Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

我给你设计一个有机化学结构式,你能找出合成路线吗

Answer

目前的技术可以帮助您找出化学结构式的合成路线。例如,像“Coscientist”这样的人工智能系统,当被问及能否合成某个分子时,它会首先在互联网上搜索相关的合成路线,然后根据搜索结果制定实验协议,接着将实验协议写成代码以指导自动化实验设备,最后由机器人执行实验任务。这个过程是可迭代的,能够根据实验结果调整协议以改进实验并实现预期目标。

另外,在一些研究中也提到,解决诸如寻找化学合成途径等问题遵循一定的模式,虽然在实际情况中相关的可能性图可能非常庞大,但可以通过一些常见的方法来应对挑战,比如为不同的可能状态或结果分配分数,只追求得分较高的路径;在自动定理证明中,也有从初始命题向下和从最终定理向上工作,试图找到中间的交汇路径等方法。同时,如果已经确定了从 X 到 Y 存在路径的“引理”,可以将 X → Y 作为新规则添加到规则集合中。

Content generated by AI large model, please carefully verify (powered by aily)

References

沃尔夫勒姆:人工智能能解决科学问题吗?

There are many kinds of problems that follow this same general pattern.Finding a winning sequence of plays in a game graph.Finding the solution to a puzzle as a sequence of moves through a graph of possibilities.Finding a proof of a theorem given certain axioms.Finding a chemical synthesis pathway given certain basic reactions.And in general solving a multitude of NP problems in which many “nondeterministic” paths of computation are possible.有许多种问题都遵循同样的一般模式。在游戏图中找到获胜的游戏序列。通过可能性图的一系列移动来寻找谜题的解决方案。在给定某些公理的情况下找到定理的证明。在给定某些基本反应的情况下寻找化学合成途径。一般来说,解决大量NP问题,其中许多“非确定性”计算路径都是可能的。In the very simple example above,we’re readily able to explicitly generate a whole multiway graph.But in most practical examples,the graph would be astronomically too large.So the challenge is typically to suss out what moves to make without tracing the whole graph of possibilities.One common approach is to try to find a way to assign a score to different possible states or outcomes,and to pursue only paths with(say)the highest scores.In automated theorem proving it’s also common to work “downward from initial propositions” and “upward from final theorems”,trying to see where the paths meet in the middle.And there’s also another important idea:if one has established the “lemma” that there’s a path from X to Y,one can add X → Y as a new rule in the collection of rules.

化学:使用大型语言模型进行自主化学研究

这部分列出了为了验证代理(可能是指自动化系统或软件代理)而执行的实验,以及在线搜索有机合成的过程。还包括执行交叉偶联反应和优化反应条件的步骤。

化学:使用大型语言模型进行自主化学研究

原创xiaoming乐谷说2023-12-23 23:00文章地址:https://www.nature.com/articles/s41586-023-06792-0nature前几天发来王炸,论文标题《Autonomous chemical research with large language models》,趁着周末读了一下。图里的意思大概可以这么理解。这张图片展示了一个名为“Coscientist”的人工智能系统的工作流程图,该系统用于自动化化学研究。图中描述了从一个简单的人类提示开始,到实验结束的整个过程。具体步骤包括:文献搜索(Literature search):当被问及是否能合成某个分子A时,Coscientist首先会在互联网上搜索相关的合成路线。协议选择(Protocol selection):接着,Coscientist会根据搜索结果制定实验协议。翻译成代码(Translation into code):然后,Coscientist会将实验协议写成代码,以指导自动化实验设备。实验(Experiment):最后,机器人根据代码执行实验任务。这个过程是可迭代的,意味着Coscientist可以根据实验结果调整协议,以改进实验并实现预期目标。这个系统利用大型语言模型来规划和实施化学任务,展示了人工智能在化学研究中的应用潜力。价值在于:

Others are asking
设计有机化学分子软件有哪些
目前常见的设计有机化学分子的软件有 Gaussian、Schrödinger、ChemDraw 等。Gaussian 是一款功能强大的量子化学计算软件;Schrödinger 提供了一系列用于药物设计和分子模拟的工具;ChemDraw 则常用于绘制和编辑化学结构。
2024-08-30
帮我找出现在成熟的人工智能大模型,列举他们的功能,附上打开链接
以下是一些成熟的人工智能大模型及其功能和链接: 百度(文心一言):https://wenxin.baidu.com 。 抖音(云雀大模型):https://www.doubao.com 。 智谱 AI(GLM 大模型):https://chatglm.cn 。 中科院(紫东太初大模型):https://xihe.mindspore.cn 。 百川智能(百川大模型):https://www.baichuanai.com/ 。 商汤(日日新大模型):https://www.sensetime.com/ 。 MiniMax(ABAB 大模型):https://api.minimax.chat 。 上海人工智能实验室(书生通用大模型):https://internai.org.cn 。 在这些大模型中: 能生成 Markdown 格式的:智谱清言、商量 Sensechat、MiniMax 。 目前不能进行自然语言交流的:昇思、书生 。 受限制使用:MiniMax(无法对生成的文本进行复制输出,且只有 15 元的预充值额度进行体验,完成企业认证后可以进行充值) 。 特色功能:昇思——生图,MiniMax——语音合成 。 此外,还有其他一些大模型: OpenAI 系统:包括 3.5 和 4.0 版本,一个新的变种使用插件连接到互联网和其他应用程序。Code Interpreter 是一个非常强大的 ChatGPT 版本,可以运行 Python 程序。如果未为 OpenAI 付费,只能使用 3.5 。除了插件变种和一个暂时停用的带有浏览功能的 GPT4 版本之外,这些模型都没有连接到互联网。微软的 Bing 使用 4 和 3.5 的混合,通常是 GPT4 家族中首个推出新功能的模型,例如可以创建和查看图像,且可以在网页浏览器中阅读文档,并连接到互联网。 谷歌:一直在测试自己的人工智能 Bard,由各种基础模型驱动,最近是一个名叫 PaLM 2 的模型。 Anthropic:发布了 Claude 2,其最值得注意的是有一个非常大的上下文窗口,本质上是 LLM 的记忆。Claude 几乎可以保存一整本书或许多 PDF,与其他大型语言模型相比,它不太可能恶意行事。
2025-03-03
请帮我找出在课堂可以使用的AI
以下是在课堂中可以使用的一些 AI 应用和方法: 1. 让 AI 出题,如出 Python 题,可先出 20 道再挑选修改。 2. 利用 AI 进行智慧课程设计,例如围绕巴以冲突出相关数学题,将维基百科的史料借助 AI 变成数学课教案,让孩子从生活中学习多学科知识。 3. 输入书上例题,让 AI 生成新颖解法,引发学生思考。 4. 进行交互式学习,随时要求 AI 解释关键代码并举例,为学生提供支架。 5. 利用 AI 分担低阶认知,让人有精力投入高阶认知加工。 6. 借助 AI 工具,将知识作为解决问题的方法来教。 7. 声音克隆:可在 Elevenlabs.io、speechify.com 等网站进行,还能通过 HeyGen 定制“数字分身”。 8. 视频生成:如用 runway 让互联网梗图动起来,用 lumalabs.ai 让图片动起来。 同时要注意对学生思维训练的引导,关注和设法引导“偷懒”的学生,避免差距拉大。
2025-02-16
怎样利用自己现有的培训文档,制作一个AI agent可以担任系统分析员的工作,从文档中抽丝剥茧找出系统问题的根本原因和解决方案?
目前没有相关的培训文档内容可参考。但一般来说,要利用现有的培训文档制作一个能担任系统分析员工作的 AI agent 并从文档中找出系统问题的根本原因和解决方案,您可以考虑以下步骤: 1. 对培训文档进行详细的梳理和分类,提取关键信息,例如系统常见问题的特征、根本原因的类型以及可能的解决方案模式。 2. 利用自然语言处理技术,对提取的信息进行标注和训练,使 AI agent 能够理解和识别这些模式。 3. 设计有效的交互方式,让用户能够向 AI agent 清晰地描述系统问题,以便它能够准确地匹配和应用所学知识。 4. 不断测试和优化 AI agent 的性能,根据实际应用中的反馈,调整训练数据和算法,提高其准确性和实用性。
2025-01-10
最近AGI机器人特别火,请帮我找出相关新闻
