直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

最为审计人员利用大模型本地化部署在电脑上进行数据分析,电脑如何配置

回答

对于审计人员利用大模型本地化部署在电脑上进行数据分析,电脑配置需要考虑以下方面:

模型选择与下载

  • SDXL 大模型分为 base+refiner 两个必须下载的部分,base 是基础模型用于文生图操作,refiner 是精炼模型用于细化生成的模型,还有一个配套的 VAE 模型用于调节图片效果和色彩。您可以关注公众号【白马与少年】,回复【SDXL】获取下载链接。
  • 除了上述模型,还可在 Civitai(C 站)https://civitai.com/ 寻找更多模型。使用 C 站时需科学上网,点击右上角筛选按钮找到所需模型类型,如 Checkpoint=大模型、LoRA=Lora,看到感兴趣的模型点击下载保存到电脑本地。

模型存放路径与使用

  • 将下载的模型放入对应文件夹,base 和 refiner 放在“……\sd-webui-aki-v4.2\models\Stable-diffusion”路径下,vae 放在“……\sd-webui-aki-v4.2\models\VAE”路径下。启动 webUI 后可在模型中看到 SDXL 模型。

硬件配置需求

  • ChatGLM-6B 模型:模型文件下载至本地需要 15 GB 存储空间。量化等级不同,对 GPU 显存要求不同,如 FP16(无量化)最低 GPU 显存(推理)需 13 GB,高效参数微调需 14 GB;INT8 推理需 8 GB,高效参数微调需 9 GB;INT4 推理需 6 GB,高效参数微调需 7 GB。
  • MOSS 模型:模型文件下载至本地需要 70 GB 存储空间。FP16(无量化)最低 GPU 显存(推理)需 68 GB。
  • Embedding 模型:默认选用的GanymedeNil/text2vec-large-chinese约占用显存 3GB,也可修改为在 CPU 中运行。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

【SD】向未来而生,关于SDXL你要知道事儿

SDXL的大模型分为两个部分:第一部分,base+refiner是必须下载的,base是基础模型,我们使用它进行文生图的操作;refiner是精炼模型,我们使用它对文生图中生成的模型进行细化,生成细节更丰富的图片。第二部分,是SDXL还有一个配套的VAE模型,用于调节图片的画面效果和色彩。这三个模型,我已经放入了云盘链接中,大家可以关注我的公众号【白马与少年】,然后回复【SDXL】获取下载链接。想要在webUI中使用SDXL的大模型,首先我们要在秋叶启动器中将webUI的版本升级到1.5以上。接下来,将模型放入对应的文件夹中,base和refiner放在“……\sd-webui-aki-v4.2\models\Stable-diffusion”路径下;vae放在“……\sd-webui-aki-v4.2\models\VAE”路径下。完成之后,我们启动webUI,就可以在模型中看到SDXL的模型了。我们正常的使用方法是这样的:先在文生图中使用base模型,填写提示词和常规参数,尺寸可以设置为1024*1024,进行生成。我这边使用了一个最简单的提示词“1girl”,来看看效果。生成的图片大家可以看一下,我觉得是相当不错的。

教程:超详细的Stable Diffusion教程

除了链接里面给大家分享的模型,大家肯定还想去找更多更好看的模型而大多数的模型都是在Civitai(C站)这个网站里面https://civitai.com/现在就给大家说一下C站的使用方法:01.科学上网这个没法教,大家只能自己想办法了02.点击右上角的筛选按钮,在框框里面找到自己需要的模型类型Checkpoint=大模型LoRA=Lora常用的就是这两个03.看照片,看到感兴趣的就点进去点击右边的“Download”,也就是下载,保存到电脑本地,文件保存到哪里在这一节的第二部分另外,我们还可以点击左上角的“Images”这里就是看别人已经做好的图片,找到喜欢的点进去点进去之后的页面我们就可以看到这张图的全部信息,直接点击Lora和大模型,可以直接跳转到下载页面下面的就是照片关键词和其他信息点击最下面的“Copy...Data”就可以复制图片的所有信息回到SD,粘贴到关键词的文本框,点击右边的按钮这些信息就会自动分配要注意的就是,大模型是需要我们手动去换的!这样我们就可以生成出跟大神几乎一样的照片了!(电脑网络配置的不同,出来的照片有细微差别)

