Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如何使用LLM分析企业的私有化数据,是否有工具推荐?

Answer

以下是关于使用 LLM 分析企业私有化数据及工具推荐的相关内容:

RAG 加速器提供了数据抽取服务,这是基于 LLM 的解决方案。在利用 LLM 进行信息抽取时,需要了解构建抽取服务的基本组件和要点。

实现过程中,有两个简单但强大的思路可以提升性能:

  1. 确保 LLM 以正确的格式回应。函数调用已成为确保 LLM 严格输出特定格式的新且相对靠谱的方法,可参考结构化输出文档,其中高层次的 LangChain API 展示了不同 LLM 如何调用工具和函数。
  2. 使用参考样例。尽管没有样例也能设置抽取问题,但实际操作中,将输入和对应输出的样例纳入其中通常大有裨益,有时这些样例比指示本身更能有效指导 LLM 处理特定情况。在提取用例文档中,可以找到更多细节,助您从 LLMs 中提取更好的性能。
Content generated by AI large model, please carefully verify (powered by aily)

References

RAG加速器:数据抽取服务

了解了组成部分后,接下来是如何让它们一起工作。我们此处要分享两个简单但强大的思路。第一个要点是确保LLM以正确的格式回应。如果只是在命令中指示LLM输出JSON格式,它可能并不总会遵守。因此,函数调用已经成为确保LLM严格输出特定格式的一个新方法,而且相对靠谱。我们推荐使用此方法来提升性能。你可以参考结构化输出文档,其中高层次的LangChain API展示了不同LLM如何调用工具和函数。另一个提升性能的方法是使用参考样例。尽管没有样例也能设置抽取问题,但我们发现实际操作中,将输入和对应输出的样例纳入其中通常大有裨益。有时候,这些样例比指示本身还更能有效指导LLM处理特定情况。在我们的提取用例文档中,你可以找到更多细节,助你从LLMs中提取更好的性能。

Others are asking
anythingllm安装包
以下是关于 AnythingLLM 安装包的相关信息: 安装地址:https://useanything.com/download 。 安装完成后会进入配置页面,主要分为三步: 第一步:选择大模型。 第二步:选择文本嵌入模型。 第三步:选择向量数据库。 在 AnythingLLM 中有 Workspace 的概念,可以创建自己独有的 Workspace 与其他项目数据进行隔离。配置流程包括: 首先创建一个工作空间。 上传文档并且在工作空间中进行文本嵌入。 选择对话模式,提供了 Chat 模式和 Query 模式。Chat 模式大模型会根据训练数据和上传的文档数据综合给出答案,Query 模式大模型仅依靠文档中的数据给出答案。 完成上述配置后,即可与大模型进行对话。 此外,在 GitHubDaily 开源项目列表 2023 年复盘的 AIGC 部分中, 是一个可打造成企业内部知识库的私人专属 GPT,能将任何文档、资源或内容转换为大语言模型(LLM)知识库,在对话中引用其中内容。
2025-02-06
AnythingLLM 怎么用,好用吗
AnythingLLM 是一款功能强大的软件,具有以下特点和使用方法: 功能:包含了所有 Open WebUI 的能力,并且额外支持选择文本嵌入模型和向量数据库。 安装和配置:安装地址为 https://useanything.com/download 。安装完成后进入配置页面,主要分为三步:选择大模型、选择文本嵌入模型、选择向量数据库。 构建本地知识库:其中有 Workspace 的概念,可以创建自己独有的 Workspace 与其他项目数据隔离。首先创建工作空间,然后上传文档并进行文本嵌入,接着选择对话模式,提供了 Chat 模式(大模型根据训练数据和上传文档数据综合给出答案)和 Query 模式(大模型仅依靠文档中的数据给出答案),最后进行测试对话。 相关评价:被认为是一个可打造成企业内部知识库的私人专属 GPT,能将任何文档、资源或内容转换为大语言模型(LLM)知识库,支持多用户使用,可设权限,兼容多种 LLM 和数据库。 总的来说,AnythingLLM 的使用效果因人而异,需要您亲自实践和体验来判断其是否好用。
2025-02-04
如何从零到一学习LLM上层AI应用开发
从零到一学习 LLM 上层 AI 应用开发,您可以参考以下步骤: 1. 掌握深度学习和自然语言处理基础: 学习机器学习、深度学习、神经网络等基础理论。 掌握自然语言处理基础,如词向量、序列模型、注意力机制等。 相关课程:吴恩达的深度学习课程、斯坦福 cs224n 等。 2. 理解 Transformer 和 BERT 等模型原理: 熟悉 Transformer 模型架构及自注意力机制原理。 掌握 BERT 的预训练和微调方法。 阅读相关论文,如 Attention is All You Need、BERT 论文等。 3. 学习 LLM 模型训练和微调: 进行大规模文本语料预处理。 熟悉 LLM 预训练框架,如 PyTorch、TensorFlow 等。 学会微调 LLM 模型进行特定任务迁移。 相关资源:HuggingFace 课程、论文及开源仓库等。 