在条件生成场景中,进行微调可以参考以下指南:
此外,还有以下案例研究:
条件生成是需要在给定某种输入的情况下生成内容的问题。这包括释义、总结、实体提取、编写给定规范的产品描述、聊天机器人等。对于此类问题,我们建议:在提示末尾使用分隔符,例如\n\n###\n\n.当您最终向您的模型发出请求时,请记住还要附加此分隔符。在完成结束时使用结束token,例如END请记住在推理过程中将结束token添加为停止序列,例如stop=["END"]目标是至少~500个示例确保提示+完成不超过2048个token,包括分隔符确保示例具有高质量并遵循相同的所需格式确保用于微调的数据集在结构和任务类型上与模型将用于的数据集非常相似使用较低的学习率和仅1-2个时期往往更适合这些用例
在这里,将输入数据转换为自然语言很重要,这可能会带来卓越的性能。例如,以下格式:不会像以下那样工作:为了获得高性能,请确保完成是基于所提供的描述。如果经常查阅外部内容,则以自动方式添加此类内容将提高性能。如果描述基于图像,则使用算法提取图像的文本描述可能会有所帮助。由于完成只有一个句子长,我们可以.在推理过程中用作停止序列。
这类似于语言转换任务。为了提高性能,最好按字母顺序或按照它们在原始文本中出现的相同顺序对不同的提取实体进行排序。这将有助于模型跟踪需要按顺序生成的所有实体。数据集可能如下所示:例如:多行分隔符效果最好,因为文本可能包含多行。理想情况下,输入提示的类型会高度多样化(新闻文章、维基百科页面、推文、法律文件),这反映了提取实体时可能遇到的文本。