以下是为您提供的私有化部署大模型的相关教材:
张梦飞:【全网最细】从 LLM 大语言模型、知识库到微信机器人的全本地部署教程
一、部署大语言模型
【SD】向未来而生,关于 SDXL 您要知道事儿
SDXL 的大模型分为两个部分:
这三个模型,您可以关注我的公众号【白马与少年】,然后回复【SDXL】获取下载链接。
想要在 webUI 中使用 SDXL 的大模型,首先我们要在秋叶启动器中将 webUI 的版本升级到 1.5 以上。接下来,将模型放入对应的文件夹中,base 和 refiner 放在“……\sd-webui-aki-v4.2\models\Stable-diffusion”路径下;vae 放在“……\sd-webui-aki-v4.2\models\VAE”路径下。完成之后,我们启动 webUI,就可以在模型中看到 SDXL 的模型了。我们正常的使用方法是这样的:先在文生图中使用 base 模型,填写提示词和常规参数,尺寸可以设置为 1024*1024,进行生成。
基于多模态大模型给现实世界加一本说明书
大模型应用的利弊: 优点:
一、下载并安装Ollama1、点击进入,根据你的电脑系统,下载Ollama:https://ollama.com/download2、下载完成后,双击打开,点击“Install”3、安装完成后,将下方地址复制进浏览器中。如果出现下方字样,表示安装完成http://127.0.0.1:11434/二、下载qwen2:0.5b模型(0.5b是为了方便测试,下载快,自己设备充足的话,可以下载更大的模型)1、如果你是windows电脑,点击win+R输入cmd,点击回车如果你是Mac电脑,按下Command(⌘)+ Space键打开Spotlight搜索。输入“Terminal”或“终端”,然后从搜索结果中选择“终端”应用程序。2、复制以下命令行,粘贴进入,点击回车:3、回车后,会开始自动下载,等待完成(这里下载久了,可能会发现卡着不动,不知道下载了多少了。鼠标点击一下窗口,键盘点空格,就会刷新了)4、下载完成后你会发现,大模型已经在本地运行了。输入文本即可进行对话。
优点:适应性极好,通过提示词工程,方便「适应各种奇葩需求」。对算法的要求降低了不少,大部分功能由大模型提供,特别是非结构化信息的处理。大模型的API访问方式简化了边缘设备的要求,无论在Android、iOS、HarmonyOS()或各种嵌入式设备上都能方便适配。「AGI终将到来,拥抱未来,虽然路途艰难但相信方向是正确的。」缺点:大模型的推理时长目前仍是最大的障碍,传统目标检测或人脸识别优化后能达到100~300ms,而大模型动则需要10秒的延时,限制了许多场景。模型的幻象和错误率仍然较高,导致上述推理时长问题,在多链路的复杂应用中迅速变得不可行。在大多数生产模式下,仍然需要使用云服务数据中心,提交的画面不可避免地涉及到隐私问题。商业私有化部署是刚需,当下的开源模型离GPT4代差在半年以上,技术人员任重道远的。
SDXL的大模型分为两个部分:第一部分,base+refiner是必须下载的,base是基础模型,我们使用它进行文生图的操作;refiner是精炼模型,我们使用它对文生图中生成的模型进行细化,生成细节更丰富的图片。第二部分,是SDXL还有一个配套的VAE模型,用于调节图片的画面效果和色彩。这三个模型,我已经放入了云盘链接中,大家可以关注我的公众号【白马与少年】,然后回复【SDXL】获取下载链接。想要在webUI中使用SDXL的大模型,首先我们要在秋叶启动器中将webUI的版本升级到1.5以上。接下来,将模型放入对应的文件夹中,base和refiner放在“……\sd-webui-aki-v4.2\models\Stable-diffusion”路径下;vae放在“……\sd-webui-aki-v4.2\models\VAE”路径下。完成之后,我们启动webUI,就可以在模型中看到SDXL的模型了。我们正常的使用方法是这样的:先在文生图中使用base模型,填写提示词和常规参数,尺寸可以设置为1024*1024,进行生成。我这边使用了一个最简单的提示词“1girl”,来看看效果。生成的图片大家可以看一下,我觉得是相当不错的。