4. LLM 模型优化和部署: 掌握模型压缩、蒸馏、并行等优化技术。 了解模型评估和可解释性。 熟悉模型服务化、在线推理、多语言支持等。 相关资源:ONNX、TVM、BentoML 等开源工具。 5. LLM 工程实践和案例学习: 结合行业场景,进行个性化的 LLM 训练。 分析和优化具体 LLM 工程案例。 研究 LLM 新模型、新方法的最新进展。 6. 持续跟踪前沿发展动态: 关注顶会最新论文、技术博客等资源。 以下是一些相关的学习资源: 面向开发者的 LLM 入门课程: 提示工程指南: LangChain🦜️🔗中文网,跟着 LangChain 一起学 LLM/GPT 开发: LLMs 九层妖塔: 在课程方面,欢迎来到针对开发者的 AIGPT 提示工程课程。该课程将分享软件开发最佳实践的提示,涵盖常见用例,包括总结、推理、转换和扩展,并指导使用 LLM 构建一个聊天机器人。在大型语言模型或 LLM 的开发中,大体上有基础 LLM 和指令调整后的 LLM 两种类型。基础 LLM 已训练出根据文本训练数据预测下一个单词,通常在大量数据上训练,以找出接下来最有可能的单词。
2025-01-28
从零到一的 LLM 学习教程
以下是从零到一学习 LLM 的教程: 1. 掌握深度学习和自然语言处理基础: 学习机器学习、深度学习、神经网络等基础理论。 掌握自然语言处理基础,如词向量、序列模型、注意力机制等。 相关课程:吴恩达的深度学习课程、斯坦福 cs224n 等。 2. 理解 Transformer 和 BERT 等模型原理: 了解 Transformer 模型架构及自注意力机制原理。 掌握 BERT 的预训练和微调方法。 阅读相关论文,如 Attention is All You Need、BERT 论文等。 3. 学习 LLM 模型训练和微调: 进行大规模文本语料预处理。 运用 LLM 预训练框架,如 PyTorch、TensorFlow 等。 微调 LLM 模型进行特定任务迁移。 相关资源:HuggingFace 课程、论文及开源仓库等。 4. LLM 模型优化和部署: 掌握模型压缩、蒸馏、并行等优化技术。 进行模型评估和可解释性研究。 实现模型服务化、在线推理、多语言支持等。 相关资源:ONNX、TVM、BentoML 等开源工具。 5. LLM 工程实践和案例学习: 结合行业场景,进行个性化的 LLM 训练。 分析和优化具体 LLM 工程案例。 研究 LLM 新模型、新方法的最新进展。 6. 持续跟踪前沿发展动态: 关注顶会最新论文、技术博客等资源。 此外,为您推荐以下 LLM 开源中文大语言模型及数据集集合的学习资源: 1. 面向开发者的 LLM 入门课程: 地址: 简介:一个中文版的大模型入门教程,围绕吴恩达老师的大模型系列课程展开,主要包括:吴恩达《ChatGPT Prompt Engineering for Developers》课程中文版,吴恩达《Building Systems with the ChatGPT API》课程中文版,吴恩达《LangChain for LLM Application Development》课程中文版等。 2. 提示工程指南: 地址: 简介:该项目基于对大语言模型的浓厚兴趣,编写了这份全新的提示工程指南,介绍了大语言模型相关的论文研究、学习指南、模型、讲座、参考资料、大语言模型能力以及与其他与提示工程相关的工具。 3. LangChain🦜️🔗中文网,跟着 LangChain 一起学 LLM/GPT 开发: 地址: 简介:Langchain 的中文文档,由是两个在 LLM 创业者维护,希望帮助到从刚进入 AI 应用开发的朋友们。 4. LLMs 九层妖塔: 地址: 简介:ChatGLM、ChineseLLaMAAlpaca、MiniGPT4、FastChat、LLaMA、gpt4all 等实战与经验。 关于 LLM 的预测原理: LLM 接触了包括教科书、文章、网站等在内的庞大数据集。在训练阶段,它们学会了理解语言的上下文和流动性,掌握了包括语法、风格,甚至是文本的语调等方面。当您用一个句子或问题来指导 LLM 时,它便利用自己所学的知识,预测接下来最可能的一个或几个词。这不仅是基于它在训练期间观察到的模式和规则的推测。 在提示工程方面,鉴于 LLM 的概率本质,提示工程师面临的挑战是如何引导 LLM 向着高度可预测和准确的结果方向发展。在相关课程中,您将学习许多技巧,这些技巧将帮助您掌握高度可预测的 LLM 输出结果的艺术和科学。但在深入学习之前,可以先从一些简单的练习开始,激活思维。
2025-01-28
llm cookbook 有资源吗
