直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

本地化部署

回答

以下是关于本地化部署的相关内容:

SDXL 的本地化部署: SDXL 的大模型分为两个部分:

  1. 第一部分,base+refiner 是必须下载的,base 是基础模型,用于文生图操作;refiner 是精炼模型,用于对文生图生成的模型进行细化,生成细节更丰富的图片。
  2. 第二部分,SDXL 还有一个配套的 VAE 模型,用于调节图片的画面效果和色彩。

这三个模型的下载链接可关注公众号【白马与少年】,回复【SDXL】获取。

在 webUI 中使用 SDXL 大模型,需先在秋叶启动器中将 webUI 的版本升级到 1.5 以上。然后将模型放入对应的文件夹中,base 和 refiner 放在“……\sd-webui-aki-v4.2\models\Stable-diffusion”路径下;vae 放在“……\sd-webui-aki-v4.2\models\VAE”路径下。完成后启动 webUI,即可在模型中看到 SDXL 的模型。

正常使用方法:先在文生图中使用 base 模型,填写提示词和常规参数,尺寸可设为 1024*1024 进行生成。生成图片后,可将其发送到图生图中,大模型切换为“refiner”,重绘幅度开小一点,再次点击生成。

对于配置较高的电脑,如显卡为 4080ti,生成时间约在十秒左右。配置较低的需自行测试。

还可安装 refine 插件,在扩展列表中搜索 refine 并安装,重启后可在文生图界面直接使用 refine 模型进行绘画。

Google Gemma 的本地化部署: Google 发布的家用版小模型 Gemma 有 2b(20 亿参数)和 7b(70 亿参数)版本。

部署环境准备:

  1. 首先提一下 Ollama,它是一个开源的大型语言模型服务,可方便地部署最新版本的 GPT 模型并通过接口使用,支持热加载模型文件,无需重新启动即可切换不同的模型。
  2. 进入 ollama.com,下载程序并安装(支持 windows,linux 和 macos)。
  3. 查找 cmd 进入命令提示符,输入 ollama -v 检查版本,安装完成后版本应显示 0.1.26。
  4. 输入 cls 清空屏幕,然后直接输入 ollama run gemma 运行模型(默认是 2b),首次需下载,等待一段时间。若想用 7b,运行 ollama run gemma:7b。完成后即可直接对话,2 个模型都安装后,可重复上述指令切换。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

【SD】向未来而生,关于SDXL你要知道事儿

SDXL的大模型分为两个部分:第一部分,base+refiner是必须下载的,base是基础模型,我们使用它进行文生图的操作;refiner是精炼模型,我们使用它对文生图中生成的模型进行细化,生成细节更丰富的图片。第二部分,是SDXL还有一个配套的VAE模型,用于调节图片的画面效果和色彩。这三个模型,我已经放入了云盘链接中,大家可以关注我的公众号【白马与少年】,然后回复【SDXL】获取下载链接。想要在webUI中使用SDXL的大模型,首先我们要在秋叶启动器中将webUI的版本升级到1.5以上。接下来,将模型放入对应的文件夹中,base和refiner放在“……\sd-webui-aki-v4.2\models\Stable-diffusion”路径下;vae放在“……\sd-webui-aki-v4.2\models\VAE”路径下。完成之后,我们启动webUI,就可以在模型中看到SDXL的模型了。我们正常的使用方法是这样的:先在文生图中使用base模型,填写提示词和常规参数,尺寸可以设置为1024*1024,进行生成。我这边使用了一个最简单的提示词“1girl”,来看看效果。生成的图片大家可以看一下,我觉得是相当不错的。

【SD】向未来而生,关于SDXL你要知道事儿

我知道大家心里可能会想——“就这,还好吧,也没有那么惊艳吧?”,那么,我用同样的参数再给你画一幅sd1.5版本的图像,你就能看出进步有多大了。是不是没有对比就没有伤害?SDXL,真香!还没完,我们到现在还只使用了一个base模型,接下来,将图片发送到图生图当中,大模型切换为“refiner”,重绘幅度开小一点,再次点击生成。可以看到细节又提升了不少,可惜的是,现在还不能配合tile来使用。在生成时间上,我的显卡是4080ti,速度在十秒左右。所以sdxl对于高配电脑还是可以接受的,但配置较低的朋友需要自己去测试一下了。当然,有人可能会说,这个操作好麻烦,生成一张图要去两个界面来回倒腾。在这里,我给大家再介绍一款插件。我们来到扩展列表中,搜索refine,点击安装插件,然后重启。启用这个插件,就可以让我们在文生图的界面直接使用refine模型,进一步到位的绘画。我填写一段正向提示词:a girl looks up at the sky in the city of cyberpunk,close-up,wearing a helmet,fantasy elements,game original,starry_sky,点击生成,生产过程中的显存使用情况,显存基本跑满。

