示例具有高质量并遵循相同的所需格式。 6. 确保用于微调的数据集在结构和任务类型上与模型将用于的数据集非常相似。 7. 使用较低的学习率和仅 1 2 个时期往往更适合这些用例。 此外,还有以下案例研究: 1. 基于技术属性列表的产品描述:将输入数据转换为自然语言很重要,这可能会带来卓越的性能。为了获得高性能,请确保完成是基于所提供的描述。如果经常查阅外部内容,则以自动方式添加此类内容将提高性能。如果描述基于图像,则使用算法提取图像的文本描述可能会有所帮助。由于完成只有一个句子长,可以在推理过程中用作停止序列。 2. 实体提取:这类似于语言转换任务。为了提高性能,最好按字母顺序或按照它们在原始文本中出现的相同顺序对不同的提取实体进行排序。这将有助于模型跟踪需要按顺序生成的所有实体。数据集可能如下所示,例如:多行分隔符效果最好,因为文本可能包含多行。理想情况下,输入提示的类型会高度多样化(新闻文章、维基百科页面、推文、法律文件),这反映了提取实体时可能遇到的文本。
2024-09-06
有没有关于微调的最佳实践
以下是关于微调的最佳实践: 一般最佳实践:使用更多高质量的示例进行微调效果更好。要微调一个比使用基本模型使用高质量提示更好地执行的模型,应提供至少几百个高质量的示例,最好由人类专家审查。从那里开始,性能往往会随着示例数量的每增加一倍而线性增加。增加示例的数量通常是提高性能的最佳和最可靠的方法。分类器是最容易上手的模型。对于分类问题,建议使用 ada,经过微调后,它通常只会比功能更强大的模型稍微差一点,同时速度更快,成本更低。 准备数据集:微调是一种强大的技术,可用于创建特定于您的用例的新模型。在微调您的模型之前,强烈建议阅读以下针对您的用例的最佳实践和具体指南。 具体指南:微调可以解决多种问题,最佳使用方式可能取决于您的具体用例。常见的微调用例和相应的指南包括: 如果您要对预先存在的数据集进行微调,而不是从头开始编写提示,请务必在可能的情况下手动检查您的数据是否存在令人反感或不准确的内容,或者如果数据集很大,请检查尽可能多的随机样本。
2024-09-06
怎么对大模型进行微调
大模型的微调可以从以下几个方面来理解和操作: 一、大模型的基本概念 通俗来讲,大模型就是输入大量语料,来让计算机获得类似人类的“思考”能力,使之能够理解自然语言,能够进行“文本生成”、“推理问答”、“对话”、“文档摘要”等工作。 可以用“上学参加工作”这件事来类比大模型的训练、使用过程: 1. 找学校:训练大模型需要大量的计算,因此 GPU 更合适,只有购买得起大量 GPU 的才有资本训练自己的大模型。 2. 确定教材:大模型需要的数据量特别多,几千亿序列(Token)的输入基本是标配。 3. 找老师:即用合适的算法讲述“书本”中的内容,让大模型能够更好理解 Token 之间的关系。 4. 就业指导:学完书本中的知识后,为了让大模型能够更好胜任某一行业,需要进行微调(fine tuning)指导。 5. 搬砖:就业指导完成后,下面就要正式干活了,比如进行一次翻译、问答等。 二、微调的技术路线 从参数规模的角度,大模型的微调分成两条技术路线: 1. 全量微调 FFT(Full Fine Tuning):对全量的模型参数,进行全量的训练。 2. PEFT(ParameterEfficient Fine Tuning):只对部分模型参数进行训练。 从成本和效果的角度综合考虑,PEFT 是目前业界比较流行的微调方案。 OpenAI 官方微调教程: 微调是在较小的、特定领域的数据集上继续大模型的训练过程。这可以通过调整模型本身的参数,而不是像提示工程和 RAG 那样仅仅更改提示,来大幅提高模型在特定任务中的性能。把微调想象成把通用工具打磨成精密仪器。 三、微调的好处和操作方式 微调有两大好处: 1. 提高模型在特定任务中的性能。微调意味着可以输入更多的示例。可以在数以百万计的代币上进行微调,而根据上下文的大小,少量学习提示仅限于数以万计的代币。经过微调的模型可能会失去一些通用性,但对于其特定任务而言,应该期待它有更好的表现。 解决不当行为的方法是通过某种对话,助手给出了错误的响应。接受这个错误响应,并要求某人提供正确的答案。然后,用正确的答案覆盖错误的响应,并将其作为示例加入到训练数据中。下次进行微调时,模型就会在这种情况下得到改进。这是一个迭代过程,由于微调的成本较低,可以每周或每天进行这样的操作。通常,公司会在微调阶段而不是预训练阶段更频繁地进行迭代。
2024-08-30
模型微调