开发:GLM等大模型外接数据库

ChatGLM-6B模型硬件需求注:模型文件下载至本地需要15 GB存储空间。|量化等级|最低GPU显存(推理)|最低GPU显存(高效参数微调)|<br>|-|-|-|<br>|FP16(无量化)|13 GB|14 GB|<br>|INT8|8 GB|9 GB|<br>|INT4|6 GB|7 GB|MOSS模型硬件需求注:模型文件下载至本地需要70 GB存储空间|量化等级|最低GPU显存(推理)|最低GPU显存(高效参数微调)|<br>|-|-|-|<br>|FP16(无量化)|68 GB|-|<br>|INT8|20 GB|-|Embedding模型硬件需求默认选用的Embedding模型[GanymedeNil/text2vec-large-chinese](https://huggingface.co/GanymedeNil/text2vec-large-chinese/tree/main)约占用显存3GB,也可修改为在CPU中运行。

其他人在问
windows电脑和安卓手机可以怎么注册并使用chatgpt? 请详细说明如何访问国外网络和注册及使用、
以下是 Windows 电脑和安卓手机注册并使用 ChatGPT 的详细步骤: 安卓手机: 1. 对于自带谷歌框架的机型(如红米 K60): 打开系统设置。 拉到最底下,点击更多设置。 点击账号与同步。 点击谷歌基础服务。 打开基础服务按钮。 2. 安装 Google Play: 到小米自带的应用商店搜索 Google Play 进行安装。 安装好后打开谷歌商店,点击右上角登录谷歌账号。 3. 安装 ChatGPT: 到谷歌商店搜索 ChatGPT 进行下载安装,建议把谷歌邮箱也安装上,方便接收验证码。 如果您只想体验 ChatGPT 3.5 版本,不升级 GPT4,可跳转到第 4 步第 6 小步进行登录使用,如果想直接订阅 GPT4 Plus 版本,请接着往下看。 Windows 电脑:未提供相关内容。 需要注意的是,在中国访问国外网络需要合法合规的途径。同时,ChatGPT 的使用也需要遵守其相关规定和服务条款。
2024-11-14
本地运行Llama3需要的电脑是什么配置的?
本地运行 Llama3 所需电脑配置的相关信息如下: 1. 安装 Docker Desktop: 点击/复制到浏览器下载:https://docs.docker.com/desktop/install/windowsinstall/ 。 下载后,双击下载项目,出现相关界面点击 ok 开始加载文件。注意下载相对较快,完成后不要点击“close and restart”,以免导致 llama3 下载中断。等待终端的模型下载完成后再点击重启。 重启后,点击“Accept”,选择第一个,点击“Finish”。 然后会提示注册账号,若打不开网页,可能需要科学上网。按照正常流程注册账号并登录 Docker 即可。 2. 下载 Llama3 模型: 打开终端。如果是 Windows 电脑,点击 win+R,输入 cmd 点击回车;如果是 Mac 电脑,按下 Command(⌘)+ Space 键打开 Spotlight 搜索,输入“Terminal”或“终端”,然后从搜索结果中选择“终端”应用程序。 复制相关命令行,粘贴进入并回车,会开始自动下载,文件下载较慢,可同时进行安装 Docker 的步骤。 3. 下载 Open WebUI: 回到桌面,再打开一个新的终端窗口。如果是 Windows 电脑,点击 win+R,输入 cmd 点击回车;如果是 Mac 电脑,按下 Command(⌘)+ Space 键打开 Spotlight 搜索,输入“Terminal”或“终端”,然后从搜索结果中选择“终端”应用程序。 将相关命令输入,等待下载。 点击或复制相关地址进入浏览器,进行注册登录。 登入后,点击顶部的 Model,选择“llama3:8b”。 需要注意的是,模型的回复速度取决于您电脑的配置。另外,您还可以参考开源项目 。同时,有教程提到可以通过购买算力解决本地电脑配置不够的问题,但需要充值 50 元。
2024-11-14
让AI帮我操作电脑