以下是一些与 AGI 机器人相关的新闻: :随着 OpenAI 聊天机器人 ChatGPT 的热潮持续,探讨其如何帮助创建用户体验调查问卷或其他调查问卷。 :给 25 个 AI 代理人动机和记忆,并将它们放在模拟城镇中,其行为被评价比人类角色扮演更“人类化”。 :ChemCrow 是一个 LLM 化学代理,能在合成、药物发现和材料设计等领域执行任务,并集成 13 个专家设计的工具以增强性能。 :OpenAI 发布 GPT4 被证明是生成 AI 的一小步,对 AGI 而言是一大步,自 2022 年 11 月发布以来吸引众多用户和媒体关注,此工作是对 ChatGPT 的首次全面审查。 :有人让 AutoGPT 查找最近一个月的开源相关新闻并汇总成 word 文件,还有人在相关项目基础上做了改进和增强的新项目,如 TeenageAGI、BabyAGIasi、TypeScript 版本的 AutoGPT 等。 :特斯拉训练机器人“Optimus”抓取物体,通过人类示范学习。还提到当训练比 GPT4 大 100 倍的模型时在图像识别、生成图像和视频等方面的预测。
2024-11-10
我想用好电商人的ai从中找出自己的一份创业之路
以下是一些与电商相关的 AI 创业案例和方向,或许能为您的创业之路提供参考: 1. 创业:从零开始创立公司 给大家带来绝佳的 Prompt 以及用 ChatGPT 创立完整 SaaS 公司的流程。 详情可前往: 入库时间:2023/11/13 2. 课程:如何做一门课程 涵盖市场调研、在线网络课程、教学平台、社交媒体营销、子主题、细分领域、课程大纲、章节、推广渠道、课程脚本、文案基本要素、案例、具体方法等方面。 详情可前往: 入库时间:2023/11/13 3. 电商:带货本地生活 AI 数字人上岗,带货本地生活电商,一个月多赚 3 万。 详情可前往: 入库时间:2023/11/13 4. 电商:婴儿的四维彩超 AI 预测 大白话就是通过 AI 工具,提前把宝宝的四维彩超还原出现实中模样进行变现。 详情可前往: 入库时间:2023/11/13 5. 电商:小红书 AI 绘画变现 Ai 绘画火了好几个月了,目前变现的方式很多,分享小红书最火的三种 ai 绘画类的商品。 详情可前往: 入库时间:2023/11/13
2024-10-31
找出剧本大师这篇prompt
以下是为您找到的与“剧本大师”相关的 prompt 内容: 编剧:👉根据主题创作一个包含故事背景、人物以及对话的剧本。||我要你当编剧。您将为一部长篇电影或可以吸引观众的网络系列开发引人入胜且富有创意的脚本。首先想出有趣的角色,故事的设置,角色之间的对话等。一旦你的角色发展完成创建一个令人兴奋的故事情节,充满曲折,让观众保持悬念,直到最后。我的第一个要求是“剧本主题” 影评人:👉我希望你是影评人,从情节、表演、摄影、导演、音乐等方面评论电影{电影名}||我希望你扮演影评人的角色。您将需要观看电影并以清晰的方式对其进行评论,提供有关情节、表演、摄影、导演、音乐等的正面和负面反馈。我的第一个建议请求是“电影评论角度”
2024-09-04
ChatGPT 各项技术能力路线图
以下是关于 ChatGPT 技术能力路线图的相关内容: 阶段一:开卷有益阶段 理解人类语言,学习语义关系、语法规律,能够应对未见过的语言处理情况。 GPT3 习得各种词汇和语法规则、编程语言及不同语言之间的关系,但存在回答不受约束的问题,指挥很重要。 阶段二:模版规范阶段 对话模版矫正模型,可形成优质对话并实现延展能力,知道什么该说和不该说。 通过任务对话范文训练,实现理解指令要求和例子要求的能力。 同时,在 AGI 实现路径与技术预测方面: 主要技术路线与理论框架包括可能性,如硬件与计算架构的趋势(量子计算、神经形态芯片、云计算资源扩展等),软件与算法进展(深度学习、元学习、强化学习、神经符号混合、AutoML、AutoGPT 等),以及人工智能安全与对齐研究(对齐难题、可解释性等)。 实现 AGI 所需的里程碑与风险点包括可能的时间表(如 2030、2040、2050 关键技术预测)和潜在的“奇点”时刻与触发条件(硬件爆发、算法重大突破、意外的研究范式转折等)。 此外,AI 的发展历程: 从 1950 年提出,近 20 年在国内互联网发展下普及。 最初应用是基于 NLP 技术的聊天机器人和客服机器人。 随后中英文翻译、语音识别、人脸识别等技术取得突破,在日常生活中广泛应用。 以前技术突破多限于特定领域,模型应用范围狭窄。 随着 OpenAI ChatGPT 等大型语言模型的突破,展示了新的发展路线,通过大规模模型预训练,涌现出广泛的智能应用。 这种集多功能于一体的模型为 AI 未来发展提供新方向,也带来新焦虑,但“人机共生”几乎是人类发展的必然。
2025-02-27
我如何有效使用waytoagi的能力,请告诉我实现路线
