Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

帮我设计一套从零开始系统学习AI的路线,为期6个月

Answer

以下是为您设计的为期 6 个月从零开始系统学习 AI 的路线:

第一个月:

  • 进行系统性的学习,阅读相关的基础书籍,如《人工智能:一种现代方法》等,了解 AI 的底层原理和发展历程。
  • 寻找优质的在线课程,例如 Coursera 上的相关课程。

第二个月:

  • 深入学习 AI 的基础知识,包括机器学习、深度学习的基本概念。
  • 实践一些简单的机器学习算法,如线性回归、决策树等。

第三个月:

  • 学习深度学习框架,如 TensorFlow 或 PyTorch。
  • 尝试使用这些框架实现一些简单的深度学习模型,如多层感知机。

第四个月:

  • 探索自然语言处理和计算机视觉等领域的基础知识。
  • 可以通过一些开源项目和数据集进行实践。

第五个月:

  • 深入研究特定的 AI 应用领域,如医疗、金融等。
  • 参与相关的线上讨论和社区,与同行交流经验。

第六个月:

  • 总结所学知识,进行项目实践,将所学应用到实际问题中。
  • 关注最新的 AI 研究动态和行业发展趋势。

在学习过程中,要注重理论与实践相结合,多动手实践,积极参与社区交流,不断提升自己的能力。

Content generated by AI large model, please carefully verify (powered by aily)

References

二师兄的AI启蒙之路(2024年)

我叫二师兄,来自上海,典型的80后,房地产行业从业二十年,计算机零基础。兴趣爱好:悠悠球、数码产品、游戏、音乐、手办、乐高、汽车2024年[heading1]一月[content]4070TiSuper发售,我买了显卡配了4K160显示器,备战2024年8月发售的国产3A大作黑悟空和2025年发售的GTA6[heading1]二月[content]过年后,在七彩虹的售后群,有个老哥在分享用AI绘画的心得,问他要了SD秋叶安装包,下载了教学视频,自此迈出AI学习的第一步[heading1]三月[content]啃完SD的所有教程,秉着不浪费显卡资源的原则开始炼丹,人脸、画风、风景、景观、建筑的丹练了一些,不过因为图片数据集的质量一般,且很多是公司里的项目案例图片,所有lora仅供自嗨[heading1]四月[content]与小伙伴探讨AI变现的途径,尝试用GPT和SD制作图文故事绘本、小说推文的项目,因组员各自忙于事业而不了了之。但过程中练了一些绘本风格的丹。[heading1]五月[content]因公司岗位可能有调动,提前把电脑运到武汉的家里,但最终工作地点仍在昆明,开启了长达五个月无硬件支持的AI学习之路。有幸加入到Prompt battle社群,开始了Midjourney的学习,这一阶段打磨了另一种形式的文生图提示词学习。

《雪梅 May 的 AI 学习日记》挑战 100 天和 AI 做朋友

感受:了解AI的第一步,个人观点是系统性的学习,不要碎片化的输入。所以一开始,就去系统的看几本书,听几门好课。如果你打算学AI,却是只靠刷短视频来学,虽然可以知道一些信息,但也只是看个热闹图个乐呵。系统性的学习,让自己了解一些AI的底层原理和AI的发展历程,打好基础。[heading2]DAY1 2024.5.22初步探索[content]初步探索:May:在开始想要了解AI的初期,会走必经弯路。B站上看了一些介绍ChatGPT原理的分享,如果只是消费,可以看看。如果想要系统性的学习,还是要看质量更高的内容,而不是被人整理过的知识碎片[heading2]DAY2 2024.5.23加入AI社区:waytoAGI[content]May:发现了这个开源的知识库,不用再到B站上到处找零零碎碎的东西了。[通往AGI之路](https://waytoagi.feishu.cn/wiki/QPe5w5g7UisbEkkow8XcDmOpn8e)评价:宝藏社区,感慨AI时代知识都是免费开源的。考验一个人的是如何在信息的海洋里成体系有系统的获取。这个社区让我开始不走弯路,直接走进当前最流行的AI腹地,开始摘自己想要的果子我的第一步:看看这个社区的新手指引,怎么入门[1.1入门:AI学习路径与课程](https://waytoagi.feishu.cn/wiki/RJofwtPcci6YMJkzBP2cRFFOnIR)