目前在让 AI 操作电脑方面,有以下相关信息: 去年夏天在处理自动备份配置脚本的任务中,尽管对运维领域不熟悉且编写 Shell 脚本遇到困难,但 AI 可以作为很好的教练,通过请教如“请告诉我 rclone 命令的用法”“Shell 里面的循环怎么写”等具体问题,AI 能提供解决方案,甚至写出带详细中文注释的代码。 4 月动态中有一些相关的 AI 新产品,如 AutoGPT GUI 开放了 waitlist,MULTI·ON plugin 能在笔记本电脑上自动执行许多任务,BabyBeeAGI 有更强的任务管理等能力,MiniAGI 基于 GPT3.5Turbo/4 能执行多种任务。 生成式 AI Studio 中,可定义场景让 AI 响应特定查询,如设定名字和身份后对 help desk 查询做出特定回应。还提到 Google 提供了 API 和 SDK 帮助构建应用程序,以及调整语言模型以提高响应质量,提示的设计会影响模型结果,但制作提示可能存在一定难度。
2024-11-13
喂AI需不需要电脑?
喂 AI 通常需要电脑或类似的计算设备。例如,在一些 AI 应用中: 像“诗相机”这样的项目,选择了 Raspberry Pi Zero 2 W 这样的计算机作为硬件,它具有一定的处理能力和紧凑的尺寸,但可能存在对电源敏感、软件操作需注意等问题。 在游戏相关的 AI 场景中,也需要一定的计算设备来支持相关的开发和应用。 总之,电脑或具备计算能力的设备对于实现和运行许多 AI 任务是必要的。
2024-11-13
我的电脑显卡是1060 5g,可以使用ai软件吗
1060 5G 显卡可以使用一些 AI 软件,但性能可能会受到一定限制。对于一些对显卡性能要求不太高的 AI 应用,例如简单的图像识别、文本处理等,您的显卡能够满足基本需求。然而,对于较为复杂的 AI 任务,如大规模的深度学习模型训练、高质量的 AI 绘画生成等,可能会出现运行速度较慢、效果不理想的情况。 如果您只是初步尝试使用 AI 软件,或者进行一些轻度的应用,您的显卡或许可以胜任。但如果您有更专业、高强度的使用需求,可能需要考虑升级显卡以获得更好的性能体验。
2024-11-10
如何用ai提升电脑刺绣的自动化程度
以下是一些可以辅助提升电脑刺绣自动化程度的 AI 相关方法和工具: 1. 图像识别技术:利用 AI 的图像识别能力,对刺绣图案进行精准识别和分析,为自动化刺绣提供准确的图案信息。 2. 智能设计软件:一些具备 AI 功能的设计软件,能够根据用户需求和设定的参数,自动生成刺绣图案的设计方案。 3. 自动化控制算法:通过 AI 算法优化刺绣设备的控制流程,提高刺绣的速度和精度。 4. 质量检测系统:借助 AI 的视觉检测技术,对刺绣成品进行自动质量检测,及时发现并纠正问题。 需要注意的是,在应用这些 AI 技术时,可能需要一定的专业知识和技能,同时要根据实际情况进行调整和优化,以达到最佳的自动化效果。
2024-11-05
蛟龙16pro配置(处理器R7-7745HX,显卡RTX4060 8G,硬盘512GPCIE4.0SSD)可以用于审计人员本地化部署大模型用于数据分析工作吗
蛟龙 16pro 的配置(处理器 R77745HX,显卡 RTX4060 8G,硬盘 512G PCIE4.0 SSD)对于审计人员本地化部署大模型用于数据分析工作来说,可能存在一定的局限性。 处理器 R77745HX 具有一定的计算能力,但在处理大规模数据和复杂的模型运算时,其性能可能不够强劲。 显卡 RTX4060 8G 对于一些较为复杂的图形处理和计算任务能够提供一定的支持,但对于大规模的深度学习模型训练和数据分析,可能会显得不足。 512G 的 PCIE4.0 SSD 硬盘容量相对较小,在存储大量数据时可能会很快耗尽空间。 综上所述,该配置在一定程度上可以用于简单的数据分析任务,但对于较为复杂和大规模的大模型本地化部署及数据分析工作,可能需要更强大的硬件配置,例如更高性能的处理器、更大容量和更高性能的显卡,以及更大的存储空间。
2024-09-14
蛟龙16pro配置可以用于审计人员本地化部署大模型用于数据分析工作吗