模型微调包括以下方面: 使用微调模型:当作业成功时,fine_tuned_model 字段将填充模型名称,完成后可能需几分钟准备好处理请求,若超时可能仍在加载中,可几分钟后重试。可通过将模型名称作为 model 完成请求的参数传递来开始发出请求,如 OpenAI 命令行界面、cURL、Python、Node.js 等方式。同时,可继续使用如 temperature、frequency_penalty、presence_penalty 等所有其他完成参数对微调模型进行请求。 Step4: 加载微调模型:基于 LoRA 微调的模型参数见基于 Llama2 的中文微调模型,LoRA 参数需要和基础模型参数结合使用。通过加载预训练模型参数和微调模型参数,示例代码中,base_model_name_or_path 为预训练模型参数保存路径,finetune_model_path 为微调模型参数保存路径。 创建微调模型:假设已准备好训练数据。使用 OpenAI CLI 开始微调工作,需明确从哪里 BASE_MODEL 开始的基本模型的名称(ada、babbage、curie 或 davinci),可使用后缀参数自定义微调模型的名称。运行命令会进行上传文件、创建微调作业、流式传输事件直到作业完成等操作。每个微调工作都从默认为 curie 的基本模型开始,模型选择会影响性能和成本,包括 ada、babbage、curie 或 davinci 等。开始微调作业后,可能需几分钟或几小时完成,工作可能排队,若事件流中断可恢复。此外,还可列出现有作业、检索作业状态或取消作业。
2024-08-30
国内评分最高的国内大模型是什么
根据目前的测评报告,在国内大模型中,得分较高的有文心一言 4.0(API),其总分 79.02 分。在工具使用的测评中,智谱清言表现不俗,取得 83.78 的高分,排名国内模型第一。过去八个月国内模型在 SuperCLUE 基准上的第一名多次为文心一言 4.0。综合来看,国内大模型在不断进步,与国外模型的差距在逐渐缩小,但不同模型在不同方面的表现各有优劣。
2024-09-17
本地知识库系统如何利用大语言模型
以下是关于本地知识库系统如何利用大语言模型的相关内容: 一、部署大语言模型 1. 下载并安装 Ollama 根据电脑系统,从 https://ollama.com/download 下载 Ollama。 下载完成后,双击打开,点击“Install”。 安装完成后,将 http://127.0.0.1:11434/ 复制进浏览器,若出现相关字样则表示安装完成。 2. 下载 qwen2:0.5b 模型(0.5b 方便测试,设备充足可下载更大模型) Windows 电脑:点击 win+R,输入 cmd 点击回车。 Mac 电脑:按下 Command(⌘)+ Space 键打开 Spotlight 搜索,输入“Terminal”或“终端”,选择“终端”应用程序。 复制相关命令行并粘贴回车,等待自动下载完成。(下载久了若卡住,鼠标点击窗口,键盘点空格可刷新) 二、了解 RAG 利用大模型的能力搭建知识库是 RAG 技术的应用。在进行本地知识库搭建实操前,需对 RAG 有大概了解。大模型训练数据有截止日期,当需要依靠不在训练集中的数据时,主要通过检索增强生成 RAG 实现。RAG 应用可抽象为 5 个过程: 1. 文档加载:从多种来源加载文档,LangChain 提供 100 多种不同的文档加载器,包括 PDF 等非结构化数据、SQL 等结构化数据以及代码等。 2. 文本分割:文本分割器把 Documents 切分为指定大小的块,称为“文档块”或“文档片”。 3. 存储:涉及将切分好的文档块嵌入转换成向量形式,并将向量数据存储到向量数据库。 4. 检索:通过某种检索算法找到与输入问题相似的嵌入片。 三、通过 Open WebUI 使用大模型 1. 首先访问相关网址,打开页面时使用邮箱注册账号。 2. Open WebUI 一般有两种使用方式: 聊天对话。 RAG 能力,可让模型根据文档内容回答问题,这是构建知识库的基础之一。 3. ChatGPT 访问速度快、回答效果好的原因: 快:GPT 大模型部署的服务器配置高。 好:GPT 大模型的训练参数多、数据更优以及训练算法更好。
2024-09-17
算法和模型是什么关系
算法和模型是相互关联但又有所区别的概念。 模型是对问题或现象的一种抽象表示,它描述了数据之间的关系和模式。例如,在卷积神经网络(CNN)中,其结构就是一种模型,主要用于模式识别任务。 算法则是用于解决问题或实现模型的一系列步骤和方法。在 AI 领域,算法用于训练和优化模型。比如在自然语言处理和图像识别中,某些算法能够使 CNN 在计算上更有效、更快速,从而击败大多数其他算法。 随着我们对大脑工作机制的认知加深,神经网络的算法和模型也会不断发展和进步。 同时,在确保 AI 模型的道德和伦理性方面,也涉及到一系列的算法设计和处理步骤,如数据清洗、算法设计以减少偏见和不公平性、制定道德和伦理准则、保持透明度、接收用户反馈、持续监控、人工干预以及对相关人员进行教育和培训等。 另外,生成式人工智能模型正在从根本上改变我们与计算机的关系,使其有可能成为我们的伴侣,这也对我们对关系的定义提出了新的挑战。