【法律法规】《促进创新的人工智能监管方法》.pdf

•Engage with industry,the public sector,regulators,academia and civil society through the consultation period.•Publish the government’s response to this consultation.•Issue the cross-sectoral principles to regulators,together with initial guidance to regulators for their implementation.We will work with regulators to understand how the description of AI’s characteristics can be applied within different regulatory remits and the impact this will have on the application of the cross-sectoral principles.•Design and publish an AI Regulation Roadmap with plans for establishing the central functions(detailed in section 3.3.1),including monitoring and coordinating implementation of the principles.This roadmap will set out key partner organisations and identify existing initiatives that will be scaled-up or leveraged to deliver the central functions.It will also175 The AI sector is estimated to contribute£3.7bn in GVA(Gross Value Added)to the UK economy.AI Sector Study 2022,DSIT,2023.176 What is the constitution?The Constitution Unit,University College London,202372A pro-innovation approach to AI regulationinclude plans to pilot a new AI sandbox or testbed.•Analyse findings from commissioned research projects and improve our understanding of:•Potential barriers faced by businesses seeking to comply with our framework and ways to overcome these.•How accountability for regulatory compliance is currently assigned throughout the AI life cycle in real-world scenarios.•The ability of key regulators to implement our regulatory framework,and how we can best support them.•Best practice in measuring and reporting on AI-related risks across regulatory frameworks.126.In the six to twelve months after publication we will:

Others are asking
好用的PPT AI生成工具有哪些,优劣势是啥
以下是一些好用的 PPT AI 生成工具及其优劣势: 爱设计: 优势:视觉效果更多,样式丰富,需付费,但有推广计划。 劣势:无明显劣势。 MindShow: 优势:免费模版多,操作方便。 劣势:视觉不够丰富。 闪击: 优势:相对简单。 劣势:语法复杂些,需付费。 Process ON: 优势:老用户多,除 PPT 外其他功能众多。 劣势:需付费。 WPS AI: 优势:不仅支持 PPT,还有 Word、Excel,视觉效果很好,暂时完全免费。 劣势:需要申请资格。 不同工具适用于不同的人群和场景: 对于追求高度专业和个性化展示的群体,如软件实施人员和销售人员,选择功能丰富且模板专业的工具将更具优势。 而对于偶尔涉足 PPT 制作的人群,如软件工程师,简洁、直观的工具可能更加适合。 此外,还有一些相关的网站和资源: 讯飞智文:https://zhiwen.xfyun.cn/ Mindshow.fun:支持 Markdown 导入,http://Mindshow.fun kimi.ai:选 PPT 助手暂时免费效果好,http://kimi.ai Tome.app:AI 配图效果好,http://Tome.app Chatppt.com:自动化程度高,http://Chatppt.com 百度文库:付费效果好,https://wenku.baidu.com
2025-03-29
AI如何解决我做excel数据统计问题
以下是一些利用 AI 解决 Excel 数据统计问题的方法: 1. 可以让 AI 辅助编写苹果“自动操作”脚本,实现多选多个.doc 和.docx 文件后,操作打开 Microsoft Word 等待 6 秒获取字符数,然后打开 Excel 并建立表格统计每个文件名对应的字符数。 2. 利用 AI 帮您写 Excel 宏函数,适用于几乎所有主流 AI。 3. 对于数据分析,推荐使用 Claude 网页版或 ChatGPT,可上传 CSV 进行可视化分析。 4. 可以使用自然语言向 Chat Excel 提出要求,让其处理 Excel 数据。例如,先让它帮您把一个单元格内的内容合并重复,或者对整个表格所有单元格去重复。 5. 对于编程统计每位同学在“夸、问、评、答”里发表评论的次数等问题,可向 GPT4 用文字提需求直接获取代码,或让其修改已有代码、解 bug 等。
2025-03-29
節點 ai
以下是关于节点 AI 的相关信息: 在工作流中,节点是组成工作流的基本单元。Coze 平台支持的节点类型包括 LLM(大语言模型)、Code(代码)、Knowledage(知识库)、Condition(条件判断)、Variable(获取变量)、Database(数据库)。 对于 Code 节点,您可以在节点内使用 IDE 工具,通过 AI 自动生成代码或编写自定义代码逻辑来处理输入参数并返回响应结果。该节点支持 JavaScript、Python 运行时。 JavaScript 支持 TypeScript,提供静态语言编码体验。内置了 dayjs(版本 1.8.36)和 lodash(版本 4.17.20)两个三方依赖库,运行时遵循 WinterCG 规范,支持 Minimum Common Web Platform API 列举的大多数 API。 Python 中,仅内置了 requests_async 和 numpy 两个三方依赖库,requests_async 依赖库与 requests 类似,但需要 await,且 Python 运行时暂不支持 Http.client 方式的请求。 在节点内的 Code 区域单击 Edit in IDE 可通过 IDE 编辑和调试代码。 您可以在 IDE 底部单击尝试 AI,并输入自然语言设定代码逻辑,AI 将自动生成代码。也可以选中代码片段,通过快捷键(macOS 为 CommandI、Windows 为 Ctrl+I)唤起 AI,并输入自然语言让 AI 帮助修改代码。如果已经为 Code 节点配置好了输入参数,则编辑时支持自动补全参数。单击测试代码,在测试面板以 JSON 格式输入参数进行测试,支持使用 AI 自动生成模拟数据进行测试。设置输入参数后,单击运行,可在输出区域查看运行结果。 相关参考文档和示例: 海外参考文档:https://www.coze.com/docs/zh_cn/use_workflow.html 国内参考文档:https://www.coze.cn/docs/guides/use_workflow 国内版本示例: 搜索新闻:https://www.coze.cn/docs/guides/workflow_search_news 使用 LLM 处理问题:https://www.coze.cn/docs/guides/workflow_use_llm 生成随机数:https://www.coze.cn/docs/guides/workflow_use_code 搜索并获取第一个链接的内容:https://www.coze.cn/docs/guides/workflow_get_content 识别用户意图:https://www.coze.cn/docs/guides/workflow_user_intent
