Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如何使用LLM分析企业的私有化数据,是否有工具推荐?

Answer

以下是关于使用 LLM 分析企业私有化数据及工具推荐的相关内容:

RAG 加速器提供了数据抽取服务,这是基于 LLM 的解决方案。在利用 LLM 进行信息抽取时,需要了解构建抽取服务的基本组件和要点。

实现过程中,有两个简单但强大的思路可以提升性能:

  1. 确保 LLM 以正确的格式回应。函数调用已成为确保 LLM 严格输出特定格式的新且相对靠谱的方法,可参考结构化输出文档,其中高层次的 LangChain API 展示了不同 LLM 如何调用工具和函数。
  2. 使用参考样例。尽管没有样例也能设置抽取问题,但实际操作中,将输入和对应输出的样例纳入其中通常大有裨益,有时这些样例比指示本身更能有效指导 LLM 处理特定情况。在提取用例文档中,可以找到更多细节,助您从 LLMs 中提取更好的性能。
Content generated by AI large model, please carefully verify (powered by aily)

References

RAG加速器:数据抽取服务

了解了组成部分后,接下来是如何让它们一起工作。我们此处要分享两个简单但强大的思路。第一个要点是确保LLM以正确的格式回应。如果只是在命令中指示LLM输出JSON格式,它可能并不总会遵守。因此,函数调用已经成为确保LLM严格输出特定格式的一个新方法,而且相对靠谱。我们推荐使用此方法来提升性能。你可以参考结构化输出文档,其中高层次的LangChain API展示了不同LLM如何调用工具和函数。另一个提升性能的方法是使用参考样例。尽管没有样例也能设置抽取问题,但我们发现实际操作中,将输入和对应输出的样例纳入其中通常大有裨益。有时候,这些样例比指示本身还更能有效指导LLM处理特定情况。在我们的提取用例文档中,你可以找到更多细节,助你从LLMs中提取更好的性能。

Others are asking
我怎样用低代码工具去构建我的AI智能体?LLM应用?
以下是关于如何用低代码工具构建 AI 智能体和 LLM 应用的一些建议: 在构建基于 LLM 的应用时,Anthropic 建议先寻找最简单的解决方案,只在必要时增加复杂度。智能系统通常会以延迟和成本为代价来换取更好的任务表现,开发者需要考虑这种权衡是否合理。当需要更复杂的解决方案时,工作流适合需要可预测性和一致性的明确任务,而智能体则更适合需要灵活性和模型驱动决策的大规模场景。不过,对于许多应用来说,优化单个 LLM 调用(配合检索和上下文示例)通常就足够了。 目前有许多框架可以简化智能系统的实现,例如: 1. LangChain 的 LangGraph。 2. 亚马逊 Bedrock 的 AI Agent 框架。 3. Rivet(一个拖放式 GUI 的 LLM 工作流构建器)。 4. Vellum(另一个用于构建和测试复杂工作流的 GUI 工具)。 这些框架通过简化标准的底层任务(如调用 LLM、定义和解析工具、链接调用等)使入门变得容易,但它们往往会创建额外的抽象层,可能会使底层提示词和响应变得难以调试,也可能诱使开发者在简单设置就足够的情况下增加不必要的复杂性。建议开发者先直接使用 LLM API,许多模式只需要几行代码就能实现。如果确实要使用框架,请确保理解底层代码。 此外,还有以下相关工具和应用: 1. VectorShift:能在几分钟内构建和部署生成式人工智能应用程序,利用大型语言模型(例如 ChatGPT)构建聊天机器人、文档搜索引擎和文档创建工作流程,无需编码。 2. Unriddle:帮助更快阅读、写作和学习的工具,能简化复杂的主题,找到信息,提问并立即获得答案。 工具使用或函数调用通常被视为从 RAG 到主动行为的第一个半步,为现代人工智能栈增加了一个新的层。一些流行的原语如网页浏览(Browserbase、Tiny Fish)、代码解释(E2B)和授权+认证(Anon)已经出现,它们使 LLM 能够导航网络、与外部软件(如 CRM、ERP)交互并运行自定义代码。Omni 的计算 AI 功能体现了这种方法,它利用 LLM 直接输出适当的 Excel 函数到电子表格中,然后执行计算并自动生成复杂查询供用户使用。 详细示例请参考:https://github.com/anthropics/anthropiccookbook/tree/main/patterns/agents
2025-02-17
类似于ollama和vllm这样的LLM 框架有哪些