2024-09-15
有什么大模型是可以预测人的行为或者将来发展的
以下是一些与预测人的行为或将来发展相关的大模型信息: 斯坦福大学和谷歌的生成式智能体能够产生令人信服的人类行为代理。相关链接:https://syncedreview.com/2023/04/12/stanfordugooglesgenerativeagentsproducebelievableproxiesofhumanbehaviours/ 关于大模型的未来展望,认为它们将能够读取和生成文本,拥有更丰富的知识,具备多种能力,如查看和生成图像与视频、听取发声创作音乐、利用系统 2 进行深入思考等,还可能在特定领域内自我优化和针对任务进行定制调整。 同时,还为您提供了一些大模型相关的其他资源链接: Google Research,2022 & beyond:Generative models:https://ai.googleblog.com/2023/01/googleresearch2022beyondlanguage.htmlGener ativeModels Building the most open and innovative AI ecosystem:https://cloud.google.com/blog/products/aimachinelearning/buildinganopengenerativ eaipartnerecosystem Generative AI is here.Who Should Control It?https://www.nytimes.com/2022/10/21/podcasts/hardforkgenerativeartificialintelligen ce.html Generative AI:Perspectives from Stanford HAI:https://hai.stanford.edu/sites/default/files/202303/Generative_AI_HAI_Perspectives.pd f Generative AI at Work:https://www.nber.org/system/files/working_papers/w31161/w31161.pdf The future of generative AI is niche,not generalized:https://www.technologyreview.com/2023/04/27/1072102/thefutureofgenerativeaiis nichenotgeneralized/ Attention is All You Need:https://research.google/pubs/pub46201/ Transformer:A Novel Neural Network Architecture for Language Understanding:https://ai.googleblog.com/2017/08/transformernovelneuralnetwork.html
2024-09-15
有什么模型是可以预测人的行为和发展的
以下是一些可以用于预测人的行为和发展的模型: 1. 思维模型: 战略与决策模型,如 SWOT 分析、MECE 原则等,专注于帮助个人或组织做出更好的决策和解决问题。 目标设定与执行的模型,如 SMART 原则、PDCA 循环等,提供了设置和实现目标的框架,确保行动的指向性和高效性。 系统思维模型,如反馈循环、杠杆点等,用于理解和处理复杂系统及其动态,促进整体观和互联性思考。 心理学模型,如认知偏误、习惯形成等,揭示人在认知和行为上的模式和偏差,帮助理解和预测人类行为。 学习与创新模型,如费曼学习法、思维导图等,旨在促进知识获取、深化理解和创造性思考。 2. Token 预测:看似简单的统计学技巧,其中蕴含巨大潜力。预测下一个语言符号(Token)的质量,反映了对语言背后隐藏的语义和知识的理解程度。一个足够强大的语言模型,可以模拟出超越现实的假想情况,通过人类数据进行推理和外推,从而有可能预测一个睿智、博学和能力非凡的人的行为举止。
2024-09-15
推荐几个好用的大语言模型