以下是关于 LLM 学习资源和 OpenAI Cookbook 的相关信息: 学习大型语言模型(LLM)开发的资源和路径: 1. 掌握深度学习和自然语言处理基础: 机器学习、深度学习、神经网络等基础理论。 自然语言处理基础,如词向量、序列模型、注意力机制等。 相关课程:吴恩达的深度学习课程、斯坦福 cs224n 等。 2. 理解 Transformer 和 BERT 等模型原理: Transformer 模型架构及自注意力机制原理。 BERT 的预训练和微调方法。 掌握相关论文,如 Attention is All You Need、BERT 论文等。 3. 学习 LLM 模型训练和微调: 大规模文本语料预处理。 LLM 预训练框架,如 PyTorch、TensorFlow 等。 微调 LLM 模型进行特定任务迁移。 相关资源:HuggingFace 课程、论文及开源仓库等。 4. LLM 模型优化和部署: 模型压缩、蒸馏、并行等优化技术。 模型评估和可解释性。 模型服务化、在线推理、多语言支持等。 相关资源:ONNX、TVM、BentoML 等开源工具。 5. LLM 工程实践和案例学习: 结合行业场景,进行个性化的 LLM 训练。 分析和优化具体 LLM 工程案例。 研究 LLM 新模型、新方法的最新进展。 6. 持续跟踪前沿发展动态: 关注顶会最新论文、技术博客等资源。 OpenAI Cookbook 资源: 如需更多灵感,请访问,其中包含示例代码以及指向第三方资源的链接,例如: 1. 2. 3. 4. 此外,还有 LLM 开源中文大语言模型及数据集集合中的相关资源: HuggingLLM: 地址: 简介:介绍 ChatGPT 原理、使用和应用,降低使用门槛,让更多感兴趣的非 NLP 或算法专业人士能够无障碍使用 LLM 创造价值。 OpenAI Cookbook: 地址: 简介:该项目是 OpenAI 提供的使用 OpenAI API 的示例和指导,其中包括如何构建一个问答机器人等教程,能够为从业人员开发类似应用时带来指导。
2025-01-14
Llm studio 联网搜索
以下是关于 LLM studio 联网搜索的相关内容: Cursor 方面: Cursor 适用于多种编程场景,如问答。在问答场景中,LLM 支持联网功能后,如 Claude、ChatGPT、Perplexity 等平台可咨询技术问题,能自动提炼关键字、联网搜索并总结分析搜索结果返回简洁答案,但答案置信率不高,而 Cursor 的上下文符号引用能力(如@Codebase 符号索引整个仓库)弥补了这一点,其将整个仓库 Embedding 成向量数据库供 LLM 消费,具备极强的私域知识理解能力,还能高效地帮用户分析总结各类项目的底层原理。 LLM Agent 方面: 工作步骤包括接收指令(用户通过文本、语音等方式发出指令或提出问题)、数据处理与理解(利用内部大语言模型解析用户输入,提取关键信息)、生成响应与执行任务(根据用户需求生成回答或采取行动,如查询数据库、搜索网络等)、输出结果(通过文本或语音将生成的结果反馈给用户)。 AIGC Weekly34 方面: 提出将 LLM 与互联网上的高质量内容结合来修复信息生态系统的问题,如 Metaphor 希望恢复搜索的神奇感,发布了 Metaphor API 用于将 LLM 连接到互联网。 介绍了 StarCraft II 作为强化学习环境的相关论文,提出了 AlphaStar Unplugged 基准测试。 提到了名为 Glean 的 AI 搜索工具能帮助用户在工作场景中进行搜索和优化,还讨论了人工智能人格模拟相关内容,如语言模型如何模拟和改变人格等。
2025-01-13
dify私有化部署
以下是关于 Dify 私有化部署的相关信息: 1. 部署步骤: 通过云服务器进行部署,相关命令在宝塔面板的终端安装,例如在/root/dify/docker 目录下的 dockercompose 文件。 检查运行情况,若 nginx 容器无法运行,可能是 80 端口被占用,可将终端输出的代码粘贴给 AI 以解决。 在浏览器地址栏输入公网 IP(去掉宝塔面板地址栏后的:8888),随便填写邮箱密码建立知识库并进行设置。 2. 模型选择与配置: 可以选择国内有免费额度的模型,如智谱 AI。 以智谱 AI 为例,在其官网用手机号注册,添加 API keys 并查看免费额度,将钥匙复制保存。 随便创建应用,可先选择智谱 glm4 测试,然后点发布。 创建并复制 api 秘钥。 3. Dify 特点: 作为开源应用,易用性出色且功能强大,安装过程简单快捷,熟练用户约 5 分钟可在本地完成部署。 支持本地部署和云端应用,能应对工作流、智能体、知识库等。 本地部署需自行处理模型接入等问题,包括购买 API、接入不同类型模型,构建个人知识库时还需考虑数据量、嵌入质量和 API 费用等因素。
2024-09-20
私有化部署大模型的教材
以下是为您提供的私有化部署大模型的相关教材: 张梦飞:【全网最细】从 LLM 大语言模型、知识库到微信机器人的全本地部署教程 一、部署大语言模型 1. 下载并安装 Ollama 点击进入,根据您的电脑系统,下载 Ollama:https://ollama.com/download 下载完成后,双击打开,点击“Install” 安装完成后,将下方地址复制进浏览器中。如果出现下方字样,表示安装完成:http://127.0.0.1:11434/ 2. 下载 qwen2:0.5b 模型(0.5b 是为了方便测试,下载快,自己设备充足的话,可以下载更大的模型) 如果您是 windows 电脑,点击 win+R,输入 cmd,点击回车。 如果您是 Mac 电脑,按下 Command(⌘)+ Space 键打开 Spotlight 搜索,输入“Terminal”或“终端”,然后从搜索结果中选择“终端”应用程序。 复制以下命令行,粘贴进入,点击回车。 回车后,会开始自动下载,等待完成(这里下载久了,可能会发现卡着不动,不知道下载了多少了。鼠标点击一下窗口,键盘点空格,就会刷新了) 下载完成后您会发现,大模型已经在本地运行了。