以下是类似于 ollama 和 vllm 的 LLM 框架: 1. Encoderonly 框架(也叫 AutoEncoder),典型代表如 BERT 等。 2. Encoderdecoder 框架,典型代表如 T5 和 GLM 等。 3. Decoderonly 框架(也叫 AutoRegressive),典型代表如 GPT 系列、LLaMa、PaLM 等。 此外,还有一些在 LLM 应用中发挥重要作用的框架,如: 1. LangChain:是当前大模型应用开发的主流框架之一,提供了一系列工具和接口,其核心在于“链”概念,包括 Model I/O、Retrieval、Chains、Agents、Memory 和 Callbacks 等组件,生态系统还包括 LangSmith、LangGraph 和 LangServe 等工具。 2. LlamaIndex:在促进 LLM 和整合上下文数据方面表现出色,抽象出许多提示链的细节,与外部 API 的接口,从向量数据库检索上下文数据,并在多个 LLM 调用中维持内存。
2025-02-17
LLM 训练推理模型有哪些
以下是一些常见的 LLM 训练推理模型: 1. FengshenbangLM: 地址: 简介:是 IDEA 研究院认知计算与自然语言研究中心主导的大模型开源体系,开源了姜子牙通用大模型 V1,是基于 LLaMa 的 130 亿参数的大规模预训练模型,具备翻译、编程、文本分类、信息抽取、摘要、文案生成、常识问答和数学计算等能力。除姜子牙系列模型之外,还开源了太乙、二郎神系列等模型。 2. BiLLa: 地址: 简介:开源了推理能力增强的中英双语 LLaMA 模型。较大提升 LLaMA 的中文理解能力,并尽可能减少对原始 LLaMA 英文能力的损伤;训练过程增加较多的任务型数据,利用 ChatGPT 生成解析,强化模型理解任务求解逻辑;全量参数更新,追求更好的生成效果。 3. Moss: 地址: 简介:支持中英双语和多种插件的开源对话语言模型,MOSS 基座语言模型在约七千亿中英文以及代码单词上预训练得到,后续经过对话指令微调、插件增强学习和人类偏好训练具备多轮对话能力及使用多种插件的能力。 此外,Andrej Karpathy 的相关介绍中提到了 LLM 训练的一些情况,如训练过程涉及大约 10TB 的文本,通常来源于互联网的抓取,需要大量的互联网资源和一个 GPU 集群,费用大约 200 万美元。Karpathy 的视频还详细介绍了 LLM 训练的全部过程,包括预训练、有监督微调和强化学习等。
2025-02-16
大型语言模型(LLM)基于Transformer架构的模型的优缺点是什么,有什么局限性
大型语言模型(LLM)基于 Transformer 架构的模型具有以下优点: 1. 在大量数据集上进行预训练,展现出卓越的语言处理能力,能预测接下来的 Token。 然而,也存在一些缺点和局限性: 1. 瞬态状态:天生缺乏持久的记忆或状态,需要额外的软件或系统来保留和管理上下文。 2. 概率性质:随机性导致响应的不确定性,对相同提示词可能产生不同回答。 3. 过时信息:依赖预训练数据,只能访问历史知识,无法获取实时更新。 4. 内容制造:可能生成看似合理但不准确的信息,即“幻觉”。 5. 资源密集:巨大规模意味着显著的计算和财务成本,影响可扩展性和可访问性。 6. 领域特定性:本质上通用,但通常需要特定领域数据才能在专业任务中表现出色。 7. 缺乏创造性:像一个高性能的知识检索工具,超出检索范围时表现差,甚至出现“幻觉”。面对复杂逻辑推导和新的知识推演能力不足,无法基于新的语料推演出新知识。 8. 对于特定领域或高度专业化的查询,容易产生错误信息或“幻觉”,特别是当查询超出训练数据或需要最新信息时。
2025-02-13
anythingllm安装包
以下是关于 AnythingLLM 安装包的相关信息: 安装地址:https://useanything.com/download 。 安装完成后会进入配置页面,主要分为三步: 第一步:选择大模型。 第二步:选择文本嵌入模型。 第三步:选择向量数据库。 在 AnythingLLM 中有 Workspace 的概念,可以创建自己独有的 Workspace 与其他项目数据进行隔离。配置流程包括: 首先创建一个工作空间。 上传文档并且在工作空间中进行文本嵌入。 选择对话模式,提供了 Chat 模式和 Query 模式。Chat 模式大模型会根据训练数据和上传的文档数据综合给出答案,Query 模式大模型仅依靠文档中的数据给出答案。 完成上述配置后,即可与大模型进行对话。 此外,在 GitHubDaily 开源项目列表 2023 年复盘的 AIGC 部分中, 是一个可打造成企业内部知识库的私人专属 GPT,能将任何文档、资源或内容转换为大语言模型(LLM)知识库,在对话中引用其中内容。