以下是一些好用的大语言模型: 1. OpenAI 的 GPT4:在多种任务上表现卓越,包括文本生成、理解、翻译以及各种专业和创意写作任务。 2. Anthropic 公司的 Claude 3:在特定领域和任务上有出色能力。 3. 谷歌的 Gemini。 4. 百度的文心一言。 5. 阿里巴巴的通义大模型。 此外,还有一些在特定方面表现突出的大语言模型,如: 1. Meta 的 Llama2 系列。 2. 评估中的 GPT3(包括 textada001、textbabbage001、textcurie001 和 textdavinci002)。 3. LaMDA(有 422M、2B、8B、68B 和 137B 参数的模型)。 4. PaLM(有 8B、62B 和 540B 参数的模型)。 5. UL2 20B。 6. Codex(OpenAI API 中的 codedavinci002)。 如果想了解国内的大模型效果,可以参考第三方基准评测报告: 。内容由 AI 大模型生成,请仔细甄别。
2024-09-14
蛟龙16pro配置(处理器R7-7745HX,显卡RTX4060 8G,硬盘512GPCIE4.0SSD)可以用于审计人员本地化部署大模型用于数据分析工作吗
蛟龙 16pro 的配置(处理器 R77745HX,显卡 RTX4060 8G,硬盘 512G PCIE4.0 SSD)对于审计人员本地化部署大模型用于数据分析工作来说,可能存在一定的局限性。 处理器 R77745HX 具有一定的计算能力,但在处理大规模数据和复杂的模型运算时,其性能可能不够强劲。 显卡 RTX4060 8G 对于一些较为复杂的图形处理和计算任务能够提供一定的支持,但对于大规模的深度学习模型训练和数据分析,可能会显得不足。 512G 的 PCIE4.0 SSD 硬盘容量相对较小,在存储大量数据时可能会很快耗尽空间。 综上所述,该配置在一定程度上可以用于简单的数据分析任务,但对于较为复杂和大规模的大模型本地化部署及数据分析工作,可能需要更强大的硬件配置,例如更高性能的处理器、更大容量和更高性能的显卡,以及更大的存储空间。
2024-09-14
蛟龙16pro配置可以用于审计人员本地化部署大模型用于数据分析工作吗
蛟龙 16pro 的配置信息对于能否用于审计人员本地化部署大模型进行数据分析工作,需要更多关于该设备具体配置的详细信息才能准确判断。一般来说,本地化部署大模型进行数据分析工作对计算机的硬件配置有较高要求,包括但不限于强大的 CPU 性能、充足的内存容量、高速的存储设备以及优秀的显卡性能等。如果您能提供蛟龙 16pro 更详细的配置参数,我可以为您做出更准确的评估和建议。
2024-09-14
为审计人员利用大模型本地化部署进行数据分析的电脑如何配置
对于审计人员利用大模型本地化部署进行数据分析的电脑配置,以下是相关建议: 生成文字大模型: 最低配置:8G RAM + 4G VRAM 建议配置:16G RAM + 8G VRAM 理想配置:32G RAM + 24G VRAM(如果要跑 GPT3.5 差不多性能的大模型) 生成图片大模型(比如跑 SD): 最低配置:16G RAM + 4G VRAM 建议配置:32G RAM + 12G VRAM 生成音频大模型: 最低配置:8G VRAM 建议配置:24G VRAM 需要注意的是,最低配置运行速度可能非常慢。另外,对于 SDXL 的大模型,分为两个部分: 第一部分,base + refiner 是必须下载的,base 是基础模型,用于文生图操作;refiner 是精炼模型,用于对生成的模型进行细化,生成细节更丰富的图片。 第二部分,还有一个配套的 VAE 模型,用于调节图片的画面效果和色彩。 想要在 webUI 中使用 SDXL 的大模型,首先要在秋叶启动器中将 webUI 的版本升级到 1.5 以上。接下来,将模型放入对应的文件夹中,base 和 refiner 放在“……\\sdwebuiakiv4.2\\models\\Stablediffusion”路径下;vae 放在“……\\sdwebuiakiv4.2\\models\\VAE”路径下。完成之后,启动 webUI,就可以在模型中看到 SDXL 的模型。
2024-09-12
最为审计人员利用大模型本地化部署在电脑上进行数据分析,电脑如何配置
对于审计人员利用大模型本地化部署在电脑上进行数据分析,电脑配置需要考虑以下方面: 模型选择与下载: SDXL 大模型分为 base+refiner 两个必须下载的部分,base 是基础模型用于文生图操作,refiner 是精炼模型用于细化生成的模型,还有一个配套的 VAE 模型用于调节图片效果和色彩。您可以关注公众号【白马与少年】,回复【SDXL】获取下载链接。 除了上述模型,还可在 Civitai(C 站)https://civitai.com/ 寻找更多模型。使用 C 站时需科学上网,点击右上角筛选按钮找到所需模型类型,如 Checkpoint=大模型、LoRA=Lora,看到感兴趣的模型点击下载保存到电脑本地。 