输入文本即可进行对话。 【SD】向未来而生,关于 SDXL 您要知道事儿 SDXL 的大模型分为两个部分: 1. 第一部分,base+refiner 是必须下载的,base 是基础模型,我们使用它进行文生图的操作;refiner 是精炼模型,我们使用它对文生图中生成的模型进行细化,生成细节更丰富的图片。 2. 第二部分,是 SDXL 还有一个配套的 VAE 模型,用于调节图片的画面效果和色彩。 这三个模型,您可以关注我的公众号【白马与少年】,然后回复【SDXL】获取下载链接。 想要在 webUI 中使用 SDXL 的大模型,首先我们要在秋叶启动器中将 webUI 的版本升级到 1.5 以上。接下来,将模型放入对应的文件夹中,base 和 refiner 放在“……\\sdwebuiakiv4.2\\models\\Stablediffusion”路径下;vae 放在“……\\sdwebuiakiv4.2\\models\\VAE”路径下。完成之后,我们启动 webUI,就可以在模型中看到 SDXL 的模型了。我们正常的使用方法是这样的:先在文生图中使用 base 模型,填写提示词和常规参数,尺寸可以设置为 10241024,进行生成。 基于多模态大模型给现实世界加一本说明书 大模型应用的利弊: 优点: 适应性极好,通过提示词工程,方便「适应各种奇葩需求」。 对算法的要求降低了不少,大部分功能由大模型提供,特别是非结构化信息的处理。 大模型的 API 访问方式简化了边缘设备的要求,无论在 Android、iOS、HarmonyOS或各种嵌入式设备上都能方便适配。「AGI 终将到来,拥抱未来,虽然路途艰难但相信方向是正确的。」 缺点: 大模型的推理时长目前仍是最大的障碍,传统目标检测或人脸识别优化后能达到 100~300ms,而大模型动则需要 10 秒的延时,限制了许多场景。 模型的幻象和错误率仍然较高,导致上述推理时长问题,在多链路的复杂应用中迅速变得不可行。 在大多数生产模式下,仍然需要使用云服务数据中心,提交的画面不可避免地涉及到隐私问题。 商业私有化部署是刚需,当下的开源模型离 GPT4 代差在半年以上,技术人员任重道远的。
2024-09-03
私有化部署的大模型工具
以下是关于私有化部署的大模型工具的相关内容: Fooocus 部署: 大模型(base 和 Refiner)默认放在:Fooocus_win64_1110\\Fooocus\\models\\checkpoints LoRA 模型默认放在:Fooocus_win64_1110\\Fooocus\\models\\loras Fooocus 程序默认用到 3 个 SDXL 的模型,包括一个 base、一个 Refiner 和一个 LoRA。若单独安装,需下载三个模型: SDXL 基础模型:https://huggingface.co/stabilityai/stablediffusionxlbase1.0/resolve/main/sd_xl_base_1.0_0.9vae.safetensors refiner 模型:https://huggingface.co/stabilityai/stablediffusionxlrefiner1.0/resolve/main/sd_xl_refiner_1.0_0.9vae.safetensors LoRA 模型:https://huggingface.co/stabilityai/stablediffusionxlbase1.0/resolve/main/sd_xl_offset_examplelora_1.0.safetensors 若部署了 SD 秋叶包,可共用模型(大模型和 LoRA),在 Fooocus_win64_1110\\Fooocus\\modules\\path.py 中用 text 记事本打开,修改路径为秋叶包模型对应的路径,如大模型路径:sdwebui\\models\\Stablediffusion\\SDXL;LoRA 模型路径:sdwebui\\models\\lora。配置好后点击 run.bat 文件启动。 SDXL 本地部署: 大模型分为两个部分:第一部分,base + refiner 必须下载,base 用于文生图操作,refiner 用于对生成的模型细化以生成细节更丰富的图片;第二部分是配套的 VAE 模型,用于调节图片的画面效果和色彩。 可关注公众号【白马与少年】,回复【SDXL】获取模型下载链接。 在 webUI 中使用 SDXL 大模型,需在秋叶启动器中将 webUI 版本升级到 1.5 以上,将模型放入对应文件夹,base 和 refiner 放在“……\\sdwebuiakiv4.2\\models\\Stablediffusion”路径下,vae 放在“……\\sdwebuiakiv4.2\\models\\VAE”路径下,启动 webUI 后可在模型中看到 SDXL 模型。 Langchain + Ollama + RSSHub 实现 RAG 部署: 安装完后,确保 ollama 后台服务已启动(在 mac 上启动 ollama 应用程序,在 linux 上通过 ollama serve 启动),可通过 ollama list 确认。 可通过 ollama 命令下载模型,如 Gemma(Google 推出的轻量级模型)、Mistral(欧洲法国 Mistral AI 团队推出的大模型)、Mixtral(Mistral AI 团队推出的 87B 的 MoE 模型)、Qwen(阿里巴巴推出的大模型)。