2025-03-28
问题定义: 1. 核心问题陈述:创作一份个人参赛的、以光伏业务中财务工作与AI结合进行业务赋能为主题的展示类参赛方案框架。 2. 关键上下文信息:公司举办AI创新大赛,个人参赛,主题方向为工作和AI结合限定在业务赋能,公司业务是光伏领域。 3. 问题的具体范围界定:聚焦光伏业务中财务工作与AI结合进行业务赋能的展示方案框架创作。 答案要求: 1. 内容范围: - 必须包含:整体参赛方案思路、光伏财务业务与AI结合的具体方向、展示方案大致框架。
很抱歉,您提供的知识库内容中没有与光伏业务中财务工作与 AI 结合进行业务赋能的参赛方案框架相关的信息。但以下是为您生成的一个可能的参赛方案框架示例: 一、整体参赛方案思路 本次参赛方案旨在探索如何将 AI 技术应用于光伏业务中的财务工作,以实现更高效、精准和智能化的业务赋能。通过深入分析光伏行业的特点和财务工作的需求,结合先进的 AI 技术,提出创新的解决方案,提升财务工作的效率和质量,为公司的光伏业务发展提供有力支持。 二、光伏财务业务与 AI 结合的具体方向 1. 财务预测与分析 利用机器学习算法对光伏项目的成本、收益进行预测,为投资决策提供数据支持。 分析市场趋势和政策变化对财务状况的影响,提前制定应对策略。 2. 风险评估与管理 运用大数据和人工智能技术,对光伏项目的风险进行实时监测和评估。 建立风险预警模型,及时发现潜在的财务风险。 3. 成本优化与控制 通过智能算法优化供应链管理,降低采购成本。 分析生产过程中的能耗数据,实现成本的精细化控制。 4. 财务报表自动化生成与审计 利用自然语言处理技术自动生成财务报表,提高工作效率。 运用 AI 辅助审计,提高审计的准确性和效率。 三、展示方案大致框架 1. 项目背景与目标 介绍光伏行业的发展现状和公司的业务情况。 阐述将财务工作与 AI 结合的目标和意义。 2. 技术方案与实现 详细介绍所采用的 AI 技术和算法。 展示技术方案的实现过程和关键步骤。 3. 应用案例与效果 分享实际应用案例,展示 AI 在财务工作中的具体应用场景。 分析应用效果,如成本降低、效率提升、风险控制等方面的成果。 4. 未来展望与挑战 展望 AI 在光伏财务领域的未来发展趋势。 探讨可能面临的挑战及应对策略。 5. 总结与结论 总结方案的核心内容和创新点。 强调对公司光伏业务的价值和贡献。 以上框架仅供参考,您可以根据实际情况进行进一步的细化和完善。
2025-03-28
帮我推荐几个好用的AI工具
以下为您推荐一些好用的 AI 工具: AI 新闻写作工具: 1. Copy.ai:功能强大,提供丰富的新闻写作模板和功能,可快速生成新闻标题、摘要、正文等内容,节省写作时间并提高效率。 2. Writesonic:专注于写作,提供新闻稿件生成、标题生成、摘要提取等功能,智能算法能根据用户信息快速生成高质量新闻内容,适合新闻写作和编辑人员。 3. Jasper AI:主打博客和营销文案,也可用于生成新闻类内容,写作质量较高,支持多种语言。 内容仿写 AI 工具: 1. 秘塔写作猫:https://xiezuocat.com/ 是 AI 写作伴侣,能推敲用语、斟酌文法、改写文风,还能实时同步翻译,支持全文改写、一键修改、实时纠错并给出修改建议,智能分析文章属性并打分。 2. 笔灵 AI 写作:https://ibiling.cn/ 是智能写作助手,支持多种文体写作,如心得体会、公文、演讲稿、小说、论文等,支持一键改写/续写/扩写,智能锤炼打磨文字。 3. 腾讯 Effidit 写作:https://effidit.qq.com/ 是由腾讯 AI Lab 开发的智能创作助手,能提升写作者的写作效率和创作体验。 写代码或辅助编程的 AI 产品: 1. GitHub Copilot:由 GitHub 联合 OpenAI 和微软 Azure 团队推出,支持多种语言和 IDE,能为程序员快速提供代码建议。 2. 通义灵码:阿里巴巴团队推出,提供行级/函数级实时续写、自然语言生成代码、单元测试生成、代码注释生成、代码解释、研发智能问答、异常报错排查等能力。 3. CodeWhisperer:亚马逊 AWS 团队推出,由机器学习技术驱动,可为开发人员实时提供代码建议。 4. CodeGeeX:智谱 AI 推出的开源免费 AI 编程助手,基于 130 亿参数的预训练大模型,能快速生成代码。 5. Cody:代码搜索平台 Sourcegraph 推出,借助强大的代码语义索引和分析能力,了解开发者的整个代码库。 6. CodeFuse:蚂蚁集团支付宝团队推出的免费 AI 代码助手,基于自研的基础大模型进行微调。 7. Codeium:由 AI 驱动,通过提供代码建议、重构提示和代码解释帮助软件开发人员提高编程效率和准确性。 更多相关工具可查看: 1. 更多 AI 写作类工具:https://www.waytoagi.com/sites/category/2 2. 更多辅助编程 AI 产品:https://www.waytoagi.com/category/65 以上工具功能和适用场景可能不同,您可根据自身需求选择最适合的工具。内容由 AI 大模型生成,请仔细甄别。