2025-02-06
AnythingLLM 怎么用,好用吗
AnythingLLM 是一款功能强大的软件,具有以下特点和使用方法: 功能:包含了所有 Open WebUI 的能力,并且额外支持选择文本嵌入模型和向量数据库。 安装和配置:安装地址为 https://useanything.com/download 。安装完成后进入配置页面,主要分为三步:选择大模型、选择文本嵌入模型、选择向量数据库。 构建本地知识库:其中有 Workspace 的概念,可以创建自己独有的 Workspace 与其他项目数据隔离。首先创建工作空间,然后上传文档并进行文本嵌入,接着选择对话模式,提供了 Chat 模式(大模型根据训练数据和上传文档数据综合给出答案)和 Query 模式(大模型仅依靠文档中的数据给出答案),最后进行测试对话。 相关评价:被认为是一个可打造成企业内部知识库的私人专属 GPT,能将任何文档、资源或内容转换为大语言模型(LLM)知识库,支持多用户使用,可设权限,兼容多种 LLM 和数据库。 总的来说,AnythingLLM 的使用效果因人而异,需要您亲自实践和体验来判断其是否好用。
2025-02-04
dify私有化部署
以下是关于 Dify 私有化部署的相关信息: 1. 部署步骤: 通过云服务器进行部署,相关命令在宝塔面板的终端安装,例如在/root/dify/docker 目录下的 dockercompose 文件。 检查运行情况,若 nginx 容器无法运行,可能是 80 端口被占用,可将终端输出的代码粘贴给 AI 以解决。 在浏览器地址栏输入公网 IP(去掉宝塔面板地址栏后的:8888),随便填写邮箱密码建立知识库并进行设置。 2. 模型选择与配置: 可以选择国内有免费额度的模型,如智谱 AI。 以智谱 AI 为例,在其官网用手机号注册,添加 API keys 并查看免费额度,将钥匙复制保存。 随便创建应用,可先选择智谱 glm4 测试,然后点发布。 创建并复制 api 秘钥。 3. Dify 特点: 作为开源应用,易用性出色且功能强大,安装过程简单快捷,熟练用户约 5 分钟可在本地完成部署。 支持本地部署和云端应用,能应对工作流、智能体、知识库等。 本地部署需自行处理模型接入等问题,包括购买 API、接入不同类型模型,构建个人知识库时还需考虑数据量、嵌入质量和 API 费用等因素。
2024-09-20
私有化部署大模型的教材
以下是为您提供的私有化部署大模型的相关教材: 张梦飞:【全网最细】从 LLM 大语言模型、知识库到微信机器人的全本地部署教程 一、部署大语言模型 1. 下载并安装 Ollama 点击进入,根据您的电脑系统,下载 Ollama:https://ollama.com/download 下载完成后,双击打开,点击“Install” 安装完成后,将下方地址复制进浏览器中。如果出现下方字样,表示安装完成:http://127.0.0.1:11434/ 2. 下载 qwen2:0.5b 模型(0.5b 是为了方便测试,下载快,自己设备充足的话,可以下载更大的模型) 如果您是 windows 电脑,点击 win+R,输入 cmd,点击回车。 如果您是 Mac 电脑,按下 Command(⌘)+ Space 键打开 Spotlight 搜索,输入“Terminal”或“终端”,然后从搜索结果中选择“终端”应用程序。 复制以下命令行,粘贴进入,点击回车。 回车后,会开始自动下载,等待完成(这里下载久了,可能会发现卡着不动,不知道下载了多少了。鼠标点击一下窗口,键盘点空格,就会刷新了) 下载完成后您会发现,大模型已经在本地运行了。输入文本即可进行对话。 【SD】向未来而生,关于 SDXL 您要知道事儿 SDXL 的大模型分为两个部分: 1. 第一部分,base+refiner 是必须下载的,base 是基础模型,我们使用它进行文生图的操作;refiner 是精炼模型,我们使用它对文生图中生成的模型进行细化,生成细节更丰富的图片。 2. 第二部分,是 SDXL 还有一个配套的 VAE 模型,用于调节图片的画面效果和色彩。 这三个模型,您可以关注我的公众号【白马与少年】,然后回复【SDXL】获取下载链接。 想要在 webUI 中使用 SDXL 的大模型,首先我们要在秋叶启动器中将 webUI 的版本升级到 1.5 以上。