蛟龙 16pro 的配置信息对于能否用于审计人员本地化部署大模型进行数据分析工作,需要更多关于该设备具体配置的详细信息才能准确判断。一般来说,本地化部署大模型进行数据分析工作对计算机的硬件配置有较高要求,包括但不限于强大的 CPU 性能、充足的内存容量、高速的存储设备以及优秀的显卡性能等。如果您能提供蛟龙 16pro 更详细的配置参数,我可以为您做出更准确的评估和建议。
2024-09-14
为审计人员利用大模型本地化部署进行数据分析的电脑如何配置
对于审计人员利用大模型本地化部署进行数据分析的电脑配置,以下是相关建议: 生成文字大模型: 最低配置:8G RAM + 4G VRAM 建议配置:16G RAM + 8G VRAM 理想配置:32G RAM + 24G VRAM(如果要跑 GPT3.5 差不多性能的大模型) 生成图片大模型(比如跑 SD): 最低配置:16G RAM + 4G VRAM 建议配置:32G RAM + 12G VRAM 生成音频大模型: 最低配置:8G VRAM 建议配置:24G VRAM 需要注意的是,最低配置运行速度可能非常慢。另外,对于 SDXL 的大模型,分为两个部分: 第一部分,base + refiner 是必须下载的,base 是基础模型,用于文生图操作;refiner 是精炼模型,用于对生成的模型进行细化,生成细节更丰富的图片。 第二部分,还有一个配套的 VAE 模型,用于调节图片的画面效果和色彩。 想要在 webUI 中使用 SDXL 的大模型,首先要在秋叶启动器中将 webUI 的版本升级到 1.5 以上。接下来,将模型放入对应的文件夹中,base 和 refiner 放在“……\\sdwebuiakiv4.2\\models\\Stablediffusion”路径下;vae 放在“……\\sdwebuiakiv4.2\\models\\VAE”路径下。完成之后,启动 webUI,就可以在模型中看到 SDXL 的模型。
2024-09-12
使用开源大模型本地化部署使用电脑配置,推荐几款笔记本电脑
以下是关于使用开源大模型本地化部署所需电脑配置及笔记本电脑推荐的相关信息: 运行大模型需要较高的机器配置,个人玩家大多负担不起。以下是不同类型大模型的配置要求: 生成文字大模型: 最低配置:8G RAM + 4G VRAM 建议配置:16G RAM + 8G VRAM 理想配置:32G RAM + 24G VRAM(跑 GPT3.5 差不多性能的大模型) 生成图片大模型(比如跑 SD): 最低配置:16G RAM + 4G VRAM 建议配置:32G RAM + 12G VRAM 生成音频大模型: 最低配置:8G VRAM 建议配置:24G VRAM 对于本地化部署,不建议使用最低配置,因为速度会非常慢。例如,用 8G 的 Mac 电脑尝试过,效果不佳。 由于本地化部署对电脑配置要求较高,不太推荐本地化安装实现。如果想使用开源大模型,可选择利用云厂商已提供好的大模型运行环境和计算能力,比如阿里云的 PAI 和 AutoDL。 在笔记本电脑选择方面,建议选择具备以下配置的机型: 1. 内存:16GB 及以上的 RAM。 2. 显卡:具有 8GB 及以上 VRAM 的独立显卡。 但具体的笔记本电脑型号还需根据您的预算和其他需求来确定。
2024-09-12
本地化部署
以下是关于本地化部署的相关内容: SDXL 的本地化部署: SDXL 的大模型分为两个部分: 1. 第一部分,base+refiner 是必须下载的,base 是基础模型,用于文生图操作;refiner 是精炼模型,用于对文生图生成的模型进行细化,生成细节更丰富的图片。 2. 第二部分,SDXL 还有一个配套的 VAE 模型,用于调节图片的画面效果和色彩。 这三个模型的下载链接可关注公众号【白马与少年】,回复【SDXL】获取。 在 webUI 中使用 SDXL 大模型,需先在秋叶启动器中将 webUI 的版本升级到 1.5 以上。然后将模型放入对应的文件夹中,base 和 refiner 放在“……\\sdwebuiakiv4.2\\models\\Stablediffusion”路径下;vae 放在“……\\sdwebuiakiv4.2\\models\\VAE”路径下。完成后启动 webUI,即可在模型中看到 SDXL 的模型。 正常使用方法:先在文生图中使用 base 模型,填写提示词和常规参数,尺寸可设为 10241024 进行生成。