[应用开发] 本地部署Google Gemma

Google刚刚发布了家用版的小模型Gemma,分别为2b(20亿参数)和7b(70亿参数)版本。相对千亿参数的大模型,这种小模型可能不适合解决特别复杂的任务,但是从趋势上看应该是模型本地化提升基础操作效率的模板。类似之前国内发布的ChatGLM-6B。现在的部署环境比一年前要友好多了,首先提一下Ollama,Ollama是一个开源的大型语言模型服务,可以非常方便地部署最新版本的GPT模型并通过接口使用,支持热加载模型文件,无需重新启动即可切换不同的模型。除了Gemma,像小型的llama也支持本地部署。环境准备首先进入ollama.com,下载程序并安装(支持windows,linux和macos)查找cmd进入命令提示符,输入ollama -v检查版本,安装完成后版本应该显示0.1.26cls清空屏幕,接下来直接输入ollama run gemma运行模型(默认是2b),首次需要下载,需要等待一段时间,如果想用7b,运行ollama run gemma:7b完成以后就可以直接对话了,2个模型都安装以后,可以重复上面的指令切换。

其他人在问
蛟龙16pro配置(处理器R7-7745HX,显卡RTX4060 8G,硬盘512GPCIE4.0SSD)可以用于审计人员本地化部署大模型用于数据分析工作吗
蛟龙 16pro 的配置(处理器 R77745HX,显卡 RTX4060 8G,硬盘 512G PCIE4.0 SSD)对于审计人员本地化部署大模型用于数据分析工作来说,可能存在一定的局限性。 处理器 R77745HX 具有一定的计算能力,但在处理大规模数据和复杂的模型运算时,其性能可能不够强劲。 显卡 RTX4060 8G 对于一些较为复杂的图形处理和计算任务能够提供一定的支持,但对于大规模的深度学习模型训练和数据分析,可能会显得不足。 512G 的 PCIE4.0 SSD 硬盘容量相对较小,在存储大量数据时可能会很快耗尽空间。 综上所述,该配置在一定程度上可以用于简单的数据分析任务,但对于较为复杂和大规模的大模型本地化部署及数据分析工作,可能需要更强大的硬件配置,例如更高性能的处理器、更大容量和更高性能的显卡,以及更大的存储空间。
2024-09-14
蛟龙16pro配置可以用于审计人员本地化部署大模型用于数据分析工作吗
蛟龙 16pro 的配置信息对于能否用于审计人员本地化部署大模型进行数据分析工作,需要更多关于该设备具体配置的详细信息才能准确判断。一般来说,本地化部署大模型进行数据分析工作对计算机的硬件配置有较高要求,包括但不限于强大的 CPU 性能、充足的内存容量、高速的存储设备以及优秀的显卡性能等。如果您能提供蛟龙 16pro 更详细的配置参数,我可以为您做出更准确的评估和建议。
2024-09-14
为审计人员利用大模型本地化部署进行数据分析的电脑如何配置
对于审计人员利用大模型本地化部署进行数据分析的电脑配置,以下是相关建议: 生成文字大模型: 最低配置:8G RAM + 4G VRAM 建议配置:16G RAM + 8G VRAM 理想配置:32G RAM + 24G VRAM(如果要跑 GPT3.5 差不多性能的大模型) 生成图片大模型(比如跑 SD): 最低配置:16G RAM + 4G VRAM 建议配置:32G RAM + 12G VRAM 生成音频大模型: 最低配置:8G VRAM 建议配置:24G VRAM 需要注意的是,最低配置运行速度可能非常慢。另外,对于 SDXL 的大模型,分为两个部分: 第一部分,base + refiner 是必须下载的,base 是基础模型,用于文生图操作;refiner 是精炼模型,用于对生成的模型进行细化,生成细节更丰富的图片。 第二部分,还有一个配套的 VAE 模型,用于调节图片的画面效果和色彩。 想要在 webUI 中使用 SDXL 的大模型,首先要在秋叶启动器中将 webUI 的版本升级到 1.5 以上。接下来,将模型放入对应的文件夹中,base 和 refiner 放在“……\\sdwebuiakiv4.2\\models\\Stablediffusion”路径下;vae 放在“……\\sdwebuiakiv4.2\\models\\VAE”路径下。完成之后,启动 webUI,就可以在模型中看到 SDXL 的模型。
