Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如何跟AI沟通,能得到更精准的答案

Answer

要跟 AI 沟通以获得更精准的答案,可以从以下几个方面入手:

  1. 配置相关要素:
    • AI 模型:例如使用阿里千问模型等。
    • 提示词:明确告知 AI 其角色和应专注的技能,使其成为符合需求的“员工”。
    • 知识库:为 AI 提供特定的工作手册,包含具体的规则和特殊情况。
  2. 遵循检索原理:
    • 上下文向量化:将整合后的上下文信息转化为向量,通常通过预训练的语言模型如 BERT 或 GPT 进行,以捕捉语义信息。
    • 生成模型激活:使用基于 Transformer 的生成模型如 GPT 接收向量化的上下文,利用自注意力机制理解关系和信息。
    • 逐词生成回答:模型逐词构建回答,考虑之前已生成的词和整个上下文语义,迭代完成回答构建。
    • 语言流畅性和准确性优化:在生成过程中优化语言的流畅性和逻辑性,确保语法正确、逻辑连贯且与问题紧密相关。
    • 回答评估与调整:完成初步生成后,对回答进行评估,根据需要微调或重新生成。
    • 输出回答:最终将生成的答案呈现给用户。
  3. 运用 Prompt 技巧:
    • 格式:【设定角色+任务目标+上下文和背景信息+(正面要求)详细需求和细节性信息+(负面要求)限制和不需要的内容+回答的语言风格和形式】
    • 讲清楚背景和目的:在提问时梳理清楚背景信息和提问目的,帮助 AI 理解上下文,提高回答准确性。
    • 学会提问:使用清晰、具体的语言,避免模糊表述,了解 AI 工作原理和限制,设计能提供有用答案的问题。
    • 拆解环节、切分流程、具体落到某个工作细节:在应用 AI 前对工作流程进行细致拆解,将复杂任务分解为更小、更具体的环节,便于 AI 精确执行。
Content generated by AI large model, please carefully verify (powered by aily)

References

【AI+知识库】商业化问答场景,让AI回复更准确,一篇专为所有“小白”讲透RAG的实例教程(上篇)

上方页面左侧画红框的地方,是这个“问答机器人”的配置,右侧是与“机器人”的一轮对话。左侧有三处配置:AI模型提示词知识库。模型、提示词、知识库三者可以想象成:大语言模型:是一个学习过无数本书、拥有无穷智慧的人。他读过无数的书、看过无数的段子,因此对公共知识、学识技能、日常聊天十分擅长。然而,在工作场景下,只会聊天侃大山可不行,你想让他帮你干活。这个时候,就需要“提示词”出场了,提示词:是你告诉这个全知全能的人,他是一个什么样的角色、他要专注于哪些技能,让他能够按照你的想法,变成一个你需要的“员工”。知识库:相当于你给这个“聪明”员工的发放了一本工作手册。即使是看过再多的书、浏览过再多的文字,也不会准确的知道见到老板娘过来吃饭要打三折,张梦飞过去吃饭要打骨折。而知识库,就是把这些内容写在了工作手册上。让这个聪明的员工,见到有人来的时候,就翻一翻手册,然后再做出反应。我的设定:AI模型:这里使用的是阿里千问模型。

【AI+知识库】商业化问答场景,让AI回复更准确,一篇专为所有“小白”讲透RAG的实例教程(上篇)

1.上下文向量化:2.将整合后的上下文信息转化为向量。这通常通过一个预训练的语言模型进行,例如BERT或GPT。这些向量能够捕捉上下文中的语义信息,为生成回答提供必要的输入。3.生成模型激活:4.使用一个基于Transformer的生成模型(如GPT)接收向量化的上下文。这个模型利用自注意力机制来理解上下文中的各种关系和信息。5.逐词生成回答:6.生成模型开始逐词构建回答。模型在每一步生成一个词,同时考虑到之前已生成的词和整个上下文的语义。这个过程是迭代的,直到整个回答构建完成。7.语言流畅性和准确性优化:8.在回答生成的过程中,模型会优化语言的流畅性和逻辑性。确保生成的文本不仅在语法上正确,而且在逻辑上连贯,与用户问题紧密相关。9.回答评估与调整:10.完成初步生成后,系统可能会对回答进行评估,检查其准确性、相关性和用户满意度。如果需要,可以对回答进行微调或完全重新生成。⑤、输出回答:最终,生成的答案呈现给用户。简要总结RAG的全流程:

潘帅:手把手分享法律人如何用好AI — Prompt篇