2025-03-28
有没有好的AI爬虫工具
以下是为您推荐的一些 AI 爬虫工具: FireCrawl 开源爬虫工具:无需站点地图,可抓取任何网站的所有可访问子页面。抓取内容可转换为 Markdown 格式,支持 JavaScript 动态内容,并提供易用 API,简化内容爬取和转换。链接:https://x.com/imxiaohu/status/1780592067586269465 MediaCrawler:支持小红书、抖音、快手、B 站和微博等平台内容抓取,集成 IP 代理池防封,支持视频、图片、评论等多种数据格式保存。链接:https://github.com/NanmiCoder/MediaCrawler 、https://x.com/imxiaohu/status/1769569874601546034?s=20
2025-03-28
怎么从零开始搭建一个智能体
从零开始搭建一个智能体可以参考以下步骤: 1. 创建智能体:输入人设等信息。 2. 配置工作流: 放上相关工作流。 按照市场营销逻辑组织智能体结构,例如确定以品牌卖点提炼六步法为核心的流程,并加入其他分析助手,如品牌卖点定义与分类助手、STP 市场分析助手、用户画像分析助手、触点收集助手等,同时还可包括一些未在结构中体现但有效的分析工具,如用户需求分析的 KANO 助手、营销六层转化漏斗分析、超级转化率六要素等。 3. 测试:确保工作流执行成功。 4. 发布: 注意工作流中插件的 api_token 填写,避免他人调用消耗自己的费用。可以将 api_token 作为工作流的输入,让用户购买后输入使用,然后再发布。 发布时选择输出类型和输入类型,完善上架信息,选择发布范围等。
2025-03-24
如何从零开始学习AI
以下是从零开始学习 AI 的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出自己的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 通过与这些 AI 产品的对话,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-03-14
从零开始的话,从哪开始学习和上手
如果您想从零开始学习 AI 并上手,以下是一些建议: 1. 阅读相关论文和博客:可以从“GPT1 到 Deepseek R1 所有公开论文 The 2025 AI Engineer Reading List”开始,其中涵盖了人工智能工程的多个领域,如 LLMs、基准、提示、RAG、代理、CodeGen、视觉、语音、扩散、微调等。 2. 学习 Prompt(提示词)技巧:掌握“分配角色”“给出示例(fewshots)”“思维链(ChainofThought)”这三板斧,深入研究这三个核心方面。 3. 了解 Stable Diffusion:通过知乎上的“教程:深入浅出完整解析 Stable Diffusion(SD)核心基础知识”,学习其资源、核心基础原理、网络结构、搭建使用和训练等方面的知识,包括模型工作流程、核心网络结构、推理流程、训练环境配置等。
2025-03-13
帮我设计一套从零开始系统学习AI的路线
以下是为您设计的从零开始系统学习 AI 的路线: 1. 了解 AI 基本概念 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习 AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-02-24
帮我设计一套从零开始系统学习AI的路线,为期3个月
以下是为您设计的为期 3 个月从零开始系统学习 AI 的路线: 第一个月: 进行系统性的学习,阅读相关的基础书籍,例如《人工智能:一种现代方法》等,了解 AI 的底层原理和发展历程。 观看优质的 AI 课程,如 Coursera 上的相关课程。 第二个月: 学习 AI 绘画,下载相关软件如 SD 秋叶安装包,并观看教学视频,逐步掌握操作技巧。 加入 AI 学习社区,如 waytoAGI 社区,参考新手指引,获取更多学习资源和交流经验。 第三个月: 深入学习生成式人工智能项目,了解其生命周期和相关技术,如监督学习构建餐厅评价鉴别系统的过程。 尝试亲自进行生成式 AI 代码的编写和运行。 探索 AI 变现的途径,如用 GPT 和 SD 制作图文故事绘本、小说推文等项目。 请注意,学习过程中要不断实践和总结,根据自身情况进行调整和优化。
2025-02-24
怎么从零开始学习AGI