2024-09-12
最为审计人员利用大模型本地化部署在电脑上进行数据分析,电脑如何配置
对于审计人员利用大模型本地化部署在电脑上进行数据分析,电脑配置需要考虑以下方面: 模型选择与下载: SDXL 大模型分为 base+refiner 两个必须下载的部分,base 是基础模型用于文生图操作,refiner 是精炼模型用于细化生成的模型,还有一个配套的 VAE 模型用于调节图片效果和色彩。您可以关注公众号【白马与少年】,回复【SDXL】获取下载链接。 除了上述模型,还可在 Civitai(C 站)https://civitai.com/ 寻找更多模型。使用 C 站时需科学上网,点击右上角筛选按钮找到所需模型类型,如 Checkpoint=大模型、LoRA=Lora,看到感兴趣的模型点击下载保存到电脑本地。 模型存放路径与使用: 将下载的模型放入对应文件夹,base 和 refiner 放在“……\\sdwebuiakiv4.2\\models\\Stablediffusion”路径下,vae 放在“……\\sdwebuiakiv4.2\\models\\VAE”路径下。启动 webUI 后可在模型中看到 SDXL 模型。 硬件配置需求: ChatGLM6B 模型:模型文件下载至本地需要 15 GB 存储空间。量化等级不同,对 GPU 显存要求不同,如 FP16(无量化)最低 GPU 显存(推理)需 13 GB,高效参数微调需 14 GB;INT8 推理需 8 GB,高效参数微调需 9 GB;INT4 推理需 6 GB,高效参数微调需 7 GB。 MOSS 模型:模型文件下载至本地需要 70 GB 存储空间。FP16(无量化)最低 GPU 显存(推理)需 68 GB。 Embedding 模型:默认选用的约占用显存 3GB,也可修改为在 CPU 中运行。
2024-09-12
使用开源大模型本地化部署使用电脑配置,推荐几款笔记本电脑
以下是关于使用开源大模型本地化部署所需电脑配置及笔记本电脑推荐的相关信息: 运行大模型需要较高的机器配置,个人玩家大多负担不起。以下是不同类型大模型的配置要求: 生成文字大模型: 最低配置:8G RAM + 4G VRAM 建议配置:16G RAM + 8G VRAM 理想配置:32G RAM + 24G VRAM(跑 GPT3.5 差不多性能的大模型) 生成图片大模型(比如跑 SD): 最低配置:16G RAM + 4G VRAM 建议配置:32G RAM + 12G VRAM 生成音频大模型: 最低配置:8G VRAM 建议配置:24G VRAM 对于本地化部署,不建议使用最低配置,因为速度会非常慢。例如,用 8G 的 Mac 电脑尝试过,效果不佳。 由于本地化部署对电脑配置要求较高,不太推荐本地化安装实现。如果想使用开源大模型,可选择利用云厂商已提供好的大模型运行环境和计算能力,比如阿里云的 PAI 和 AutoDL。 在笔记本电脑选择方面,建议选择具备以下配置的机型: 1. 内存:16GB 及以上的 RAM。 2. 显卡:具有 8GB 及以上 VRAM 的独立显卡。 但具体的笔记本电脑型号还需根据您的预算和其他需求来确定。
2024-09-12
你的知识库是怎么部署的
部署个人知识库需要考虑硬件配置和相关技术原理。 硬件方面: 生成文字大模型,最低配置为 8G RAM + 4G VRAM,建议配置为 16G RAM + 8G VRAM,理想配置为 32G RAM + 24G VRAM(如果要跑 GPT3.5 差不多性能的大模型)。 生成图片大模型(比如跑 SD),最低配置为 16G RAM + 4G VRAM,建议配置为 32G RAM + 12G VRAM。 生成音频大模型,最低配置为 8G VRAM,建议配置为 24G VRAM。 技术原理方面: 利用大模型的能力搭建知识库本身就是一个 RAG 技术的应用。在这个过程中,首先检索外部数据,然后在生成步骤中将这些数据传递给 LLM。 