生成图片后,可将其发送到图生图中,大模型切换为“refiner”,重绘幅度开小一点,再次点击生成。 对于配置较高的电脑,如显卡为 4080ti,生成时间约在十秒左右。配置较低的需自行测试。 还可安装 refine 插件,在扩展列表中搜索 refine 并安装,重启后可在文生图界面直接使用 refine 模型进行绘画。 Google Gemma 的本地化部署: Google 发布的家用版小模型 Gemma 有 2b(20 亿参数)和 7b(70 亿参数)版本。 部署环境准备: 1. 首先提一下 Ollama,它是一个开源的大型语言模型服务,可方便地部署最新版本的 GPT 模型并通过接口使用,支持热加载模型文件,无需重新启动即可切换不同的模型。 2. 进入 ollama.com,下载程序并安装(支持 windows,linux 和 macos)。 3. 查找 cmd 进入命令提示符,输入 ollama v 检查版本,安装完成后版本应显示 0.1.26。 4. 输入 cls 清空屏幕,然后直接输入 ollama run gemma 运行模型(默认是 2b),首次需下载,等待一段时间。若想用 7b,运行 ollama run gemma:7b。完成后即可直接对话,2 个模型都安装后,可重复上述指令切换。
2024-09-11
表格数据分析
以下是关于表格数据分析的相关内容: ChatGPT 助力数据分析: 第一个用户提示:限定 SELECT SQL,要求不要用 SELECT 查询全部列,仅回复一条 SELECT SQL 语句,至少查询两列(数据项、数据值),不能直接查询长类型字段,可用 count/substring 等函数处理。 系统提示是表结构信息,对难以理解的字段可告知 GPT 其意义,若有多个表可分开描述。 需校验 GPT 生成的 SQL,不通过直接返回提示“抱歉,不支持此类请求”,通过再执行 SQL 查询数据。 数据分析的用户提示:提示数据分析,限定返回的 JSON 格式(conclusion、keyMap、title),keyMap 用于数据 key 的映射以渲染图表,根据结果数据的维度选择不同的 prompt 传递给 GPT,且结果数据 tableData 已通过 SQL 查询,不能让 GPT 再次生成,以免耗时。 生成式 AI 季度数据报告 2024 月 1 3 月: 数据来源:Similarweb、Visit,单位:万,变化公式:3 月/2 月 1 100%。 包括数据分析(446 万)、天花板潜力(1000 亿美元)、对标公司(oracle)、总体趋势(快速增长,88.19%)、月平均增速(70 万 PV/月)、原生产品占比(高)、竞争情况(Top1、Top3 占比,马太效应、网络效应强弱,大厂是否入局及占比,技术门槛)、Top1 公司(非大厂)的相关信息等。 还提供了 23 年 12 月至 24 年 3 月月访问量排行榜及变化情况、赛道月访问总量及构成、23 年 4 月访问量 Top10 等数据。 58 数据分析 161 万: 包含名称、二级分类、三级分类、网址、2 月至 11 月的数据及 11/5 月的变化计算等信息,如帆软数据、RATH、rows.com、亚信科技数智产品、神策数据等。
2024-11-10
AI做数据分析的能力怎么样
AI 在数据分析方面具有一定的能力和优势: ChatGPT 助力数据分析:通过实际案例与相关技巧,实现了两种方式支持多维数据分析,包括 SQL 分析和个性化分析。分析完成后可展示结果数据的图表和分析结论,图表支持折线图和柱状图的随意切换。 提升认知能力:大脑需要不断学习和训练,认清“思维陷阱”,如确认偏误、锚定效应等,锻炼逻辑思维,掌握数据分析能力,避免被误导。 对于 AI PM 来说:掌握算法知识具有必要性,包括理解产品核心技术、与技术团队有效沟通、评估技术可行性、把握产品发展方向、提升产品竞争力以及提升数据分析能力。 总之,AI 在数据分析领域有其独特的价值和应用场景,但也需要结合人类的专业知识和判断来确保分析结果的准确性和可靠性。
2024-11-06
有什么数据分析工具推荐