从零开始学习 AGI 是一个长期的过程,需要耐心和持续的努力。以下是一些建议: 1. 完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。 2. 学习前要澄清自己的状态,比如可能不理解 AI 和提示词工程等。 3. 学习过程中要注重兴趣,关键词如“少就是多”“先有个初识”“目录索引推荐”“先动手”等。 4. 学以致用,通过学习分享不断填补知识的缝隙来成长。 5. 像马斯克一样,从基础的数学开始学习,逐步扩展到相关的高级领域。 记住,不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。
2025-02-21
帮我制定《通往AGI之路》的学习规划。并在为期一个月内将内容全部学完并掌握AI基本操作技巧
以下是为您制定的为期一个月的《通往 AGI 之路》学习规划: 第一周: 了解并选择感兴趣的学习小组,如 AI 音乐之路、关键词学社(AI 绘画)、SD 学社(AI 绘画)、AI 视频学社等。按照相应要求进群,如添加微信或飞书群,并备注相关信息。 第二周: 熟悉所选学习小组的活动规则和学习内容。 对于 AI 绘画相关的小组,开始学习相关软件的基本操作。 第三周: 积极参与小组活动,如根据关键词出图测试、案例实操等。 尝试将所学应用到实际操作中,如创建图像流智能体等。 第四周: 总结所学知识和实践经验。 巩固 AI 基本操作技巧,确保能够熟练运用。 在学习过程中,要注重学以致用,通过学习、分享不断填补知识的缝隙,成长进步。同时,要记住“少就是多”“先有个初识”“目录索引推荐”“兴趣最重要”“先动手”等学习要点,找到适合自己的学习路径。
2024-10-23
如何开始一段为期2个月的AI学习之旅,有较为严格的测试
如果你想开启一段为期 2 个月的 AI 学习之旅,并且有较为严格的测试,那么你可以尝试以下步骤: 1. 掌握基础概念和技术:学习如机器学习、深度学习、自然语言处理等的基础知识。这些资源包括:在线课程、书籍、学术论文等。 2. 实践项目:在掌握了基础知识后,尝试完成一些实践项目,如构建一个简单的机器学习模型、实现一个自然语言处理任务等。这将帮助你巩固所学知识,并提高你的实践能力。 3. 参加竞赛:参加一些 AI 相关的竞赛,如 Kaggle 竞赛、天池竞赛等。这将帮助你提高你的实践能力,并让你接触到更多的真实场景和问题。 4. 学习高级技术:在掌握了基础知识和实践能力后,尝试学习一些高级技术,如强化学习、生成式对抗网络等。这些技术将帮助你更好地理解 AI 的前沿领域,并为你的职业发展打下坚实的基础。 5. 参加实习或工作:如果你有机会参加实习或工作,那么这将是一个非常好的学习机会。在实习或工作中,你将接触到真实的项目和问题,并有机会与其他专业人士合作,提高你的实践能力和职业素养。 总之,学习 AI 需要不断地学习和实践,并且需要不断地更新自己的知识和技能。希望以上建议对你有所帮助。
2024-04-18
背景:我是一名高中生,想学习AI知识,逐步从入门到精通 目标:希望在<3个月>内具备一定能力。 请结合我的背景和优势,为我设计一份学习路线: - 列出每阶段(例如每一个礼拜)的学习重点(比如编程基础、数学)。 - 为每个阶段推荐<具体资源>(书籍、在线课程、练习项目等)。 - 提供一些学习技巧或注意事项。
以下是为您设计的一份在 3 个月内从入门到具备一定能力的 AI 学习路线: 第一个月: 学习重点:了解 AI 基本概念,包括术语、主要分支及它们之间的联系;掌握编程基础,如 Python 语言。 推荐资源: 书籍:《人工智能:一种现代方法》 在线课程:Coursera 上的“人工智能入门”课程 练习项目:使用 Python 实现简单的数据分析和可视化 学习技巧和注意事项:多做笔记,理解概念,注重实践。 第二个月: 学习重点:深入学习数学基础,包括统计学、线性代数和概率论;了解算法和模型中的监督学习和无监督学习。 推荐资源: 书籍:《概率论与数理统计》《线性代数及其应用》 在线课程:edX 上的“机器学习基础”课程 练习项目:使用监督学习算法进行数据分类预测 学习技巧和注意事项:通过实际案例加深对数学知识的理解,多做练习题。 第三个月: 学习重点:掌握神经网络基础,包括网络结构和激活函数;学习模型的评估和调优。 推荐资源: 书籍:《深度学习》 在线课程:Udacity 上的“深度学习入门”课程 练习项目:构建并优化一个简单的神经网络模型 学习技巧和注意事项:积极参与在线讨论,及时解决学习中的问题。 在整个学习过程中,您还可以: 体验 AI 产品,如 ChatGPT、文心一言等,了解其工作原理和交互方式。 掌握提示词的技巧,提高与 AI 的交互效果。 参与相关的社区和论坛,分享学习经验和成果。
2025-03-21
想学习AI的路线应该是什么样的
以下是新手学习 AI 的路线: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。
2025-03-19
AI如何学习,请给我具体的学习路线、视频和书籍