接下来,将模型放入对应的文件夹中,base 和 refiner 放在“……\\sdwebuiakiv4.2\\models\\Stablediffusion”路径下;vae 放在“……\\sdwebuiakiv4.2\\models\\VAE”路径下。完成之后,我们启动 webUI,就可以在模型中看到 SDXL 的模型了。我们正常的使用方法是这样的:先在文生图中使用 base 模型,填写提示词和常规参数,尺寸可以设置为 10241024,进行生成。 基于多模态大模型给现实世界加一本说明书 大模型应用的利弊: 优点: 适应性极好,通过提示词工程,方便「适应各种奇葩需求」。 对算法的要求降低了不少,大部分功能由大模型提供,特别是非结构化信息的处理。 大模型的 API 访问方式简化了边缘设备的要求,无论在 Android、iOS、HarmonyOS或各种嵌入式设备上都能方便适配。「AGI 终将到来,拥抱未来,虽然路途艰难但相信方向是正确的。」 缺点: 大模型的推理时长目前仍是最大的障碍,传统目标检测或人脸识别优化后能达到 100~300ms,而大模型动则需要 10 秒的延时,限制了许多场景。 模型的幻象和错误率仍然较高,导致上述推理时长问题,在多链路的复杂应用中迅速变得不可行。 在大多数生产模式下,仍然需要使用云服务数据中心,提交的画面不可避免地涉及到隐私问题。 商业私有化部署是刚需,当下的开源模型离 GPT4 代差在半年以上,技术人员任重道远的。
2024-09-03
私有化部署的大模型工具
以下是关于私有化部署的大模型工具的相关内容: Fooocus 部署: 大模型(base 和 Refiner)默认放在:Fooocus_win64_1110\\Fooocus\\models\\checkpoints LoRA 模型默认放在:Fooocus_win64_1110\\Fooocus\\models\\loras Fooocus 程序默认用到 3 个 SDXL 的模型,包括一个 base、一个 Refiner 和一个 LoRA。若单独安装,需下载三个模型: SDXL 基础模型:https://huggingface.co/stabilityai/stablediffusionxlbase1.0/resolve/main/sd_xl_base_1.0_0.9vae.safetensors refiner 模型:https://huggingface.co/stabilityai/stablediffusionxlrefiner1.0/resolve/main/sd_xl_refiner_1.0_0.9vae.safetensors LoRA 模型:https://huggingface.co/stabilityai/stablediffusionxlbase1.0/resolve/main/sd_xl_offset_examplelora_1.0.safetensors 若部署了 SD 秋叶包,可共用模型(大模型和 LoRA),在 Fooocus_win64_1110\\Fooocus\\modules\\path.py 中用 text 记事本打开,修改路径为秋叶包模型对应的路径,如大模型路径:sdwebui\\models\\Stablediffusion\\SDXL;LoRA 模型路径:sdwebui\\models\\lora。配置好后点击 run.bat 文件启动。 SDXL 本地部署: 大模型分为两个部分:第一部分,base + refiner 必须下载,base 用于文生图操作,refiner 用于对生成的模型细化以生成细节更丰富的图片;第二部分是配套的 VAE 模型,用于调节图片的画面效果和色彩。 可关注公众号【白马与少年】,回复【SDXL】获取模型下载链接。 在 webUI 中使用 SDXL 大模型,需在秋叶启动器中将 webUI 版本升级到 1.5 以上,将模型放入对应文件夹,base 和 refiner 放在“……\\sdwebuiakiv4.2\\models\\Stablediffusion”路径下,vae 放在“……\\sdwebuiakiv4.2\\models\\VAE”路径下,启动 webUI 后可在模型中看到 SDXL 模型。 Langchain + Ollama + RSSHub 实现 RAG 部署: 安装完后,确保 ollama 后台服务已启动(在 mac 上启动 ollama 应用程序,在 linux 上通过 ollama serve 启动),可通过 ollama list 确认。 可通过 ollama 命令下载模型,如 Gemma(Google 推出的轻量级模型)、Mistral(欧洲法国 Mistral AI 团队推出的大模型)、Mixtral(Mistral AI 团队推出的 87B 的 MoE 模型)、Qwen(阿里巴巴推出的大模型)。