格式=【设定角色+任务目标+上下文和背景信息+(正面要求)详细需求和细节性信息+(负面要求)限制和不需要的内容+回答的语言风格和形式】4.Prompt技巧讲清楚背景和目的在向AI提问时,除了明确的问题描述,对于背景信息和提问的目的最好梳理清楚,这样可以帮助AI更好地理解问题的上下文,从而提高回答的准确性。例如,律师在处理一起交通事故案件时,可以询问:“给你一则交通事故案件事实xxx,根据xxx法规,x方的责任应如何划分?”学会提问,如何提高回答内容的准确性提出好问题是提高AI回答准确性的关键。这包括使用清晰、具体的语言,避免模糊不清的表述。同时,了解AI的工作原理和限制也很重要,这样你可以更好地设计问题,使其能够提供有用的答案。拆解环节、切分流程、具体落到某个工作细节在应用AI之前,首先要对工作流程进行细致的拆解。这意味着将复杂的任务分解成更小、更具体的环节,以便AI可以更精确地执行。

Others are asking
零基础学习ai
以下是为零基础学习 AI 提供的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 知识库提供了很多实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 此外,还有一个案例供您参考:二师兄来自上海,是典型的 80 后,房地产行业从业二十年,计算机零基础。2024 年 2 月,他在七彩虹的售后群中,因老哥分享用 AI 绘画的心得,要了 SD 秋叶安装包,下载了教学视频,迈出了 AI 学习的第一步。之后他不断学习和实践,如在 3 月啃完 SD 的所有教程并开始炼丹,4 月与小伙伴探讨 AI 变现途径,5 月加入 Prompt battle 社群,开始 Midjourney 的学习。
2025-02-18
AI数据分析
以下是关于 AI 数据分析的相关内容: ChatGPT 助力数据分析: 本文重点介绍了 AI 与数据分析结合的应用,通过实际案例与相关技巧,描述了 ChatGPT 如何助力数据分析。 实现了两种方式支持多维数据分析: SQL 分析:分析平台自身使用情况,输入一句话可分析用户配置图表相关数据。用户描述想分析的内容,后台连接 DB,附带表结构信息让 AI 输出 SQL 语句,校验为 SELECT 类型后执行返回结果数据,再传给 GPT 分析,最后输出分析结论和建议并返回前端页面渲染图表。 个性化分析:平台支持上传数据,可提供数据信息辅助分析,前端解析文件后传给 GPT 分析,后续步骤与 SQL 分析一致。 分析完成后展示结果数据的图表和分析结论,图表支持折线图和柱状图可随意切换。 生成式 AI 季度数据报告 2024 月 1 3 月: 作者包括郎瀚威 Will、张蔚 WeitoAGI、江志桐 Clara 等。 报告涵盖总体流量概览、分类榜单、文字相关(个人生产力、营销、教育、社交)、创意相关(图像、视频)、音频大类、代码大类、Agent、B2B 垂类等方面。 涉及数据准备、分类标准图谱准备、赛道分析、竞争分析等内容。
2025-02-18
找一个能够生成音乐的AI。我给一个曲名(比如《生日快乐歌》),他就能给我生成不同风格的音乐供我下载。
以下为您推荐能够根据给定曲名生成不同风格音乐并供下载的 AI 工具: 1. Suno AI: 地址:https://www.suno.ai/ 简介:被誉为音乐界的 ChatGPT,能够根据简单提示创造出从歌词到人声和配器的完整音乐作品。 账号要求:需要拥有 Discord、谷歌或微软中的至少一个账号,并确保网络环境稳定。 订阅信息: 免费用户每天 50 积分,每首歌消耗 5 积分,每天可创作 10 首歌曲,每次点击生成两首歌曲。 Pro 用户每月 2500 点数(大约 500 首歌),按月每月 10 美元,按年每月 8 美元,每年 96 美元。 Premier 用户每月 10000 点数(大约 2000 首歌),按月每月 30 美元,按年每月 24 美元,每年 288 美元。 操作模式: 默认模式:包括关闭个性化、歌曲描述、乐器开关、模型选择 v3 等设置。 个性化模式:开启个性化定制,可填写歌词、曲风、标题等。 生成歌词:可使用大模型如 Kimi、GPT、文心一言等生成。 开始生成:填写好所需内容后点击 Create,等待 2 3 分钟即可。 下载:生成后可下载。 2. Udio:由前 Google DeepMind 工程师开发,通过文本提示快速生成符合用户音乐风格喜好的高质量音乐作品。地址:https://www.udio.com/ 3. YuE:支持从歌词生成 5 分钟高质量音乐(含人声与伴奏),多语言支持(中、英、日、韩),覆盖多种音乐风格与专业声乐技术。详细介绍:https://www.xiaohu.ai/c/xiaohuai/yue5
2025-02-18
什么是aigc