以下是为您推荐的一些数据分析工具: Text2SQL:可将英文转换为 SQL 查询。链接:https://toolske.com/text2sql/?ref=theresanaiforthat ai2sql:高效且无错误的 SQL 构建器。链接:https://www.ai2sql.io/ EverSQL:从 SQL 查询翻译英文文本。链接:https://www.eversql.com/sqltotext/ SupaSQL:从 NLP 生成 SQL 查询。链接:https://supasql.com/ SQLgenius:使用自然语言的 SQL 查询生成器。链接:https://sqlgenius.app/ SQL Chat:与数据库进行自然语言聊天的 SQL 客户端。链接:https://www.sqlchat.ai/ SQL Ease:从自然语言输入生成 SQL 查询。链接:https://sqlease.buildnship.in/ Talktotables:翻译和查询数据库。链接:https://talktotables.com/ 此外,还有以下工具也值得关注: Channel:自助式数据分析工具,无需知晓 SQL 语言即可查询数据,支持用简洁的英语进行查询。可自动挖掘数据并生成美观的可视化图表,适用于团队合作使用,并且集成了多种常用数据仓库。设置简单快捷,无需工程师协助。链接:https://www.usechannel.com/ Tableau:对市场数据进行可视化分析。 Power BI:数据分析工具。
2024-10-31
有哪些好用的上传excel做数据分析的AI工具
以下是一些好用的上传 Excel 做数据分析的 AI 工具: 1. Excel Labs:这是一个 Excel 插件,新增了基于 OpenAI 技术的生成式 AI 功能,允许用户在 Excel 中直接利用 AI 进行数据分析和决策支持。 2. Microsoft 365 Copilot:微软推出的 AI 工具,整合了 Word、Excel、PowerPoint、Outlook、Teams 等办公软件,用户通过聊天形式告知需求,Copilot 自动完成如数据分析或格式创建等任务。 3. Formula Bot:提供数据分析聊天机器人和公式生成器两大功能,用户可通过自然语言交互式地进行数据分析和生成 Excel 公式。 4. Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,除公式生成外,还可根据提示生成相关文本内容、执行情感分析、语言翻译等任务。 此外,以下是一些 text2sql 相关的 AI 工具及其链接: 1. Text2SQL 将英文转换为 SQL 查询。 链接:https://toolske.com/text2sql/?ref=theresanaiforthat 2. ai2sql 高效且无错误的 SQL 构建器。 链接:https://www.ai2sql.io/ 3. EverSQL 从 SQL 查询翻译英文文本。 链接:https://www.eversql.com/sqltotext/ 4. SupaSQL 从 NLP 生成 SQL 查询。 链接:https://supasql.com/ 5. SQLgenius 使用自然语言的 SQL 查询生成器。 链接:https://sqlgenius.app/ 6. SQL Chat 与数据库进行自然语言聊天的 SQL 客户端。 链接:https://www.sqlchat.ai/ 7. SQL Ease 从自然语言输入生成 SQL 查询。 链接:https://sqlease.buildnship.in/ 8. Talktotables 翻译和查询数据库。 链接:https://talktotables.com/ 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-10-29
用AI做数据分析有哪些好的工具