2024-08-16
agent一般是私有化部署,还是公有化部署
AI助手或智能代理(Agent)的部署可以是私有化部署,也可以是公有化部署,具体取决于应用场景、需求、安全考虑以及成本效益等因素。 1. 私有化部署: 在企业或组织的内部网络中部署,通常用于处理敏感数据或需要高度定制化的服务。 提供更高的安全性和隐私保护,因为系统不公开于互联网。 允许更精细的控制和管理,适合有特定业务流程和需求的企业。 2. 公有化部署: 在云服务提供商的基础设施上部署,通过互联网提供服务。 易于扩展,维护成本较低,因为云服务商负责大部分的维护工作。 适用于面向公众的服务,如在线客服机器人、开放平台的API服务等。 选择哪种部署方式取决于以下因素: 数据敏感性:如果处理的数据非常敏感,私有化部署更有利于保护数据安全。 成本:私有化部署可能需要更多的初始投资,而公有化部署可能带来更高的灵活性和可扩展性。 维护能力:如果企业有足够的技术力量来维护私有化部署的系统,这可能是一个更好的选择。 定制化需求:私有化部署更容易根据企业的特定需求进行定制。 法规遵从性:某些行业或地区的法律法规可能要求企业必须进行私有化部署。 在实际应用中,一些企业可能会选择混合部署模式,即在私有云中部署核心的、敏感的业务组件,同时将一些非核心或较不敏感的组件部署在公有云上,以此来平衡安全性、成本和灵活性。
2024-05-11
如何在微信中私有化部署开源模型
在微信中私有化部署开源模型通常指的是将开源的人工智能模型部署到微信服务或微信小程序中,以便在微信环境中使用这些模型的功能。以下是一些基本步骤和考虑因素: 1. 选择合适的模型:根据你的需求选择合适的开源模型。例如,如果你需要一个文本处理模型,可能可以选择GPT系列模型。 2. 模型转换:一些模型可能需要转换为适合移动设备的格式,如使用TensorFlow Lite或Core ML等格式。 3. 微信小程序开发:如果你想在微信小程序中使用模型,需要使用微信小程序的开发框架进行开发。小程序提供了云开发功能,可以部署一些后端服务。 4. 服务器部署:对于需要较高计算能力的模型,可能需要在服务器上部署。你可以选择自己的服务器或使用云服务提供商的服务器。 5. API开发:将模型包装成API服务,这样微信小程序可以通过HTTP请求与模型交互。 6. 微信小程序与API集成:在小程序中使用微信提供的API接口与后端模型服务通信。 7. 安全性:确保你的API服务是安全的,使用HTTPS协议,并考虑使用微信的OAuth2.0进行用户认证。 8. 性能优化:根据需要对模型进行优化,以适应移动设备的计算能力限制。 9. 测试:在微信环境中对模型进行充分的测试,确保它在小程序中的性能和准确性。 10. 遵守微信政策:确保你的部署遵守微信的相关政策和法规,尤其是关于用户数据和隐私的部分。 11. 用户界面:为微信小程序设计用户界面,使用户能够方便地与模型交互。 12. 部署上线:完成开发和测试后,将你的小程序提交给微信审核,审核通过后即可上线。 请注意,私有化部署涉及到后端服务的搭建和前端的集成,可能需要一定的技术背景。如果你不熟悉服务器管理和API开发,可能需要寻求专业的开发人员帮助。同时,微信平台对于小程序有特定的技术要求和政策限制,需要在开发过程中严格遵守。
2024-04-18
有哪些在企业内部落地应用AI大模型工具的实践案例?不要营销文案生成、代码开发助手、智能客服问答机器人这种太常见的
以下是一些在企业内部落地应用 AI 大模型工具的实践案例: 1. 阿里云百炼: 智能体应用:能够弥补大模型的不足,如回答私有领域问题、获取实时信息、回答专业问题等。适用于有企业官网、钉钉、微信等渠道,期望为客户提供产品咨询服务,以及缺少技术人员开发大模型问答应用的场景。典型场景包括私有领域知识问答、个性化聊天机器人、智能助手等。 内部业务助手:通过企业内部规章制度、部门结构、产品介绍等文档构建知识库,并借助 RAG 智能体实现内部知识问答功能。系统支持多源异构数据,并通过复杂文档解析和视觉增强技术,提升文档理解的准确性与深度。目前该功能已灰度上线,需提供 UID 并通过白名单进行开启。 2. 达摩院: AI 模特(虚拟换装):支持虚拟换装、姿态编辑。 3. 电商零售: 推广文案写作:通过内置的多样化营销场景的文体模板,基于用户输入的创作主题以及参考素材,大模型即可为您生成对应的营销文案,为营销活动和宣传文案提供灵感和文案写作支持。 4. 泛企业: VOC 挖掘:是一个面向各类企业的 VOC 标签挖掘的工具。不论是用户的长短评论、帖子、还是用户和客服/销售的聊天记录、通话记录,都可以使用。通过选中或自定义标签,即可让大模型针对海量非结构化的 VOC 数据快速打标。相比于人工打标或规则打标准确率更高;对于业务标签变动频繁的情况,也能更敏捷、快速地影响。 5. 通义晓蜜:基于深度调优的对话大模型,为营销服类产品提供智能化升级所需的生成式摘要总结、质检、分析等能力应用。