模型存放路径与使用: 将下载的模型放入对应文件夹,base 和 refiner 放在“……\\sdwebuiakiv4.2\\models\\Stablediffusion”路径下,vae 放在“……\\sdwebuiakiv4.2\\models\\VAE”路径下。启动 webUI 后可在模型中看到 SDXL 模型。 硬件配置需求: ChatGLM6B 模型:模型文件下载至本地需要 15 GB 存储空间。量化等级不同,对 GPU 显存要求不同,如 FP16(无量化)最低 GPU 显存(推理)需 13 GB,高效参数微调需 14 GB;INT8 推理需 8 GB,高效参数微调需 9 GB;INT4 推理需 6 GB,高效参数微调需 7 GB。 MOSS 模型:模型文件下载至本地需要 70 GB 存储空间。FP16(无量化)最低 GPU 显存(推理)需 68 GB。 Embedding 模型:默认选用的约占用显存 3GB,也可修改为在 CPU 中运行。
2024-09-12
使用开源大模型本地化部署使用电脑配置,推荐几款笔记本电脑
以下是关于使用开源大模型本地化部署所需电脑配置及笔记本电脑推荐的相关信息: 运行大模型需要较高的机器配置,个人玩家大多负担不起。以下是不同类型大模型的配置要求: 生成文字大模型: 最低配置:8G RAM + 4G VRAM 建议配置:16G RAM + 8G VRAM 理想配置:32G RAM + 24G VRAM(跑 GPT3.5 差不多性能的大模型) 生成图片大模型(比如跑 SD): 最低配置:16G RAM + 4G VRAM 建议配置:32G RAM + 12G VRAM 生成音频大模型: 最低配置:8G VRAM 建议配置:24G VRAM 对于本地化部署,不建议使用最低配置,因为速度会非常慢。例如,用 8G 的 Mac 电脑尝试过,效果不佳。 由于本地化部署对电脑配置要求较高,不太推荐本地化安装实现。如果想使用开源大模型,可选择利用云厂商已提供好的大模型运行环境和计算能力,比如阿里云的 PAI 和 AutoDL。 在笔记本电脑选择方面,建议选择具备以下配置的机型: 1. 内存:16GB 及以上的 RAM。 2. 显卡:具有 8GB 及以上 VRAM 的独立显卡。 但具体的笔记本电脑型号还需根据您的预算和其他需求来确定。
2024-09-12
本地化部署
以下是关于本地化部署的相关内容: SDXL 的本地化部署: SDXL 的大模型分为两个部分: 1. 第一部分,base+refiner 是必须下载的,base 是基础模型,用于文生图操作;refiner 是精炼模型,用于对文生图生成的模型进行细化,生成细节更丰富的图片。 2. 第二部分,SDXL 还有一个配套的 VAE 模型,用于调节图片的画面效果和色彩。 这三个模型的下载链接可关注公众号【白马与少年】,回复【SDXL】获取。 在 webUI 中使用 SDXL 大模型,需先在秋叶启动器中将 webUI 的版本升级到 1.5 以上。然后将模型放入对应的文件夹中,base 和 refiner 放在“……\\sdwebuiakiv4.2\\models\\Stablediffusion”路径下;vae 放在“……\\sdwebuiakiv4.2\\models\\VAE”路径下。完成后启动 webUI,即可在模型中看到 SDXL 的模型。 正常使用方法:先在文生图中使用 base 模型,填写提示词和常规参数,尺寸可设为 10241024 进行生成。生成图片后,可将其发送到图生图中,大模型切换为“refiner”,重绘幅度开小一点,再次点击生成。 对于配置较高的电脑,如显卡为 4080ti,生成时间约在十秒左右。配置较低的需自行测试。 还可安装 refine 插件,在扩展列表中搜索 refine 并安装,重启后可在文生图界面直接使用 refine 模型进行绘画。 Google Gemma 的本地化部署: Google 发布的家用版小模型 Gemma 有 2b(20 亿参数)和 7b(70 亿参数)版本。 部署环境准备: 1. 首先提一下 Ollama,它是一个开源的大型语言模型服务,可方便地部署最新版本的 GPT 模型并通过接口使用,支持热加载模型文件,无需重新启动即可切换不同的模型。 2. 进入 ollama.com,下载程序并安装(支持 windows,linux 和 macos)。 3. 查找 cmd 进入命令提示符,输入 ollama v 检查版本,安装完成后版本应显示 0.1.26。 4. 输入 cls 清空屏幕,然后直接输入 ollama run gemma 运行模型(默认是 2b),首次需下载,等待一段时间。若想用 7b,运行 ollama run gemma:7b。完成后即可直接对话,2 个模型都安装后,可重复上述指令切换。
2024-09-11