以下是有效使用 WaytoAGI 能力的实现路线: 1. 加入飞书群:您可以在 WaytoAGI 飞书知识库首页找到加入飞书群的链接(最新二维码请在获取),然后点击加入,直接@机器人即可。 2. 在网站首页提问:您也可以在 WaytoAGI.com 的网站首页,直接输入您的问题,即可得到回答。 对于知识库的使用,您可以参考以下内容: 1. 从 Agent 板块开始:以 Agent 板块为例,链接: 。使用方法为从下往上看,一个一个点进去,都有视频。共学都有视频,都是手把手从注册开始的教学,不会就多看几遍,基本保障一个工具能调通、一个 Agent 能搭好。注意事项:内容较多,点进去看看哪个工具您听过就从哪个工具开始,不然太累。 2. 看精选文章:链接: 。使用方法为看了一些视频之后,根据需求找到导航,想看哪里点哪里。备注:智能千帆、阿里云百炼都是有视频的,其余没有视频。注意事项:内容较多,要考虑聚焦,先挑一个,开始手把手一起做起来,只要开始用起来,这事儿就成啦! 此外,推荐您采用布鲁姆分类法学习路径: 1. 应用方面:深入 。 2. 分析方面:大量阅读,理解各知识之间的关系。
2025-02-26
帮我设计一套从零开始系统学习AI的路线
以下是为您设计的从零开始系统学习 AI 的路线: 1. 了解 AI 基本概念 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习 AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-02-24
帮我设计一套从零开始系统学习AI的路线,为期3个月
以下是为您设计的为期 3 个月从零开始系统学习 AI 的路线: 第一个月: 进行系统性的学习,阅读相关的基础书籍,例如《人工智能:一种现代方法》等,了解 AI 的底层原理和发展历程。 观看优质的 AI 课程,如 Coursera 上的相关课程。 第二个月: 学习 AI 绘画,下载相关软件如 SD 秋叶安装包,并观看教学视频,逐步掌握操作技巧。 加入 AI 学习社区,如 waytoAGI 社区,参考新手指引,获取更多学习资源和交流经验。 第三个月: 深入学习生成式人工智能项目,了解其生命周期和相关技术,如监督学习构建餐厅评价鉴别系统的过程。 尝试亲自进行生成式 AI 代码的编写和运行。 探索 AI 变现的途径,如用 GPT 和 SD 制作图文故事绘本、小说推文等项目。 请注意,学习过程中要不断实践和总结,根据自身情况进行调整和优化。
2025-02-24
帮我设计一套从零开始系统学习AI的路线,为期6个月
以下是为您设计的为期 6 个月从零开始系统学习 AI 的路线: 第一个月: 进行系统性的学习,阅读相关的基础书籍,如《人工智能:一种现代方法》等,了解 AI 的底层原理和发展历程。 寻找优质的在线课程,例如 Coursera 上的相关课程。 第二个月: 深入学习 AI 的基础知识,包括机器学习、深度学习的基本概念。 实践一些简单的机器学习算法,如线性回归、决策树等。 第三个月: 学习深度学习框架,如 TensorFlow 或 PyTorch。 尝试使用这些框架实现一些简单的深度学习模型,如多层感知机。 第四个月: 探索自然语言处理和计算机视觉等领域的基础知识。 可以通过一些开源项目和数据集进行实践。 第五个月: 深入研究特定的 AI 应用领域,如医疗、金融等。 参与相关的线上讨论和社区,与同行交流经验。 第六个月: 总结所学知识,进行项目实践,将所学应用到实际问题中。 关注最新的 AI 研究动态和行业发展趋势。 在学习过程中,要注重理论与实践相结合,多动手实践,积极参与社区交流,不断提升自己的能力。
2025-02-24
我是一个小白,我想要一个deepseek学习路线
以下是为您提供的 DeepSeek 学习路线: 1. 首先,通过相关报道和研究,了解 DeepSeek 在全球 AI 社区的意义,包括技术突破与资源分配策略。重点关注其长上下文能力、量化商业模式以及对 AI 生态系统的深远影响。您可以参考: 2. 深入研究 DeepSeek 在架构和工程上的创新,例如 MoE、MLA、MTP 和 FP8 混合精度训练。思考其在工程和应用平衡中的高效优化方式,以及开源与闭源竞争的相关反思和 AI 生态未来发展方向。相关内容: 3. 了解 DeepSeek R1 模型,它属于基于强化学习 RL 的推理模型,在回答用户问题前会先进行“自问自答”式的推理思考来提升回答质量。理解这种模拟人类深度思考的能力以及其背后独特的“教育方式”。 4. 学习 DeepSeek 深夜发布的大一统模型 JanusPro,它将图像理解和生成统一在一个模型中。了解其具有的两种本领,包括理解模式和画画模式,以及其核心的 DeepSeek 语言模型、特别训练法、与 Diffusion 模型的区别、好处和关键设计等方面。
2025-02-19