2025-02-18
多模态的AI工具有哪些
以下是一些多模态的 AI 工具: GPT4VAct:这是一个多模态 AI 助手,能够模拟人类通过鼠标和键盘进行网页浏览。它可以识别网页上的元素并理解其功能,目的是自动完成一些人工操作任务以提高效率。主要特点包括有限的视觉处理能力、自动标记、鼠标和键盘操作等,但目前存在一些功能暂不支持。 Sora:是第一个能够根据人类指令生成长达一分钟视频的模型,标志着在生成式 AI 研究和开发中的重大突破。 DiT:能将视频分解为一帧帧图像并逐帧去噪生成流畅连贯的视频,不仅能生成高质量逐帧图像,还能在时间维度上保持一致性。 Topview.ai:是一款面向海外市场的多模态转换工具,作为 AI 驱动的营销视频生成工具,可自动实现模态转换,帮助社交媒体达人将素材一键转换为爆款商业短视频。
2025-02-18
文本打标工具
以下是关于文本打标工具的相关信息: OpenAI API 可应用于多种自然语言、代码或图像任务,提供不同能力级别的模型,可微调自定义模型,适用于内容生成、语义搜索和分类等领域。模型通过将文本分解为标记(Token)来理解和处理,Token 可以是单词或字符块,在给定的 API 请求中处理的 Token 数量取决于输入和输出长度,可查看分词器工具了解更多。 对于某些文本打标任务,如根据问题的主要主题为文本打标签,有相应的指示和选项,如根据问题围绕的对象选择不同的标签类别。 在语音合成中,标注是常见问题,一般利用文本前端产生基线的音素序列和音素时长,再由人类参与检查,包括音素层级、单词层级、句子层级等方面,标注人员可采用 Praat 进行可视化标注和检查,不同场景的标注可能有细微变化。
2025-02-18
请给出目前比较火的各垂类AI工具名称
以下是目前比较火的各垂类 AI 工具: 图像生成器:有 14 个工具,如 Midjourney 等。 AI 聊天机器人:有 8 个工具,如 Claude、ChatGPT、Bing Chat 等。 AI 写作生成器:有 7 个工具,如 Rytr、Copy AI 等。 视频生成器:有 5 个工具。 语音和音乐:有 5 个工具。 设计:有 4 个工具,如 Canva 等。 其他:有 7 个工具。 此外,还有以下一些热门的 AI 工具: AI 研究工具:Claude、ChatGPT、Bing Chat、Perplexity 等。 图片处理:DallE、Leonardo、BlueWillow 等。 版权写作:Rytr、Copy AI、Wordtune、Writesonic 等。 网站搭建:10Web、Framer、Hostinger、Landingsite 等。 视频处理:Klap、Opus、Invideo、Heygen 等。 音频处理:Murf、LovoAI、Resemble、Eleven Labs 等。 SEO 优化:Alli AI、BlogSEO、Seona AI、Clearscope 等。 Logo 设计:Looka、LogoAI、Brandmark、Logomaster 等。 聊天机器人:Droxy、Chatbase、Voiceflow、Chatsimple 等。 自动化工具:Make、Zapier、Bardeen、Postman 等。
2025-02-18
ai生成短视频,有没有免费的工具
以下是一些免费生成短视频的工具: 1. Project Odyssey:这是全球最大的生成式 AI 视频竞赛之一,提供超过 30 种工具的免费额度,累计超过 75 万美元。 2. ChatGPT + 剪映:ChatGPT 可以生成视频小说脚本,剪映则可以根据脚本自动分析并生成对应的素材和文本框架。 3. PixVerse AI:在线 AI 视频生成工具,支持将多模态输入转化为视频,且免费无限生成。 4. Pictory:AI 视频生成器,允许用户提供文本描述来生成相应的视频内容。 5. VEED.IO:提供了 AI 图像生成器和 AI 脚本生成器,帮助用户从图像制作视频,并规划内容。 6. 艺映 AI:专注于人工智能视频领域,提供文生视频、图生视频、视频转漫等服务,用户可以根据文本脚本生成视频。 这些工具各有特点,适用于不同的应用场景和需求,能够帮助您快速生成吸引人的视频内容。但请注意,内容由 AI 大模型生成,请仔细甄别。