AIGC(人工智能生成内容)是一种利用人工智能技术生成各种类型内容的应用方式。它能够通过机器学习和深度学习算法,根据输入的数据和指令生成符合特定要求的内容,在内容创作、广告、媒体等领域有着广泛的应用。 具体来说,AIGC 包括以下方面: 1. 文字生成:使用大型语言模型(如 GPT 系列模型)生成文章、故事、对话等内容。 2. 图像生成:使用 Stable Diffusion、DALLE 等模型生成艺术作品、照片等。 3. 视频生成:使用 Runway、KLING 等模型生成动画、短视频等。 AIGC 作为一种强大的技术,能赋能诸多领域,但也存在多重潜在的合规风险。目前,我国对 AIGC 的监管框架由《网络安全法》《数据安全法》及《个人信息保护法》构成,并与《互联网信息服务算法推荐管理规定》、《互联网信息服务深度合成管理规定》、《生成式人工智能服务管理暂行办法》、《科技伦理审查办法(试行)》等形成了共同监管的形势。 AIGC 主要分为语言文本生成、图像生成和音视频生成。语言文本生成利用马尔科夫链、RNN、LSTMs 和 Transformer 等模型生成文本,如 GPT4 和 Gemini Ultra。图像生成依赖于 GANs、VAEs 和 Stable Diffusion 等技术,应用于数据增强和艺术创作,代表项目有 Stable Diffusion 和 StyleGAN 2。音视频生成利用扩散模型、GANs 和 Video Diffusion 等,广泛应用于娱乐和语音生成,代表项目有 Sora 和 WaveNet。此外,AIGC 还可应用于音乐生成、游戏开发和医疗保健等领域,展现出广泛的应用前景。 例如 AI 文本续写,文字转图像的 AI 图、AI 主持人等,都属于 AIGC 的应用。类似的名词缩写还有 UGC(普通用户生产),PGC(专业用户生产)等。能进行 AIGC 的产品项目也很多,能进行 AIGC 的媒介也很多,包括且不限于: 1. 语言文字类:OpenAI 的 GPT,Google 的 Bard,百度的文心一言,还有一种国内大佬下场要做的的 LLM 都是语言类的。 2. 语音声音类:Google 的 WaveNet,微软的 Deep Nerual Network,百度的 DeepSpeech 等,还有合成 AI 孙燕姿大火的开源模型 Sovits。 3. 图片美术类:早期有 GEN 等图片识别/生成技术,去年大热的扩散模型又带火了我们比较熟悉的、生成质量无敌的 Midjourney,先驱者谷歌的 Disco Diffusion,一直在排队测试的 OpenAI 的 Dalle·2,以及 stability ai 和 runaway 共同推出的 Stable Diffusion。
2025-02-18
多维表格AI接入分享课程有回放么
多维表格 AI 接入分享课程有回放。例如,在“1204|微信超级 AI 知识助手教学(上)—智谱共学营智能纪要”中提到直播有回放。在“飞书多维表格 AI 共学解锁更强大的豆包 2024 年 12 月 21 日”中,王大仙表示分享有回放,可顺着搭建流程使用。
2025-02-18
我的毕业论文是AIGC的陶寺遗址空间可视分析技术研究,请问有何思路
对于您的毕业论文主题“AIGC 的陶寺遗址空间可视分析技术研究”,以下是一些可能的思路供您参考: 首先,深入了解陶寺遗址的相关背景和特点,包括其历史、文化、地理等方面的信息,这将为后续的分析提供基础。 其次,研究 AIGC 技术在空间可视分析方面的应用现状和前沿成果,了解相关的算法、模型和工具。 然后,考虑如何收集和整理陶寺遗址的空间数据,例如通过实地测量、卫星图像、考古记录等方式获取数据,并对数据进行预处理和清洗。 接着,运用合适的 AIGC 技术和算法,对陶寺遗址的空间数据进行可视化呈现,例如创建三维模型、绘制地图、生成动态图像等,以直观展示遗址的空间特征和关系。 在可视化的基础上,进行深入的分析,例如探究遗址的布局规律、空间结构、功能分区等,挖掘潜在的历史和文化信息。 最后,对研究结果进行评估和验证,确保其准确性和可靠性,并提出进一步的改进和优化方向。 希望这些思路能对您有所帮助,祝您顺利完成毕业论文!
2025-02-18
如何精准提问解决问题
要精准提问解决问题,可以参考以下几点: 1. 在使用类似 Cursor 等工具时,如果在提示栏中按 Option/Alt Enter,它将回答您关于选择和附加上下文的任何问题。此对话内容可在后续生成中进一步使用,在其提出响应后键入“do it”即可在快速提问后生成代码。 2. 相信类似 GPT 等工具的能力,大胆提要求让其帮忙完成。 3. 明确自己的需求,向 GPT 提的要求尽量准确,如同给员工安排工作。 4. 不断追问,只要不明白,就目标明确、表达精确地追问。 5. 对于 GPT 不了解您工作环境和个性需求的情况,提供准确信息,如直接贴出文件目录地址,请其直接处理。 6. 锻炼语言表述能力,更精准地用语言描述问题。因为在语言模型时代,一个好的问题某些时候比答案更重要,语言本身也代表着人类思维的外放,与文明诞生有关联。 7. 具备业务理解和 AI 嵌入能力,找到业务中应用大模型的场景,将业务和大模型算法结合,理解模型在业务中的边界。 8. 培养维度转换能力,将各种问题转化为语言问题,将业务中的数据转化为语言描述,将通用模块问题转化为通用问题模块,把所有信息都转化为语言信息后再交流。 9. 在业务助手中,可采用助手方式,主要进行工作辅助,不在主业务流程内,大模型负责优化、检索、启发、提供思路等,帮助人提高效率、多维度思考;也可采用业务环方式,大模型经过调整和 prompt 工程后,作为接口服务,进入到主业务流程中,自动处理内容并生成结果。