2024-08-16
agent一般是私有化部署,还是公有化部署
AI助手或智能代理(Agent)的部署可以是私有化部署,也可以是公有化部署,具体取决于应用场景、需求、安全考虑以及成本效益等因素。 1. 私有化部署: 在企业或组织的内部网络中部署,通常用于处理敏感数据或需要高度定制化的服务。 提供更高的安全性和隐私保护,因为系统不公开于互联网。 允许更精细的控制和管理,适合有特定业务流程和需求的企业。 2. 公有化部署: 在云服务提供商的基础设施上部署,通过互联网提供服务。 易于扩展,维护成本较低,因为云服务商负责大部分的维护工作。 适用于面向公众的服务,如在线客服机器人、开放平台的API服务等。 选择哪种部署方式取决于以下因素: 数据敏感性:如果处理的数据非常敏感,私有化部署更有利于保护数据安全。 成本:私有化部署可能需要更多的初始投资,而公有化部署可能带来更高的灵活性和可扩展性。 维护能力:如果企业有足够的技术力量来维护私有化部署的系统,这可能是一个更好的选择。 定制化需求:私有化部署更容易根据企业的特定需求进行定制。 法规遵从性:某些行业或地区的法律法规可能要求企业必须进行私有化部署。 在实际应用中,一些企业可能会选择混合部署模式,即在私有云中部署核心的、敏感的业务组件,同时将一些非核心或较不敏感的组件部署在公有云上,以此来平衡安全性、成本和灵活性。
2024-05-11
如何在微信中私有化部署开源模型
在微信中私有化部署开源模型通常指的是将开源的人工智能模型部署到微信服务或微信小程序中,以便在微信环境中使用这些模型的功能。以下是一些基本步骤和考虑因素: 1. 选择合适的模型:根据你的需求选择合适的开源模型。例如,如果你需要一个文本处理模型,可能可以选择GPT系列模型。 2. 模型转换:一些模型可能需要转换为适合移动设备的格式,如使用TensorFlow Lite或Core ML等格式。 3. 微信小程序开发:如果你想在微信小程序中使用模型,需要使用微信小程序的开发框架进行开发。小程序提供了云开发功能,可以部署一些后端服务。 4. 服务器部署:对于需要较高计算能力的模型,可能需要在服务器上部署。你可以选择自己的服务器或使用云服务提供商的服务器。 5. API开发:将模型包装成API服务,这样微信小程序可以通过HTTP请求与模型交互。 6. 微信小程序与API集成:在小程序中使用微信提供的API接口与后端模型服务通信。 7. 安全性:确保你的API服务是安全的,使用HTTPS协议,并考虑使用微信的OAuth2.0进行用户认证。 8. 性能优化:根据需要对模型进行优化,以适应移动设备的计算能力限制。 9. 测试:在微信环境中对模型进行充分的测试,确保它在小程序中的性能和准确性。 10. 遵守微信政策:确保你的部署遵守微信的相关政策和法规,尤其是关于用户数据和隐私的部分。 11. 用户界面:为微信小程序设计用户界面,使用户能够方便地与模型交互。 12. 部署上线:完成开发和测试后,将你的小程序提交给微信审核,审核通过后即可上线。 请注意,私有化部署涉及到后端服务的搭建和前端的集成,可能需要一定的技术背景。如果你不熟悉服务器管理和API开发,可能需要寻求专业的开发人员帮助。同时,微信平台对于小程序有特定的技术要求和政策限制,需要在开发过程中严格遵守。
2024-04-18
免费制作数字人的网站或者工具
以下是一些免费制作数字人的网站或者工具: 1. HeyGen:这是一个 AI 驱动的平台,能够创建逼真的数字人脸和角色。它运用深度学习算法生成高质量的肖像和角色模型,适用于游戏、电影和虚拟现实等领域。 2. Synthesia:这是一个 AI 视频制作平台,允许用户创建虚拟角色并实现语音和口型同步。它支持多种语言,可用于教育视频、营销内容和虚拟助手等场景。 3. DID:这是一家提供 AI 拟真人视频产品服务和开发的公司,只需上传人像照片和输入要说的内容,平台提供的 AI 语音机器人将自动转换成语音,然后合成逼真的会开口说话的视频。 更多数字人工具请访问网站查看:https://www.waytoagi.com/category/42 。 另外,在剪映中也可以制作数字人: 在剪映右侧窗口顶部,打开“数字人”选项,选取免费且适合的数字人形象,如“婉婉青春”。选择数字人形象时,软件会播放其声音,可判断是否需要,点击右下角“添加数字人”将其添加到当前视频中,软件会生成对应音视频并添加到轨道中。 为让视频更美观,可增加背景图片。点击左上角“媒体”菜单并“导入”,选择本地图片上传,添加到视频轨道上,可调整图片大小和位置。 剪映作为字节跳动旗下产品,具有诸多优势,其六大 AI 功能解决了用数字人做视频的痛点。制作流程为:首先打开剪映,添加文本到文字轨道并修改朗读文字,然后点击朗读进行声音克隆,选择喜欢的数字人形象并换上克隆音色,最后一键智能生成字幕,自行调整文字样式并校准。 剪映下载地址: 。 请注意,这些工具的具体功能和可用性可能会随时间和技术发展而变化。在使用时,请确保遵守相关使用条款和隐私政策,并注意保持对生成内容的版权和伦理责任。内容由 AI 大模型生成,请仔细甄别。
2025-02-07
免费数字人播报的相关工具