RAG 应用包括文档加载、文本分割、存储、检索和输出这 5 个过程。 文档加载:从多种不同来源加载文档,LangChain 提供了 100 多种不同的文档加载器。 文本分割:把 Documents 切分为指定大小的块。 存储:涉及将切分好的文档块进行嵌入转换成向量的形式,并将 Embedding 后的向量数据存储到向量数据库。 检索:通过某种检索算法找到与输入问题相似的嵌入片。 输出:把问题以及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示一起来生成更加合理的答案。 此外,搭建基于 GPT API 的定制化知识库,涉及给 GPT 输入(投喂)定制化的知识。GPT3.5 一次交互(输入和输出)只支持最高 4096 个 Token。为了处理大量领域知识,OpenAI 提供了 embedding API 解决方案。embeddings 是一个浮点数字的向量(列表),两个向量之间的距离衡量它们的关联性,小距离表示高关联度。
2024-11-11
本地部署的AI工具
以下是关于本地部署的 AI 工具的相关信息: 目前市面上的 AI 工具分为线上和线下本地部署两种: 线上的优势:出图速度快,不依赖本地显卡配置,无需下载大型模型,能查看其他创作者的作品,但出图分辨率受限,一般最高支持 1024×1024 左右,制作横板、高清图片会受影响。 线下部署的优势:可以添加插件,不卡算力,出图质量高。但使用时电脑基本处于宕机状态,配置不高可能会出现爆显存导致出图失败的情况。 具体的部署步骤(以 windows10 系统为例,mac 系统步骤类似,命令有所不同): 1. 安装环境: 点击电脑“系统”,输入“cmd”,回车打开命令窗口。 在命令窗口中,粘贴代码确认是否有 python 和 pip。 若没有,需安装:先安装 python,安装包可通过下载,按照步骤安装,关闭窗口再次运行命令确认。 2. 部署项目: 下载 COW 机器人项目并解压缩。 回到 chatgptonwechat/文件路径下,空白处右键,打开 Powershell 复制粘贴“python app.py”,弹出二维码扫码登录。 注意事项: 1. 程序在本地运行,关闭窗口进程结束,若要持续使用需保持窗口打开和运行。 2. 若突然不管用,可点击窗口并按空格。 3. 配置时,在 config.json 中的 OpneAi_Api 填“http://localhost:3000/api/v1/chat/completions”。 对于游戏截图升级到 KV 品质的应用,可充分发挥线上和线下平台的优势:线上找参考、测试模型,线下作为主要出图工具。先在线上绘图网站的绘图广场发现想要的画风,点击创作获取模型 lora 和 tag,截取游戏人物底图将线上算力集中在人物身上,多批次尝试不同画风得出合适模型+lora 组合,最后在 C 站()下载对应模型到本地加载部署后正式生图。
2024-11-10
Mac部署stable diffusion
在 Mac 上部署 Stable Diffusion 存在一定限制,功能可能不全且出错率偏高,严重影响使用体验。个人建议升级设备或者采用云服务器玩耍。 如果您仍想在 Mac 上部署,可以参考以下步骤: 1. 电脑硬件要求: 系统:无明确针对 Mac 的特定系统要求。 显卡:未明确针对 Mac 的显卡要求。 硬盘:留有足够的空间,最低 100G 起步(包括模型)。 2. 环境安装: 未提供 Mac 系统下的具体环境安装步骤。 由于 Mac 系统的特殊性,更推荐您采用云端部署的方式,相关教程可参考:https://qa3dhma45mc.feishu.cn/wiki/A6WYw1Nm0ikGplkuO9Ecwomqnnd
2024-11-06
联想异能者配置i5-12450八核,32GB内存,1TB固态硬盘,用于本地部署开源大模型可以部署哪些开源大模型