2025-02-18
小白怎样学习ai工具 熟练运用于工作生活
以下是为小白提供的学习 AI 工具并运用于工作生活的建议: 一、从菜鸟到达人的进阶之路 可以参考元子的进化史: 1. Day 1:懵懵懂懂,只会说“你好,帮我写个报告”。 2. Day 7:学会表达,比如“帮我写一份周报,重点说明项目进度”。 3. Day 14:熟练掌握,例如“我需要一份项目总结,包含数据分析和改进建议”。 4. Day 30:把常规 AI 工具都试过一遍,并选定自己要持续玩的方向,比如 AI Agent。 5. Day 60:组队参加 AI Agent 比赛并有幸得奖。 这里推荐一个社区小伙伴的 100 天 AI 之路,每天都有记载,大家可以感受一下进境: 元子的心得: 1. 不要怕问“笨”问题,但要多直接问 AI。 2. 解决一个小问题也是进步,不积跬步,无以至千里。 3. 多试多练才是王道,来社区共学,一群人走得更远。 4. 融入生活和工作才能持久,学完就用才是王道,不要纯靠意志力。 二、工作中的 AI 小帮手 1. 需要快速生成报告,AI 来帮忙。 2. 需要快速整理数据,AI 来处理。 3. 需要快速翻译文件,AI 来翻译。 4. 需要快速优化文案,AI 来优化。 三、参与制作 AI 动画短片的经验分享 在参与设计 AI 动画短片时,比如负责“刺猬菠萝”角色的图片和视频制作,即使没有相关经验,在他人指导下也能逐渐掌握基本技巧,并通过 MJ 和 RunWayAI 工具提高效率。 为了做好这件事,可以: 1. 利用 WaytoAGI 社群中的入门资料,快速了解动画制作的基本流程和技术。 2. 积极参与团队讨论,向有经验的大佬请教,多多参与「共创活动」,不仅能快速学习,还能收获伙伴。 四、AI 与生活 对于超出自己理解范围的事情,最简单的方法就是试一试。学习新东西,百闻不如一练。在面向父母的“AI 布道”活动中会发现,AI 工具虽强大,但与普通人之间存在一定距离。AI 是未来必然的方向,其科普还有很长的路要走,但尽可能简单地试用它,能让普通人更快受益。 如果想要跟元子交朋友、一起在 AI 路上探寻,欢迎戳这里:
2025-02-18
请推荐一款好用的提示词优化器
以下为您推荐几款好用的提示词优化器: 1. 星流一站式 AI 设计工具: 在 prompt 输入框中可输入提示词,使用图生图功能辅助创作。 支持自然语言和单个词组输入,启用提示词优化后能扩展提示词,更生动地描述画面内容。 提供预设词组,小白用户可点击使用。 提示词内容应准确,包含人物主体、风格、场景特点、环境光照、画面构图、画质等。 可调整负面提示词,利用“加权重”功能让 AI 明白重点内容,还具备翻译、删除所有提示词、会员加速等辅助功能。 2. 以下是一些提示词相关的模板和资源网站: Majinai: 词图: Black Lily: Danbooru 标签超市: 魔咒百科词典: AI 词汇加速器: NovelAI 魔导书: 鳖哲法典: Danbooru tag: AIBooru:
2025-02-18
图片转视频的国产AI推荐
以下是为您推荐的国产图片转视频的 AI 工具: 1. 可灵:由快手团队开发,生成的图像和视频质量高。在视频生成方面,其视频生成质量卓越,画面清晰、连贯且内容丰富,生成速度快,对于国内用户可访问性强。但价格相对较高,重度用户年费可能达几千元,轻度用户有免费点数和较便宜的包月选项。 2. 通义万相:作为国产 AI 工具,在中文理解和处理方面表现出色,可选择多种艺术和图像风格,操作界面简洁直观,用户友好度高,且目前免费,每天签到获取灵感值即可。但为符合国内监管要求,某些类型图像无法生成,处理非中文语言或国际化内容可能不够出色,处理多元文化内容时可能存在偏差。 更多相关网站可以查看: 内容由 AI 大模型生成,请仔细甄别。
2025-02-18
图片转视频的AI推荐