以下为您推荐免费数字人播报的相关工具: 1. 开源且适合小白用户的工具: 特点:一键安装包,无需配置环境,简单易用。 功能:生成数字人视频,支持语音合成和声音克隆,操作界面中英文可选。 系统兼容:支持 Windows、Linux、macOS。 模型支持:MuseTalk(文本到语音)、CosyVoice(语音克隆)。 使用步骤:下载 8G + 3G 语音模型包,启动模型即可。 GitHub: 官网: 2. 剪映: 优势:作为字节跳动旗下的产品,在抖音平台上被广泛应用。剪映海外版 CapCut 登顶过美国 App Store,在全球各国 App Store 和 Google Play 平台上的安装总量已超过 2.5 亿次,在美国市场内的安装总量接近 950 万次。其六大 AI 功能解决了用数字人做视频的痛点,在编辑器里就能完成脚本生成→语音克隆→数字人口播的环节。 下载地址: 剪映: capcut: 制作流程: 首先打开剪映,添加一个文本到文字轨道,并修改好需要朗读的文字。 点击朗读,并进行声音克隆,剪映的声音克隆现在只用念一句话就可以完成克隆。 克隆完成后,选择喜欢的数字人形象,并把自己的克隆音色换上去。 最后,一键智能生成字幕,再自行调整文字样式并校准。 此外,还有 Google Veo 2,其生成的视频接近真实,几乎难以分辨,适合创作和内容制作。
2025-02-07
哪个ai工具可以让模糊的老照片变清晰
以下是一些可以让模糊的老照片变清晰的 AI 工具和方法: 1. 使用 Stable Diffusion : 将照片放入后期处理中,使用 GFPGAN 算法将人脸变清晰。您可以参考文章——。 将图片发送到图生图当中,打开 stableSR 脚本,放大两倍。这个放大插件是所有插件中对原图还原最精准、重绘效果最好的。您可以参考文章——。切换到 sd2.1 的模型进行修复,vae 选择 vqgan,提示词可以什么都不写,以免对原图产生干扰。 为了做到颜色与内容的统一,可以启用之前讲到过的一款 cutoff 插件来进行控制,依次按顺序设置好颜色提示词。您可以参照文章——。 2. 图像放大修复在 AI 绘画领域中必不可少,旧照片重现清晰可以利用 AI 技术进行图像修复,保留珍贵回忆。以前手机拍摄的低分辨率图片,也可以用 AI 技术进行高清修复。人像高清修复方面,不需要专业相机设备,用手机拍摄的照片也能通过 AI 技术修复至高清大片。而且,AI 技术不单单只是修复图片,还可以用于图像分辨率的无限扩大且不失真。例如马斯克原始图像分辨率为 234x180 像素,高清修复扩图后可达到 1880x1440 像素,差不多达到 2k 分辨率的质量。多进行几次采样放大后,完全可以实现 8k 超清放大。
2025-02-07
生成名片的AI工具
以下是一些生成名片的 AI 工具: 一泽 Eze:只需 1 句提示词和 1 个品牌 Logo,就能通过 Claude Artifacts 生成超级符合品牌调性的创意名片。整个流程简单,输入 Prompt 和 Logo 即可。提示词已开源,若生成结果不符合预期,可尝试让模型重新生成或与 AI 对话提出修改意见。注意事项包括提示词主要用于设计符合品牌调性的创意名片,Logo 建议使用清晰、底图透明的 PNG 格式。 以下是一些生成 Logo 的 AI 产品: Looka:在线 Logo 设计平台,使用 AI 理解用户品牌信息和设计偏好,生成多个设计方案供选择和定制。 Tailor Brands:AI 驱动的品牌创建工具,通过回答问题生成 Logo 选项。 Designhill:Logo 制作器使用 AI 技术创建个性化设计,用户可选择元素和风格。 LogoMakr:提供简单易用的设计工具,可利用 AI 建议的元素和颜色方案。 Canva:广受欢迎的在线设计工具,提供 Logo 设计模板和元素,有 AI 辅助设计建议。 LogoAI by Tailor Brands:根据输入的品牌名称和行业类别快速生成 Logo 设计方案。 标小智:中文 AI Logo 设计工具,利用人工智能技术创建个性化 Logo。 以下是一些设计海报的 AI 产品: Canva(可画):受欢迎的在线设计工具,提供大量模板和元素,AI 可帮助选择颜色搭配和字体样式。 稿定设计:智能设计工具,采用先进人工智能技术,自动分析和生成设计方案。 VistaCreate:简单易用的设计平台,提供大量模板和元素,可使用 AI 工具创建个性化海报,智能建议功能帮助找到合适元素。 Microsoft Designer:通过拖放界面快速创建内容,集成丰富模板库和自动图像编辑功能。
2025-02-07
有哪些好用的做ppt的ai工具
以下是一些好用的做 PPT 的 AI 工具: 1. Gamma:在线 PPT 制作网站,可通过输入文本和想法提示快速生成幻灯片,支持嵌入多媒体格式,如 GIF 和视频,网址:https://gamma.app/ 2. 美图 AI PPT:由美图秀秀团队推出,通过输入简单文本描述生成专业 PPT 设计,包含丰富模板库和设计元素,网址:https://www.xdesign.com/ppt/ 3. Mindshow:AI 驱动的 PPT 辅助工具,提供自动布局、图像选择和文本优化等智能设计功能,网址:https://www.mindshow.fun/ 4. 讯飞智文:科大讯飞推出的 AI 辅助文档编辑工具,利用语音识别和自然语言处理技术,提供智能文本生成、语音输入、文档格式化等功能,网址:https://zhiwen.xfyun.cn/ 5. 爱设计 6. 闪击 7. Process ON 8. WPS AI