以下是一些用 AI 做数据分析的好工具: Text2SQL:将英文转换为 SQL 查询。链接:https://toolske.com/text2sql/?ref=theresanaiforthat ai2sql:高效且无错误的 SQL 构建器。链接:https://www.ai2sql.io/ EverSQL:从 SQL 查询翻译英文文本。链接:https://www.eversql.com/sqltotext/ SupaSQL:从 NLP 生成 SQL 查询。链接:https://supasql.com/ SQLgenius:使用自然语言的 SQL 查询生成器。链接:https://sqlgenius.app/ SQL Chat:与数据库进行自然语言聊天的 SQL 客户端。链接:https://www.sqlchat.ai/ SQL Ease:从自然语言输入生成 SQL 查询。链接:https://sqlease.buildnship.in/ Talktotables:翻译和查询数据库。链接:https://talktotables.com/ 此外,ChatGPT 在数据分析方面也有应用,例如在个性化分析中,可处理单维度数据、多维度数据(折线图、柱状图)等,但有时可能会有误将数据项作为维度分析的情况,可通过输入提示指定维度或描述其他数据信息来使分析更准确。 另外,使用 AI 完成阿里巴巴营销技巧和产品页面优化,可以采取以下步骤: 1. 市场分析:利用 AI 分析工具研究市场趋势、消费者行为和竞争对手情况,快速识别关键信息。 2. 关键词优化:AI 分析和推荐高流量、高转化的关键词,优化产品标题和描述。 3. 产品页面设计:AI 设计工具根据市场趋势和用户偏好生成吸引人的页面布局。 4. 内容生成:AI 文案工具撰写有说服力的产品描述和营销文案。 5. 图像识别和优化:AI 图像识别技术选择或生成高质量产品图片。 6. 价格策略:AI 分析不同价格点对销量的影响,制定有竞争力的价格策略。 7. 客户反馈分析:AI 分析客户评价和反馈,优化产品和服务。 8. 个性化推荐:AI 根据用户购买历史和偏好提供个性化产品推荐。 9. 聊天机器人:AI 驱动的聊天机器人提供 24/7 客户服务。 10. 营销活动分析:AI 分析不同营销活动效果,了解哪些活动更吸引顾客并产生销售。 11. 库存管理:AI 预测需求,优化库存管理。 12. 支付和交易优化:AI 分析不同支付方式对交易成功率的影响,优化支付流程。 13. 社交媒体营销:AI 帮助在社交媒体上找到目标客户群体,进行精准营销。 14. 直播和视频营销:AI 分析观众行为,优化直播和视频内容。
2024-10-29
营销数据分析智能体
智能体在品牌卖点提炼中的应用包括以下方面: 1. 智能体在营销过程中的更多可能: 强大的数据分析能力,可用于平台销售数据分析。 情感分析能力,可用于评价管理。 绘画能力等,可用于新媒体内容分析与仿写、落地页的制作等。 还包括员工手册助手等。 2. 搭建一个智能体帮助我们提炼卖点: 确定智能体的结构,按照市场营销的逻辑组织。 搭建完整智能体,包括品牌卖点定义与分类助手、品牌卖点提炼六步法、STP 市场分析助手、用户画像分析助手、触点收集助手等结构,以及用户需求分析的 KANO 助手、营销六层转化漏斗分析、超级转化率六要素等未在结构中体现但有效的分析工具。 3. 结语: 智能体构建中,对结构的理解和控制是工作流中最重要的部分,提供的是结构化思路,单点可通过不断迭代完善。 实际搭建要根据公司业态调整,给智能体更多提示词提升分析合理性。遵循营销管理流程保证输出准确,调整单独智能体提示词提升某部分助手信息准确度。注意营销管理结构化提示词中不要依赖举例,以免限制 AI 创造性思维。公司人员和咨询人员的决策力和洞察力在营销中更重要,智能体作为灵感助手能帮助决策。
2024-10-28
审计行业可以使用什么ai
在审计行业,以下是一些可以使用的 AI 应用: 1. 自动化文档处理:利用 AI 技术自动处理和分析大量的审计文档,提高工作效率。 2. 数据分析与预测:通过 AI 对财务数据进行深入分析,发现潜在的风险和趋势,辅助做出更准确的审计判断。 3. 智能检索与分类:借助自然语言处理和机器学习算法,对相关资料进行高效检索和分类。 在专利审查方面,AI 也得到了广泛应用: 1. 专利检索与分类:AI 能够进行高效的专利检索和分类,例如通过 Google Patents、IBM Watson for IP 等平台,利用自然语言处理和机器学习算法,自动识别和分类专利文献。 2. 