2025-01-30
请问我该怎么用精准的提示词
以下是关于如何使用精准提示词的相关内容: 一、星流一站式 AI 设计工具中的提示词 1. 提示词的定义:用于描绘您想生成的画面。 2. 输入语言: 星流通用大模型与基础模型 F.1、基础模型 XL 使用自然语言(如一个长头发的金发女孩),基础模型 1.5 使用单个词组(如女孩、金发、长头发)。 支持中英文输入。 3. 提示词优化:启用提示词优化后,可帮助扩展提示词,更生动地描述画面内容。 4. 写好提示词的方法: 预设词组:小白用户可以点击提示词上方官方预设词组进行生图。 提示词内容准确:包含人物主体、风格、场景特点、环境光照、画面构图、画质等,比如:一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量。 调整负面提示词:点击提示框下方的齿轮按钮,弹出负面提示词框。负面提示词可以帮助 AI 理解不想生成的内容,比如:不好的质量、低像素、模糊、水印。 利用“加权重”功能:可在功能框增加提示词,并进行加权重调节,权重数值越大,越优先。还可对已有的提示词权重进行编辑。 辅助功能:包括翻译功能(一键将提示词翻译成英文)、删除所有提示词(清空提示词框)、会员加速(加速图像生图速度,提升效率)。 二、DALL·E 自动优化提示词 1. 提示词生成指南:创建能为图像生成绘制清晰画面的提示词。使用精确、视觉化的描述(而非难以捉摸的概念)。尽量保持提示词简短、精确且令人惊叹。 2. 提示词结构:“一个” 媒介:考虑图像应模仿的艺术形式。 主题:主要焦点,包括颜色、姿势、视角等。 背景:环境如何补充主题。 环境:室内、室外、抽象等。 颜色:与主题的对比或和谐关系。 光线:一天中的时间、强度、方向等。 风格特点:独特的艺术特点。 影响:启发作品的艺术流派或艺术家。 技术:对于绘画,如何操纵画笔;对于数字艺术,特定的数字技术。 照片:描述摄影类型、相机设备和相机设置等。 绘画:提及使用的颜料类型、画布的质地和笔触的形状/质地。 数字:注明使用的软件、阴影技术和多媒体方法。 三、【SD】文生图中的提示词 1. 描述逻辑:人物及主体特征(服饰、发型发色、五官、表情、动作),场景特征(室内室外、大场景、小细节),环境光照(白天黑夜、特定时段、光、天空),画幅视角(距离、人物比例、观察视角、镜头类型),画质(高画质、高分辨率),画风(插画、二次元、写实)。 2. 辅助方法: 下次作图时,先选择模板,点击倒数第二个按钮快速输入标准提示词。 对于新手,可通过功能型辅助网站书写提示词,如 http://www.atoolbox.net/ (通过选项卡快速填写关键词信息)、https://ai.dawnmark.cn/ (每种参数有缩略图参考,更直观选择提示词)、C 站(https://civitai.com/ )(可抄作业,复制每一张图的详细参数并粘贴到正向提示词栏,然后点击生成按钮下的第一个按键,Stable Diffusion 会自动匹配所有参数,但要注意图像作者使用的大模型和 LORA,不然即使参数一样,生成的图也会不同。也可取其中较好的描述词使用,比如人物描写、背景描述、一些小元素或者画面质感之类的。 希望以上内容对您有所帮助,祝您在使用提示词生成图像时取得满意的效果!
2025-01-29
如何精准向AI进行提问
以下是关于如何精准向 AI 进行提问的一些方法和建议: 1. 明确角色和任务目标:例如,赋予 AI 专注于民商事法律领域的律师角色,并明确其任务是进行案例研究、法律条文检索以及案件策略分析。 2. 提供上下文和背景信息:讲清楚背景和目的,如在处理交通事故案件时,提供案件事实等背景信息。 3. 提出详细需求和细节性信息:使用清晰、具体的语言,避免模糊不清的表述。比如询问“给你一则交通事故案件事实 xxx,根据 xxx 法规,x 方的责任应如何划分?” 4. 明确限制和不需要的内容:如明确限制 AI 的生成范围,在询问名人名言时,指定名人的姓名和相关主题。 5. 确定回答的语言风格和形式:可以要求回答按照特定的格式,如使用引号、分隔符号以及“首先、其次、最后”等连接词来组织。 6. 利用提示词工程: 明确要求 AI 引用可靠来源,如在询问历史事件时,要求引用权威的历史文献。 要求 AI 提供详细的推理过程,例如在询问数学公式时,要求展示推导过程。 明确限制 AI 的生成范围,如在询问新闻事件时,指定事件的时间范围和相关关键词。 7. 对于复杂问题,采用逐步深化和细化的方式提问:先提出宽泛问题,再根据回答进一步细化。 8. 提供参考和学习的内容:包括详细的操作指南、行业最佳实践、案例研究等,并编写详细的流程和知识。 9. 使用专业领域的术语引导:在 Prompt 中使用法律术语来引导回答方向。 10. 进行验证与反馈:对 AI 的回答进行交叉验证,结合自身专业知识进行筛选和判断,确保符合法律伦理、立法目的和实务。