以下是为您推荐的图片转视频的 AI 工具: 1. Pika:出色的文本生成视频 AI 工具,擅长动画制作,并支持视频编辑。 2. SVD:如果熟悉 Stable Diffusion,可以安装这款最新的插件,在图片基础上直接生成视频,它是由 Stability AI 开源的 video model。 3. Runway:老牌 AI 视频生成工具,提供实时涂抹修改视频的功能,但需要收费。 4. Kaiber:视频转视频 AI,能够将原视频转换成各种风格的视频。 5. Sora:由 OpenAI 开发,可以生成长达 1 分钟以上的视频。 更多的相关网站可以查看:https://www.waytoagi.com/category/38 。 另外,在视频转绘制作视频过程中,Topaz Video AI 是一个不错的插件,用于消除视频抖动和运动模糊。其使用方法如下: 解压对应文件,推荐使用绿色版,右键管理员运行 VideoAIportable.exe 文件,导入处理好的视频。主界面左边是原视频,右边是待处理视频,下面是对应的视频轨道。右边部分是主要对视频处理的方式,预设部分主要是放大视频、提升画质、提升帧率等。稳定 AI 模式分为自动裁切和完整帧,做转绘选择完整帧,强度在 60 左右,抖动需要开启,次数一般选择 2 保持默认不变。 在制作新年表情包时,生成新年场景可以输入关键词“新年、中国新年、喜庆热闹、恭喜发财”之类的词汇得到合适的新年背景。然后使用可灵 AI 1.6 图生视频工具让场景动起来,抽卡性价比不错,简单效果一般抽两三次即可。
2025-02-18
作为前端开发人员,推荐学习哪些AI技术呢
作为前端开发人员,以下是一些推荐学习的 AI 技术: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能、机器学习、深度学习、自然语言处理等主要分支及其联系。 浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,其上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库查看大家实践后的作品、文章分享,并进行自己实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人互动,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验。 此外,如果希望继续精进,对于 AI,可以尝试了解以下内容作为基础: 1. AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 4. 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 如果偏向技术研究方向: 1. 数学基础:线性代数、概率论、优化理论等。 2. 机器学习基础:监督学习、无监督学习、强化学习等。 3. 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 4. 自然语言处理:语言模型、文本分类、机器翻译等。 5. 计算机视觉:图像分类、目标检测、语义分割等。 6. 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 7. 科研实践:论文阅读、模型实现、实验设计等。 如果偏向应用方向: 1. 编程基础:Python、C++等。 2. 机器学习基础:监督学习、无监督学习等。 3. 深度学习框架:TensorFlow、PyTorch 等。 4. 应用领域:自然语言处理、计算机视觉、推荐系统等。 5. 数据处理:数据采集、清洗、特征工程等。 6. 模型部署:模型优化、模型服务等。 7. 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-02-18
推荐可以辅助进行合同条款审查的AI工具
以下是一些可以辅助进行合同条款审查的 AI 工具: 1. AI Assist™:这是有史以来第一个公开发布的生成式 AI 支持的合同工具,使用 OpenAI 的 GPT4 让用户根据预先批准的条款语言立即对合同进行修订。 2. 智能合同审核:在智能导购的技术创新场景中,能够自动检查供应商合同条款合规性。
2025-02-17
我是一个ai小白,请给我推荐一个语言大模型的提示词优化工具
以下为您推荐两个语言大模型的提示词优化工具: 1. 星流一站式 AI 设计工具: 在 prompt 输入框中可输入提示词,使用图生图功能辅助创作。 支持自然语言和单个词组输入,中英文均可。 启用提示词优化后可扩展提示词,更生动描述画面内容。 小白用户可点击提示词上方官方预设词组进行生图。 写好提示词需内容准确,包含人物主体、风格、场景特点、环境光照、画面构图、画质等。 可调整负面提示词,利用“加权重”功能让 AI 明白重点内容,还有翻译、删除所有提示词、会员加速等辅助功能。 2. Prompt Perfect: 能够根据输入的 Prompt 进行优化,并给出优化前后的结果对比。 适合写论文、文章的小伙伴,但使用该能力需要消耗积分(可通过签到、购买获得)。 访问地址:
2025-02-17