要跟 AI 沟通以获得更精准的答案,可以从以下几个方面入手:
上方页面左侧画红框的地方,是这个“问答机器人”的配置,右侧是与“机器人”的一轮对话。左侧有三处配置:AI模型提示词知识库。模型、提示词、知识库三者可以想象成:大语言模型:是一个学习过无数本书、拥有无穷智慧的人。他读过无数的书、看过无数的段子,因此对公共知识、学识技能、日常聊天十分擅长。然而,在工作场景下,只会聊天侃大山可不行,你想让他帮你干活。这个时候,就需要“提示词”出场了,提示词:是你告诉这个全知全能的人,他是一个什么样的角色、他要专注于哪些技能,让他能够按照你的想法,变成一个你需要的“员工”。知识库:相当于你给这个“聪明”员工的发放了一本工作手册。即使是看过再多的书、浏览过再多的文字,也不会准确的知道见到老板娘过来吃饭要打三折,张梦飞过去吃饭要打骨折。而知识库,就是把这些内容写在了工作手册上。让这个聪明的员工,见到有人来的时候,就翻一翻手册,然后再做出反应。我的设定:AI模型:这里使用的是阿里千问模型。
1.上下文向量化:2.将整合后的上下文信息转化为向量。这通常通过一个预训练的语言模型进行,例如BERT或GPT。这些向量能够捕捉上下文中的语义信息,为生成回答提供必要的输入。3.生成模型激活:4.使用一个基于Transformer的生成模型(如GPT)接收向量化的上下文。这个模型利用自注意力机制来理解上下文中的各种关系和信息。5.逐词生成回答:6.生成模型开始逐词构建回答。模型在每一步生成一个词,同时考虑到之前已生成的词和整个上下文的语义。这个过程是迭代的,直到整个回答构建完成。7.语言流畅性和准确性优化:8.在回答生成的过程中,模型会优化语言的流畅性和逻辑性。确保生成的文本不仅在语法上正确,而且在逻辑上连贯,与用户问题紧密相关。9.回答评估与调整:10.完成初步生成后,系统可能会对回答进行评估,检查其准确性、相关性和用户满意度。如果需要,可以对回答进行微调或完全重新生成。⑤、输出回答:最终,生成的答案呈现给用户。简要总结RAG的全流程:
格式=【设定角色+任务目标+上下文和背景信息+(正面要求)详细需求和细节性信息+(负面要求)限制和不需要的内容+回答的语言风格和形式】4.Prompt技巧讲清楚背景和目的在向AI提问时,除了明确的问题描述,对于背景信息和提问的目的最好梳理清楚,这样可以帮助AI更好地理解问题的上下文,从而提高回答的准确性。例如,律师在处理一起交通事故案件时,可以询问:“给你一则交通事故案件事实xxx,根据xxx法规,x方的责任应如何划分?”学会提问,如何提高回答内容的准确性提出好问题是提高AI回答准确性的关键。这包括使用清晰、具体的语言,避免模糊不清的表述。同时,了解AI的工作原理和限制也很重要,这样你可以更好地设计问题,使其能够提供有用的答案。拆解环节、切分流程、具体落到某个工作细节在应用AI之前,首先要对工作流程进行细致的拆解。这意味着将复杂的任务分解成更小、更具体的环节,以便AI可以更精确地执行。