2025-01-23
精准率和召回率有什么区别
精准率和召回率是常见的评估指标,主要区别如下: 精准率(Precision):指返回的检索内容中有用信息的占比。也就是说,在所有被检索出来的内容中,真正有用的信息所占的比例。其计算公式为:精准率 = 真正例 / (真正例 + 假正例)。 召回率(Recall):指相关信息被正确预测出来的比例,即真正例在所有实际相关信息中的占比。其计算公式为:召回率 = 真正例 / (真正例 + 假反例)。 例如,在一个文档检索的场景中,精准率体现的是检索出的文档中有多少是真正有用的;召回率则体现的是相关的文档有多少被包含在返回的检索结果里。 总的来说,精准率关注的是检索结果的准确性,而召回率关注的是检索结果的完整性。
2025-01-23
MJ中如何精准控制颜色
以下是关于在 Midjourney 中精准控制颜色的一些方法和相关信息: 1. 在使用 MJ 生成兔子贴纸的过程中,关键词中限制了颜色,生成的图片会一种情绪对应一种颜色。若不想让模型把情绪和颜色做挂钩,同一种情绪可多生成几张不同色系的;若需要挂钩,也可反其道而行之。 2. 进行 SD 上色时,正关键词主要前面添加了增加照片质感常用的+mj 生成线稿的关键词调整(去掉 mj 里线稿的关键词,一开始嘴巴效果不好,添加了张开嘴巴等关键词,颜色都是可以单独调整控制)+风格参数。负关键词看自己的效果添加,添加一切不想要的东西。 3. 在 MJ 的公式方面: 角色人物公式:人物姓名(命名)+描述词(重要描述词和人物特征描述词)+风格+官方命令词。 3D 公式:主体+描述词(重要描述词和物体特征描述词)+风格+灯光+官方命令词。 插画公式:主题描述词语+风格(风格名称或画家)+描述+颜色灯光+官方命令。 特定公式: 连续场景变化公式: 角色/场景公式:上传图片(喂图)+人物描写(融入其他场景需要关键词 white background,结合场景后换成 walking in a futuristic cyberpunk city)+场景风格描写+官方命令。 木偶公式:人物图片+场景+人物+动作+风格+官方命令。 等距粘土公式: 等距+物体+max emoji(表情符号),soft(柔和)lighting soft(柔和光线)pastel colors/pastel background(背景)+3Dicon+clay(粘土)+blender 3d+背景颜色=等距粘土物体。 安子布莱斯娃娃/也可以换成其他知道的娃娃名称+灯光/颜色/背景/材质+clay(粘土)+良奈吉友画风/或者其他名人风格=人。 3D 图标公式(未测试,可用):喂图(1~3 张相似的风格)+描述的 icon(和喂图一致的关键词)+颜色(和喂图颜色一致的)+渲染词+官方命令。 通用公式:角色/物体描述+背景描述+灯光风格+官方命令。
2025-01-17
哪些大模型对做精准的数据分析和可视化上比较好
以下是一些在精准的数据分析和可视化方面表现较好的大模型: 1. GLM4AllTools:这是智谱 AI 大模型开放平台中的模型,其代码沙盒 Code Interpreter 工具能很大程度加强数据计算能力,可处理日常数据分析,能对行业收入、利润数据进行可视化,并计算利润率并排序。 2. 谷歌的 T5:属于 encoderdecoder 架构的模型,适用于翻译和摘要等任务。 需要注意的是,不同的大模型在不同的应用场景和数据特点下可能会有不同的表现,您可以根据具体需求进行选择和测试。
2024-12-31
请你讲讲如何写提示词能与KIMI有效沟通
以下是关于如何写提示词与 KIMI 有效沟通的一些要点: 1. 不要期望设计一个完美的提示词就能得到理想答案,应将提示词视为一个相对完善的“谈话方案”,在与 KIMI 的对话中产生最终成果,并限缩自己思维中的模糊地带。 2. 多给 KIMI 几轮对话修正的余地,不要期望一次输入提示词就能得到想要的东西,因为很多时候自己刚开始也不清楚想要什么。 3. 可以参考以下步骤: 询问 KIMI“更好的提问”的方法论。 让 KIMI 分析提问适合的优化方法,并给出优化过程和结果。 将 KIMI 优化后的提问输入给特定的自动结构化框架,得到“提问优化助手”Prompt。 新建对话,先将“提问优化助手”发给 KIMI,再发送原始提问,得到结果。 再新建对话,让 KIMI 对比两份结果。 4. 在创作视频分镜头时,也可以借助 KIMI 写画面描述,甚至加上对音效的需求。同时,要尽可能精简人物对话,提炼重点。画面数量与台词长短有关,需平衡画面之间的联系。