2025-02-07
一、学习内容 1. AI工具的操作:了解并掌握至少一种AI工具的基本操作,如智能代码、流程管理、智能报表、数据分析、图像识别、文字生成等。 2. AI工具在本职工作的应用:思考并提出AI工具如何帮助你更高效地完成本职工作,包括但不限于提高工作效率、优化工作流程、节约成本、提升交付质量等。 3. AI工具在非本职工作的潜力推演:探索AI工具如何在你的非本职工作领域发挥作用,比如在公司管理、团队领导、跨部门合作、团队发展以及市场研究等方面。提出这些工具如何被有效利用,以及它们可能带来的改
以下是关于学习 AI 的相关内容: 一、AI 工具的操作 要了解并掌握至少一种 AI 工具的基本操作,如智能代码、流程管理、智能报表、数据分析、图像识别、文字生成等。 二、AI 工具在本职工作的应用 思考并提出 AI 工具如何帮助更高效地完成本职工作,包括但不限于提高工作效率、优化工作流程、节约成本、提升交付质量等。 三、AI 工具在非本职工作的潜力推演 探索 AI 工具在非本职工作领域,如公司管理、团队领导、跨部门合作、团队发展以及市场研究等方面的作用,思考如何有效利用这些工具以及它们可能带来的改变。 四、学习路径 1. 对于不会代码的学习者: 20 分钟上手 Python+AI,在 AI 的帮助下可以完成很多基础的编程工作。若想深入,需体系化了解编程及 AI,至少熟悉 Python 基础,包括基本语法(如变量命名、缩进等)、数据类型(如字符串、整数、浮点数、列表、元组、字典等)、控制流(如条件语句、循环语句)、函数(定义和调用函数、参数和返回值、作用域和命名空间)、模块和包(导入模块、使用包)、面向对象编程(类和对象、属性和方法、继承和多态)、异常处理(理解异常、异常处理)、文件操作(文件读写、文件与路径操作)。 2. 新手学习 AI: 了解 AI 基本概念,建议阅读「」部分,熟悉术语和基础概念,浏览入门文章。 开始 AI 学习之旅,在「」中找到为初学者设计的课程,推荐李宏毅老师的课程,也可通过在线教育平台(如 Coursera、edX、Udacity)按自己节奏学习并获证书。 选择感兴趣的模块深入学习,掌握提示词技巧。 实践和尝试,理论学习后通过实践巩固知识,在知识库分享实践作品和文章。 体验 AI 产品,如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人,了解其工作原理和交互方式。 五、工具推荐 1. Kimi 智能助手:ChatGPT 的国产平替,上手体验好,适合新手入门学习和体验 AI。不用科学网、不用付费、支持实时联网,是国内最早支持 20 万字无损上下文的 AI,对长文理解做得好,能一次搜索几十个数据来源,无广告,能定向指定搜索源(如小红书、学术搜索)。 PC 端: 移动端(Android/ios): 2. 飞书:汇集各类 AI 优质知识库、AI 工具使用实践的效率工具,助力人人成为效率高手。
2025-02-07
推荐免费的tts公有模型站点,需要支持中文,克隆自己的声音
以下为您推荐支持中文且能克隆自己声音的免费 TTS 公有模型站点: GPTSoVITS: 只需 1 分钟语音即可训练一个自己的 TTS 模型。 5 秒数据就能模仿您,1 分钟的声音数据就能训练出一个高质量的 TTS 模型,完美克隆您的声音,且适配中文,界面易用。 主要特点: 零样本 TTS:输入 5 秒的声音样本即可体验即时的文本到语音转换。 少量样本训练:只需 1 分钟的训练数据即可微调模型,提高声音相似度和真实感。模仿出来的声音会更加接近原声,听起来更自然。 跨语言支持:支持与训练数据集不同语言的推理,目前支持英语、日语和中文。 易于使用的界面:集成了声音伴奏分离、自动训练集分割、中文语音识别和文本标签等工具,帮助初学者更容易地创建训练数据集和 GPT/SoVITS 模型。 适用于不同操作系统:项目可以在不同的操作系统上安装和运行,包括 Windows。 预训练模型:项目提供了一些已经训练好的模型,您可以直接下载使用。 GitHub: 视频教程: 需要注意的是,Stuart 模型存在一些问题: 语音生成基本功能方面: 支持的语音时长不超过 30 秒,超过 30 秒的需要特别修复。 某些 audio seed 在念某些语句时会丢失一些语句。 Refine 过程中有些字会被丢失,比如“儿童节”在大概率会被 refine 成“童节”,丢失一个“儿”字。解决方法是跳过自动 refine,以手动修改文本的方式来控制停顿。 即使同一个 audio seed,如果使用不同的语句分段方式,或者不同的 text seed,生成的音色也不是很稳定,会给人感觉不是同一个人的声音。 代码 Bug: uv_break 等提示词可能会在 refine 之后缺少,甚至有时候在有中括号的情况下也会被念出来。 没提供微调 SFT 的接口。 本模型特别申明:不支持商用,仅用于学术研究。在生成的语音内,作者加了听不见的噪音水印,可以很容易的被检测出来是他的模型生成的语音。ChatTTS 还没放出训练代码无法自己克隆声音,作者还只放出了 4w 小时训练的版本,确保这个模型的声音能被 AI 检测出来。作者还留着一个 10w 小时训练数据的版本。