以下是为您提供的 AI 学习路线、视频和书籍的相关内容: 学习路线: 1. 了解 AI 基本概念:阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 2. 开始 AI 学习之旅:在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程按照自己的节奏学习。 3. 选择感兴趣的模块深入学习:AI 领域广泛,比如图像、音乐、视频等,根据自己的兴趣选择特定的模块进行深入学习,同时掌握提示词的技巧。 4. 实践和尝试:理论学习之后,通过实践巩固知识,尝试使用各种产品做出作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品:与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 视频: 1. 大量阅读。 书籍: 1. 推荐看 open AI 的官方 Cookbook,小琪姐做了中文精读翻译。 2. 关于介绍 GPT 运作原理、Transformer 模型、扩散模型等的文章,还包括软件 2.0 时代相关内容。
2025-03-13
我是一个小白,但是想学习AI相关的知识,你有什么推荐吗,我需要注意什么,有什么技术学习路线
对于想学习 AI 的小白,以下是一些推荐和需要注意的方面,以及技术学习路线: 一、基础知识 1. 了解 AI 基本概念 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 数学基础 学习线性代数、概率论、优化理论等。 3. 编程基础 掌握 Python、C++等编程语言。 二、学习路径 1. 偏向技术研究方向 机器学习基础:监督学习、无监督学习、强化学习等。 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 自然语言处理:语言模型、文本分类、机器翻译等。 计算机视觉:图像分类、目标检测、语义分割等。 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 科研实践:论文阅读、模型实现、实验设计等。 2. 偏向应用方向 机器学习基础:监督学习、无监督学习等。 深度学习框架:TensorFlow、PyTorch 等。 应用领域:自然语言处理、计算机视觉、推荐系统等。 数据处理:数据采集、清洗、特征工程等。 模型部署:模型优化、模型服务等。 行业实践:项目实战、案例分析等。 三、深入学习和实践 1. 选择感兴趣的模块深入学习 AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 2. 实践和尝试 理论学习之后,通过实践巩固知识,尝试使用各种产品做出自己的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 3. 体验 AI 产品 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-03-08
一个什么都不懂的小白,想学习ai,我应该如何学呢,我需要一个学习ai的路线
对于一个想学习 AI 的小白,以下是为您提供的学习路线: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 通过与这些 AI 产品的对话,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-03-07
ChatGPT 各项技术能力路线图
以下是关于 ChatGPT 技术能力路线图的相关内容: 阶段一:开卷有益阶段 理解人类语言,学习语义关系、语法规律,能够应对未见过的语言处理情况。 GPT3 习得各种词汇和语法规则、编程语言及不同语言之间的关系,但存在回答不受约束的问题,指挥很重要。 阶段二:模版规范阶段 对话模版矫正模型,可形成优质对话并实现延展能力,知道什么该说和不该说。 通过任务对话范文训练,实现理解指令要求和例子要求的能力。 同时,在 AGI 实现路径与技术预测方面: 主要技术路线与理论框架包括可能性,如硬件与计算架构的趋势(量子计算、神经形态芯片、云计算资源扩展等),软件与算法进展(深度学习、元学习、强化学习、神经符号混合、AutoML、AutoGPT 等),以及人工智能安全与对齐研究(对齐难题、可解释性等)。 实现 AGI 所需的里程碑与风险点包括可能的时间表(如 2030、2040、2050 关键技术预测)和潜在的“奇点”时刻与触发条件(硬件爆发、算法重大突破、意外的研究范式转折等)。 此外,AI 的发展历程: 从 1950 年提出,近 20 年在国内互联网发展下普及。 最初应用是基于 NLP 技术的聊天机器人和客服机器人。 随后中英文翻译、语音识别、人脸识别等技术取得突破,在日常生活中广泛应用。 以前技术突破多限于特定领域,模型应用范围狭窄。 随着 OpenAI ChatGPT 等大型语言模型的突破,展示了新的发展路线,通过大规模模型预训练,涌现出广泛的智能应用。 这种集多功能于一体的模型为 AI 未来发展提供新方向,也带来新焦虑,但“人机共生”几乎是人类发展的必然。
2025-02-27