2025-02-16
coze平台中bot的沟通能力与哪些因素有关。如果希望bot有极强的沟通能力应该重点强化哪些
在 Coze 平台中,Bot 的沟通能力与以下因素有关: 1. Agent 意图:定义了 Agent 的工作任务和适用场景,明确其核心功能和角色。 2. Agent 提示词:包含系统级别的提示词,与人物设定和逻辑处理紧密相关,帮助 Agent 更好地理解和响应用户需求。 3. Agent 技能:允许 Agent 调用预设的工具、工作流和知识库,包括自身创建的工具、Coze 市场上的公开工具及相关工作流程。 如果希望 Bot 有极强的沟通能力,应重点强化以下方面: 1. 准确设置每个 Agent 的使用场景和意图,这对于控制 Agent 跳转至关重要,确保在执行不同任务时系统能准确切换。 2. 清晰指定节点切换的判断时机和参考上下文的轮数,一般建议参考五轮左右的对话内容,以确保 Bot 能根据充分的上下文信息做出恰当跳转决策。 Coze 是由字节跳动推出的 AI 聊天机器人和应用程序编辑开发平台,具有以下特点: 1. 多语言模型支持,如 GPT48K、GPT4128K 及云雀语言模型等。 2. 集成超过 60 款插件,涵盖多种功能,支持用户创建自定义插件。 3. 具备知识库功能,允许上传和管理多种格式的文档及获取在线内容和 API JSON 数据。 4. 提供数据库和记忆能力,允许 Bot 访问会话内存和上下文,持久记住重要参数或内容。 5. 支持工作流设计,用户可通过拖拉拽方式搭建复杂任务流。 6. 采用多代理模式,一个机器人中可运行多个任务,添加多个独立执行特定任务的代理。 7. 免费使用,无需支付费用。 8. 易于发布和分享,可将搭建的 Bot 发布到各类社交平台和通讯软件上。 Bot 的开发和调试页面主要分为提示词和人设区块、Bot 的技能组件、插件、工作流、Bot 的记忆组件、知识库、变量、数据库、长记忆、文件盒子、一些先进的配置(如触发器、开场白、自动建议、声音)等区块。
2025-01-18
coze平台中bot的沟通能力与哪些因素有关
在 Coze 平台中,bot 的沟通能力与以下因素有关: 1. Agent 意图:定义了 Agent 的工作任务和适用场景,明确其核心功能和角色。 2. Agent 提示词:包含系统级别的提示词,与人物设定和逻辑处理紧密相关,帮助 Agent 更好地理解和响应用户需求。 3. Agent 技能:是 Agent 的能力部分,允许调用预设的工具、工作流和知识库,包括自身创建的工具、Coze 市场上的公开工具及相关工作流程。 4. 意图识别:在多 Agent 模式中,控制 Agent 跳转主要依赖于意图识别,正确设置每个 Agent 的使用场景和意图至关重要。 5. 用户输入指示:与多 Agent 模式的 bot 沟通时,用户明确指示进行节点切换或进入下一步,bot 会根据预设逻辑自动切换相应的 Agent 节点。 6. 判断时机和参考上下文轮数:在设置节点切换时,清晰指定判断时机和参考上下文的轮数,一般建议参考五轮左右的对话内容,以确保 bot 能根据充分的上下文信息做出恰当跳转决策。
2025-01-18
与AI沟通的提示词技巧
以下是关于与 AI 沟通的提示词技巧的总结: 1. 输入是写好提示词的根本:输入包括读书、交流、旅游等各种与世界的交互,要善于抓住有价值的输入并思考。 2. 清晰表达提示词可借助框架:由于无法直接将脑海中的东西完整传达给大模型,所以需要借助预置多个角度的框架来描述。 3. 文科生和学哲学的人写提示词有优势:文科生对文字细微差异敏感,学哲学的人对词的压缩语义和思考深度有优势。 4. 利用框架清晰表达脑海中的想法与大模型交流:将脑海中的事情或方法论通过框架从不同角度描述,能比空想更高效,且框架角度可根据任务调整。 5. 约束大模型按指定角度输出:通过设定角色、目标、风格、规则等,可约束大模型按照约定的视角输出想要的结果。 6. 从 0 到 1 上手的封装方法:当脑海中有清晰的知识方法论,想与大模型对话,需思考如何封装,探讨是否存在通用的核心方法。 7. 提示词写作的三板斧技巧: 分配角色:让大模型以特定身份的行为模式做事,注入的角色信息是超级浓缩的,若角色不明确需解压缩塑造,使其符合大模型的工作机制。 给出示例:当脑海中对要表达的意向模糊时,可通过给出示例辅助描述,将想法概要或详细描述与示例结合,能让大模型输出更好的结果。 8. 在豆瓣模型中自定义提示词的使用技巧: COT 在分析中的作用:让模型一步步思考,拆解逻辑,增加信息量,实现逻辑推理。 学生写提示词的建议:从三个技巧开始从 0 到 1 练习,并辅助学习相关材料。 豆瓣模型的默认功能与自定义:有默认功能,若想定制自己想要的功能,可通过右下角下拉的自定义添加技能,命名并填写提示词。 避免身份冲突的取巧办法:为避免定义身份与系统内在设定冲突,可将身份设定为名人的身边人。 9. 一些具体的 Prompt 技巧: 类比:要求 AI 用类比或示例阐明概念。 引述:要求包含专家的相关引言或陈述。 幽默:表明是否应融入幽默。 轶事:要求包含相关轶事。 隐喻:鼓励使用隐喻使复杂观点更具亲和力。 趣闻:鼓励包含有趣或令人惊讶的事实。 关键词:列出需要包含的重要关键词或短语。 小贴士:鼓励 AI 分享与主题相关的小窍门和技巧。 保密性:说明保密要求或限制。 格式化:指定所需的格式元素。
