以下是一些与预测人的行为或将来发展相关的大模型信息:
同时,还为您提供了一些大模型相关的其他资源链接:
大模型三要素,算法,算力和数据,巧妇难为无米之炊。车载支架已就位,待我出门逛一圈,将后端采集的prompt和源图存入数据集,然后进一步展开工作。人生就是一趟单向旅途,你能所做的只是「尽量不错过沿途的风景」。2024年了,先提前给大家拜个早年。在大型语言模型面前,技术已经平权,要卷的只剩下「创意和工程化落地能力」了。
综上所述,我认为将大型语言模型仅视为聊天机器人或单词生成器是不准确的。更恰当的比喻是,它们类似于新兴操作系统的内核进程,协调大量资源来解决问题。考虑到我所展示的信息,我们可以设想几年后的大型语言模型将如何发展。它们将能够读取和生成文本,拥有比任何个人更丰富的知识,通过检索增强生成浏览互联网或引用本地文件。它能够利用现有的软件基础架构,例如计算器、Python等。它具备查看和生成图像与视频的能力。它能够听取、发声并创作音乐。它能够利用系统2进行深入思考。在某些具备奖励机制的特定领域内,它能够自我优化。它可能能够针对许多特定任务进行定制和细微调整。或许,许多LLM专家几乎都存在于一个能够协同解决问题的应用程序商店中。因此,我发现这个新的LLM OS操作系统与当今的操作系统有许多相似之处。这有点像一个图表,它几乎看起来与当今的计算机无异。
Google Research,2022 & beyond:Generative models:https://ai.googleblog.com/2023/01/google-research-2022-beyond-language.html#Gener ativeModelsBuilding the most open and innovative AI ecosystem:https://cloud.google.com/blog/products/ai-machine-learning/building-an-open-generativ e-ai-partner-ecosystemGenerative AI is here.Who Should Control It?https://www.nytimes.com/2022/10/21/podcasts/hard-fork-generative-artificial-intelligen ce.htmlStanford U & Google’s Generative Agents Produce Believable Proxies of Human Behaviors:https://syncedreview.com/2023/04/12/stanford-u-googles-generative-agents-produce-believable-proxies-of-human-behaviours/Generative AI:Perspectives from Stanford HAI:https://hai.stanford.edu/sites/default/files/2023-03/Generative_AI_HAI_Perspectives.pd fGenerative AI at Work:https://www.nber.org/system/files/working_papers/w31161/w31161.pdfThe future of generative AI is niche,not generalized:https://www.technologyreview.com/2023/04/27/1072102/the-future-of-generative-ai-is- niche-not-generalized/Additional Resources:Attention is All You Need:https://research.google/pubs/pub46201/Transformer:A Novel Neural Network Architecture for Language Understanding:https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html