2025-02-07
推荐免费的tts模型站点,需要支持中文
以下为您推荐两个免费的支持中文的 TTS 模型站点: 1. Fish Speech:语音处理接近人类水平,约十五万小时三语数据,对中文支持完美。开发者为 fishaudio,具有亿级参数,高效轻量,可在个人设备上运行和微调,适合作为私人语音助手。详细介绍及更多演示:https://xiaohu.ai/p/10779 ,GitHub:https://github.com/fishaudio/fishspeech 。 2. GPTSoVITS:只需 1 分钟语音即可训练一个自己的 TTS 模型,是一个声音克隆和文本到语音转换的开源 Python RAG 框架。5 秒数据就能模仿您,1 分钟的声音数据就能训练出一个高质量的 TTS 模型,完美克隆您的声音,完美适配中文。GitHub: 。
2025-02-07
推荐与 AI 会计、AI 金融相关的内容
以下是与 AI 会计、AI 金融相关的内容推荐: 在金融服务业方面,生成式 AI 除了能回答财务问题,还能改进金融服务团队的内部流程,简化财务团队日常工作。例如,它能从更多数据源获取数据,自动化突出趋势、生成预测和报告的过程,包括预测分析的自动化、报告的自动创建、为会计和税务团队提供帮助、协助采购和应付账款工作等。 100 个 AI 应用中,东方财富网投资分析工具是一个 AI 金融投资分析平台,利用数据分析和机器学习技术,分析金融市场数据,为投资者提供投资建议和决策支持。 AI 在金融服务领域的应用场景广泛,包括风控和反欺诈、信用评估、投资分析、客户服务等。例如,通过识别和阻止欺诈行为降低金融机构风险,评估借款人信用风险辅助贷款决策,分析市场数据助力投资者做出明智投资选择,提供 24/7 客户服务并回答常见问题。
2025-02-07
请给我推荐一个能够阅读网页链接内部信息的AI模型
以下为您推荐能够阅读网页链接内部信息的 AI 模型相关内容: 有一款 AI 浏览器插件,在产品化开发阶段,需要考虑如何稳定获取网页内容、如何选择适合的 AI 大模型 API 服务以及如何构建生产级提示词等问题。 在获取网页内容方面,由于大模型对话产品的外链解析方式容易遭到平台反爬机制制裁,通过用户浏览器以浏览器插件形式本地提取网页内容是一种稳定、经济的解决方案。比如 AI Share Card 插件,可以获取网页元素清单。开发时,您可以拿着初版提示词,询问 AI 来设计获取相关元素的 js 代码。 对于大模型 API,需要利用插件预先获取的网页内容变量、提示词和 API 请求参数,拼搭出完整的 API 提示请求,精确引导 API 返回想要的生成结果。根据 BigModel 官网给出的请求示例,需要传递 Model 类型、系统提示词、用户提示词、top_p、temperature 等关键参数。如果缺少参数设定经验,可以先询问 AI 相关设定的合适值,再逐步调试效果。 同时需要注意,使用 AI 写东西时,它可能会“产生幻觉”生成错误内容,需要检查所有内容。而且 AI 不会真正解释自己,可能给出编造的答案,使用时要对其输出负责。
2025-02-07
擅长文字处理,主要是小说的AI有哪些,推荐一下
以下是一些擅长文字处理,尤其是小说创作的 AI 工具: 1. Novel.ai:AI 写小说领域的头部应用,是典型的 LLM 产品。其产品功能复杂但使用模式简单,包括利用续写能力将写作改造成交互式文本生成,渐进式生成小段并允许用户更改或继续生成,基于写作业务抽象出模型风格、写作方式、故事世界、记忆等细分功能。本质上还是构造 Prompt,交互式、渐进式的 Prompt 构建降低了使用门槛。 2. Character.ai:大名鼎鼎的角色扮演类 AI 陪伴产品,服务游戏和二次元用户。使用简单,选角色对话即可,创建也容易,角色的核心差异靠不同的详细描述,开放用户角色 Prompt 可见。 3. 筑梦岛:国内同类产品,玩法多样。和角色聊天、捏角色是共同主题,捏角色的产品化本质是收集信息产生高质量角色 Prompt 的过程,基于聊天模式有很多微创新的衍生玩法。 此外,还有一些中文的内容仿写 AI 工具: 1. 秘塔写作猫:https://xiezuocat.com/ 是 AI 写作伴侣,能推敲用语、斟酌文法、改写文风,实时同步翻译,支持全文改写、一键修改、实时纠错并给出修改建议,智能分析文章属性并打分。 2. 笔灵 AI 写作:https://ibiling.cn/ 是智能写作助手,支持多种文体写作,如心得体会、公文、演讲稿、小说、论文等,支持一键改写/续写/扩写,智能锤炼打磨文字。 3. 腾讯 Effidit 写作:https://effidit.qq.com/ 由腾讯 AI Lab 开发,是智能创作助手,能提升写作者的写作效率和创作体验。 更多 AI 写作类工具可以查看:https://www.waytoagi.com/sites/category/2 (内容由 AI 大模型生成,请仔细甄别)
2025-02-07
外语配音工具推荐
目前在 AI 领域,常见的外语配音工具包括: 1. 剪映:功能丰富,提供多种外语配音选项。 2. 讯飞配音:具有较高的语音合成质量和多种外语声音可供选择。 您可以根据自己的需求和使用习惯选择适合您的外语配音工具。
2025-02-07