2025-01-05
Prompt提示词没那么玄乎也就是个沟通方式
Prompt 提示词并非那么神秘,本质上就是一种沟通方式。 现阶段,其本质就是沟通: 1. 先上价值: 你无聊,它也无聊。比如刚开通 GPT 时的一些折腾内容,若心中无明确目的,交流就会变得无趣。 要沟通就好好沟通。我们在和系统对话,希望从中获得价值,就如同与同事、朋友交流,若不会提问,就无法获得深度答案。 所有其实我们希望它干啥呢?比如在一个简单场景中,沟通可能存在信息损失,需要通过各种反馈来测试、校准。我们不能期望系统能理解所有背景知识和潜台词,应把重点放在希望它完成的任务和输出的价值上。 开始折腾,各个角色都来一下,以 CRISPE 框架——Matt Nigh 为例: 框架包括能力和角色、见解、声明、个性、实验。如 ChatGPT 应扮演的角色、提供请求背后的见解和背景、要求做的事、希望的回应风格、请求回复多个示例等。 完整示例包括 Prompt、Claude、ChatGPT3.5 结果。 我的理解是这个框架适合需要 ChatGPT 扮演特定角色等情况,不适合的场景也很明显。
2024-12-06
我想要美式漫画风格的图怎么和AI沟通
如果您想要美式漫画风格的图,可以从以下几个方面与 AI 沟通: 1. 风格提示词:使用如“DC Comics 能生成美漫封面的漫画画面”“comic book 漫画书”等相关的风格提示词。 2. 主题描述:清晰地描述场景、故事、元素、物体或人物的细节及搭配。例如,不要用一长串文字去表达一个包含多个角色细节的大场景,而是将其拆分描述,如“一个男孩”“穿着红色盔甲”“站在山顶”。 3. 设计风格:可以找一些风格类的关键词参考,或者找一张想要的风格的图片进行垫图/喂图,让 AI 根据给出的图片风格结合主题描述生成图片。 4. 特定风格技巧: 对于 Sarah Andersen 风格,可以在主要描述语后面加上“by Sarah Andersen”或者“style reference Sarah Andersen”。 在提示中加入情感色彩的描述,比如使用“joyful,” “awkward,”或“anxious”等词,帮助 AI 捕捉作品中的情感深度。 利用cref 命令保持人物的一致性。
2024-10-25
大模型下文档投喂后,大模型是如何解读文档提取出答案?
大模型在文档投喂后解读文档并提取答案的过程通常包括以下步骤: 1. 问题解析阶段:接收并预处理问题,通过嵌入模型(如 Word2Vec、GloVe、BERT)将问题文本转化为向量,以确保问题向量能有效用于后续检索。 2. 知识库检索阶段:知识库中的文档同样向量化后,比较问题向量与文档向量,选择最相关的信息片段,并抽取相关信息传递给下一步骤。 3. 信息整合阶段:接收检索到的信息,与上下文构建形成融合、全面的信息文本。整合信息准备进入生成阶段。 4. 大模型生成回答:整合后的信息被转化为向量并输入到 LLM(大语言模型),模型逐词构建回答,最终输出给用户。 在这个过程中还包括以下信息处理步骤: 1. 信息筛选与确认:系统会对检索器提供的信息进行评估,筛选出最相关和最可信的内容,同时对信息的来源、时效性和相关性进行验证。 2. 消除冗余:识别和去除多个文档或数据源中可能存在的重复信息,以防在生成回答时出现重复或相互矛盾的信息。 3. 关系映射:分析不同信息片段之间的逻辑和事实关系,如因果、对比、顺序等,构建一个结构化的知识框架,使信息在语义上更加连贯。 4. 上下文构建:将筛选和结构化的信息组织成一个连贯的上下文环境,包括对信息进行排序、归类和整合,形成一个统一的叙述或解答框架。 5. 语义融合:在必要时,合并意义相近但表达不同的信息片段,以减少语义上的重复并增强信息的表达力。 6. 预备生成阶段:整合好的上下文信息被编码成适合生成器处理的格式,如将文本转化为适合输入到生成模型的向量形式。 最终,全新的上下文被一起传递给大语言模型。由于这个上下文包括了检索到的信息,大语言模型相当于同时拿到了问题和参考答案,通过 LLM 的全文理解,最后生成一个准确和连贯的答案。 相关概念: LLM:Large language model 的缩写,即大语言模型。 Prompt:中文译作提示词,是输入给大模型的文本内容,可以理解为和大模型说的话、下达的指令。 Token:大模型语言体系中的最小单元,不同厂商的大模型对中文文本的切分方法不同,通常 1Token≈12 个汉字,大模型的收费计算方法及对输入输出长度的限制通常以 token 为单位计量。 上下文:英文通常翻译为 context,指对话聊天内容前、后的内容信息,上下文长度和上下文窗口都会影响大模型回答的质量。