专利分析和评估:可以分析专利文本,评估专利的新颖性和创造性,预测专利的授权可能性。如 TurboPatent、PatentBot 等平台。 3. 自动化专利申请:帮助自动生成专利申请文件,减少人工编写和审查时间,如 Specifio、PatentPal 等平台。 4. 专利图像和图表分析:利用 Aulive 等平台的 AI 技术分析专利中的图像和图表,自动识别技术内容和创新点。 在金融服务业中,生成式 AI 也发挥了重要作用: 1. 更动态的预测:帮助编写 Excel、SQL 和 BI 工具中的公式和查询,实现分析的自动化,发现模式,并从更广泛、更复杂的数据集中为预测建议输入。 2. 报告:自动创建文本、图表、图形等内容,并根据不同的示例调整此类报告。 3. 会计和税务:综合、总结税法相关内容,并就税法和潜在的扣除项提出可能的答案。 4. 采购和应付账款:帮助自动生成和调整合同、采购订单和发票以及提醒。
2024-10-29
审计行业和ai相关的产品和文章有哪些
以下是一些与审计行业和 AI 相关的产品和文章: 1. 案例方面: “AI 产品案例和投稿”中提到了七大行业的商业化应用,包括企业运营(如日常办公文档材料撰写整理、营销对话机器人等)、教育、游戏/媒体、零售/电商、金融/保险等领域的应用。您可以通过查看详情。 2. 应用方面: 100 个 AI 应用涵盖了辅助创作与学习(如 AI 智能写作助手、语言学习助手等)、推荐与规划(如图像识别商品推荐、旅游行程规划器等)、监控与预警(如宠物健康监测设备、家居安全监控系统等)、优化与管理(如办公自动化工具、物流路径优化工具等)、销售与交易(如 AI 艺术作品生成器、汽车销售平台等)等多个方面。 3. 研究报告方面: 2023 年 11 月 15 日更新了一批 AI 相关的研究报告,特别推荐的有《红杉中国:2023 企业数字化年度指南》(基于对 235 家企业数字化负责人的调研,63.5%的企业已把 AIGC 列入企业发展战略)、《华为:加速行业智能化白皮书》(结合华为行业智能化实践及面向智能世界 2030 的展望,与各界进行万场以上座谈研讨)。如需下载,可访问我们的知识星球。此外,还有《一文带你了解提示攻击!》这篇文章,带您从零开始了解越狱、提示攻击、与传统安全的关系以及大语言模型的安全问题。
2024-10-29
请推荐一款适合在本地电脑上下载运行的供审计人员使用大模型,运用AI提升审计效率,请我们一步一步认真思考
在考虑适合审计人员使用的本地AI大模型时,我们需要认真思考几个关键点:模型的功能性、易用性、与现有审计流程的集成能力以及对审计效率的实际提升。以下是几款可能适合审计人员使用的AI工具的推荐: 1. AI Audit for Cash:普华永道开发的AI Audit for Cash工具,专注于现金审计的自动化,能够高效执行包括现金余额、银行存款余额调节表等关键测试,显著提升审计质量和效率。 2. Deloitte Auvenir:德勤推出的Auvenir平台,提供生态性解决方案,帮助中小型会计师事务所提升审计数字化程度,打破资源和能力限制,革新审计服务模式。 3. Deloitte Cobalt:德勤的Cobalt平台,使用人工智能技术进行全面的智能风险感知,适用于企业持续经营判断及业务发展等更广泛的领域。 4. Deloitte iCredit:德勤的智能信贷风险监测平台,深度融合了金融行业特别是大型商业银行的信贷资产审计经验,结合人工智能技术,实现从抽样到全量信贷扫描的转变,聚焦高风险客群,提早预警风险信息。 5. IT审计工具:利用IT审计技术,如VBA、SQL、Python等编程语言,开发自动化工具,可以大幅提升审计效率,特别是在处理大量重复操作或复杂计算时。 选择适合的AI工具时,审计人员应考虑以下因素: 功能性:工具是否能满足审计过程中的具体需求。 集成性:工具是否能与现有的审计软件和流程无缝集成。 用户友好性:工具是否易于学习和使用,以减少培训时间和成本。 数据安全和隐私:确保工具符合数据保护法规和标准。 成本效益:考虑工具的总体成本,包括购买、维护和升级费用。 审计人员在选择AI工具时,应进行充分的市场调研和产品测试,以确保所选工具能够真正提升审计工作的效率和质量。
2024-07-04