以下是一些您的联想异能者配置(i512450 八核,32GB 内存,1TB 固态硬盘)可部署的开源大模型及相关信息: ComfyUI 相比 WebUI 配置更低,系统资源占用更少,出图速度更快。ComfyUI 最低可在小于 3G 的 GPU 上运行,甚至没有 GPU 光用 CPU 也可以运行,但速度极慢。SDXL 出来后提高了运行配置,最低需要 8GB 显存+32GB 运行内存,12GB 流畅运行,推荐 16GB 以上。玩 SDwebui 和 ComfyUI 建议使用 6GB 以上的显存的 NVIDIA 显卡(N 卡),内存在 16G 以上。硬盘会影响加载模型的速度,所以最好把软件和模型部署在 SSD(固态硬盘)上。 截止 2024 年 5 月,主流的 AI 笔记本电脑主要是一些专门为人工智能和深度学习设计的高性能移动工作站。一些知名品牌包括微软第 11 代 Surface Pro、微星 Creator/Workstation 系列、技嘉 Aero/Aorus 系列、戴尔 Precision 移动工作站、惠普 ZBook 移动工作站、联想 ThinkPad P 系列。这些笔记本通常配备强大的 GPU(如 NVIDIA RTX 系列)、大容量内存(32GB 以上)和高速固态硬盘,还通常预装了 NVIDIA CUDA、cuDNN 等深度学习框架,以及各种 AI 开发工具。但这类高端 AI 笔记本价格相对较高,通常在 2000 美元以上。用户可根据自身需求和预算选择合适型号,并关注散热、续航等实际使用体验。 请注意,配置上不封顶,您可根据自己的需求和预算来选择。
2024-11-04
如何做大模型的云端部署与微调
做大模型的云端部署与微调,主要包括以下步骤: 1. 选择合适的部署方式: 本地环境部署。 云计算平台部署。 分布式部署。 模型压缩和量化。 公共云服务商部署。需根据自身的资源、安全和性能需求进行选择。 2. 准备训练所需的数据和计算资源: 确保有足够的训练数据覆盖目标应用场景。 准备足够的计算资源,如 GPU 服务器或云计算资源。 3. 选择合适的预训练模型作为基础: 可以使用开源的预训练模型如 BERT、GPT 等。 也可以自行训练一个基础模型。 4. 针对目标任务进行模型微调训练: 根据具体应用场景对预训练模型进行微调训练。 优化模型结构和训练过程以提高性能。 5. 部署和调试模型: 将训练好的模型部署到生产环境。 对部署的模型进行在线调试和性能优化。 6. 注意安全性和隐私保护: 大模型涉及大量数据和隐私信息,需要重视安全性和合规性。 例如,对于 SDXL 的大模型,本地部署时要注意模型分为 base+refiner 以及配套的 VAE 模型,需将其放入对应文件夹,并在秋叶启动器中将 webUI 的版本升级到 1.5 以上。而对于 Llama3 的部署和微调,实操分两部分,包括本地部署并通过 webdemo 对话,以及使用特定数据集进行微调,具体流程为购买服务器、安装代码环境、下载通用模型和数据集、挑选微调框架、编写微调程序和验证结果。 总的来说,部署和微调大模型需要综合考虑多方面因素,根据具体需求选择合适的方法,并注意优化各个环节以提高模型性能和应用效果。
2024-10-26
docker部署qwen
以下是关于 Docker 部署相关问题的综合回答: 容器编排模板: 容器编排模板是一种配置文件,用于在 Docker 中部署和管理多个容器,可一键部署复杂环境,无需手动配置细节,如配置 COW 组件与微信和极简未来平台交互。 使用 Docker 部署 COW 组件的原因: Docker 提供隔离运行环境,确保应用在任何环境稳定运行,简化安装和配置过程,保证环境一致,便于管理和维护。 配置多个前缀触发机器人回复的原因: 配置如“bot”、“@bot”等多个前缀,能确保机器人只在特定情况回复,避免群聊或私聊中频繁干扰,提高响应准确性和用户体验。 扫码登录失败的解决办法: 1. 重启 Docker 容器:在宝塔面板中找到对应容器,点击“重启”。 2. 检查网络连接:确保服务器和微信客户端能正常访问互联网。 3. 重新扫描二维码:等待容器重启后,重新扫描日志中生成的二维码。 费用相关: 使用 AI 微信聊天机器人的费用实际上不高,极简未来平台按使用量收费,对一般用户费用相对低廉,充值少量费用通常可用很长时间,且平台提供每天签到免费领积分福利,进一步降低使用成本。使用极简未来平台创建 AI 机器人的具体费用未明确给出。
2024-10-20