2025-01-23
我需要一个工具 让我能够把看到的资料汇总到里面,慢慢的他就成为了我的一个智能助理,但凡我阅读过的东西,只要我能想到一点点相关内容,都能通过这个工具在里面找到汇总答案,同时还能链接到原来的文章或知识点,有这样的AI工具么
以下是为您整理的相关信息: 目前有一些工具和方法可以满足您的需求。例如: 1. 在“让机器理解世界/GPT 时代人类再腾飞·译者序”中提到,人类要学会深刻理解 AI 系统的工作方式与它的边界,AI 可以作为伙伴帮助我们充分发挥潜力。 2. 7 月 16 日 Jimmy Wong &吕立青的相关内容中,提到可以通过输入端输入不同模态的内容,包括音频、文本、视频等并消化,在输出端借助自己的知识或让 AI 助理基于收藏或保存的知识点来完成某些事情,如写文章、输出代码等。 3. 在“VIRTUAL”中,提到可以用 AI 搜索引擎如 felo.ai/search 搜索并归纳内容,用 AI 可视化工具 napkin.ai 转成图示。还提到可以像编程一样预先写好咒语(prompts),将日常工作中固定输入输出的部分写成“智能体”并不断迭代优化。很多 AI 网站都可以创建“智能体”,您可以手搓各种机器人为您工作,如出试题、找资料、画插图、专业翻译等,还能设置“常用语”“小助手”“bot”,如 Kimi.ai 。 综合来看,目前有多种方式和工具可以帮助您实现将资料汇总并成为智能助理的需求。
2024-12-14
我想做一个知识库管理,用于用户累计只是,在此基础上打造属于用户个人的知识库,通过ai生成用户专属的答案。但是我不知道应该怎么设计这个软件,请为我建议
设计一个用于用户知识累计和生成专属答案的知识库管理软件,您可以考虑以下几个关键方面: 1. 数据存储与架构 选择合适的数据库系统,如关系型数据库(如 MySQL、PostgreSQL)或非关系型数据库(如 MongoDB、Cassandra),以有效存储用户的知识数据。 设计合理的数据表结构,包括用户信息表、知识条目表、知识分类表等,确保数据的组织和关联清晰。 2. 知识录入与编辑 提供直观的用户界面,方便用户录入知识,支持多种格式,如文本、图片、音频、视频等。 具备知识编辑功能,允许用户修改、更新和完善已录入的知识。 3. 知识分类与标签 建立灵活的知识分类体系,让用户能够将知识分类存放,便于查找和管理。 支持用户为知识添加自定义标签,提高知识检索的准确性。 4. 搜索与检索功能 实现强大的搜索功能,支持全文搜索、关键词搜索、模糊搜索等多种搜索方式。 优化搜索算法,确保快速返回准确的搜索结果。 5. AI 模型集成 选择适合的 AI 模型,如自然语言处理模型,用于理解用户的问题和生成答案。 对 AI 模型进行训练和优化,使其能够基于用户的知识库提供准确和有用的回答。 6. 用户权限管理 设定不同的用户权限级别,如管理员、普通用户等,控制用户对知识库的操作权限,保障数据安全。 7. 数据备份与恢复 定期自动备份知识库数据,以防止数据丢失。 提供数据恢复功能,确保在意外情况下能够快速恢复知识库。 8. 界面设计 设计简洁、美观、易用的界面,提高用户体验。 遵循用户习惯和人机交互原则,使操作流程简单直观。 9. 性能优化 对软件进行性能优化,确保在处理大量知识数据时仍能保持高效运行。 10. 测试与迭代 进行充分的测试,包括功能测试、性能测试、用户体验测试等。 根据用户反馈和实际使用情况,不断迭代优化软件功能。 希望以上建议对您有所帮助,祝您成功设计出满足需求的知识库管理软件!
2024-10-29
有没有把资料信息存放到知识库,通过问答方式得到答案的案例
以下是把资料信息存放到知识库,通过问答方式得到答案的案例: 安仔在开源 AI 社区中,基于 RAG 机制实现了知识库问答功能。首先创建一个包含大量社区 AI 相关文章和资料的知识库,例如创建有关 AI 启蒙和信息来源的知识库,通过手工录入方式上传栏目所有文章内容,然后陆续将社区其他板块的文章和资料导入。在设计 Bot 时,添加这个知识库,并设置合适的搜索策略、最大召回数量和最小匹配度,以更好地利用知识库返回的内容进行结合回答。 在阅读书籍、论文的互动式问答场景中,对应的关键词库包括书籍、报告、文件、详细信息、查询、主题、作者、出版日期、出版社、问题、方面、原则、方法、概括、主要观点、解释。需要注意的是,ChatGPT 的知识库截止于 2021 年 9 月,对于更新的数据或最新出版的书籍、报告和文件,它无法提供答案。如果有现成的 PDF,建议通过 CHATDOC 网站进行互动式问答。
2024-09-29