Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

怎样利用自己现有的培训文档,制作一个AI agent可以担任系统分析员的工作,从文档中抽丝剥茧找出系统问题的根本原因和解决方案?

Answer

目前没有相关的培训文档内容可参考。但一般来说,要利用现有的培训文档制作一个能担任系统分析员工作的 AI agent 并从文档中找出系统问题的根本原因和解决方案,您可以考虑以下步骤:

  1. 对培训文档进行详细的梳理和分类,提取关键信息,例如系统常见问题的特征、根本原因的类型以及可能的解决方案模式。
  2. 利用自然语言处理技术,对提取的信息进行标注和训练,使 AI agent 能够理解和识别这些模式。
  3. 设计有效的交互方式,让用户能够向 AI agent 清晰地描述系统问题,以便它能够准确地匹配和应用所学知识。
  4. 不断测试和优化 AI agent 的性能,根据实际应用中的反馈,调整训练数据和算法,提高其准确性和实用性。
Content generated by AI large model, please carefully verify (powered by aily)
Others are asking
如何制作这样的一个AI agent?我可以将所有的文档放在本地或者云盘。
AI Agent 是基于大型语言模型(LLM)和其他技术实现的智能实体,其核心功能在于自主理解、规划决策、执行复杂任务。 AI Agent 包括以下几个概念: 1. Chain:通常一个 AI Agent 可能由多个 Chain 组成。一个 Chain 视作是一个步骤,可以接受一些输入变量,产生一些输出变量。大部分的 Chain 是大语言模型完成的 LLM Chain。 2. Router:我们可以使用一些判定(甚至可以用 LLM 来判定),然后让 Agent 走向不同的 Chain。例如:如果这是一个图片,则 a;否则 b。 3. Tool:Agent 上可以进行的一次工具调用。例如,对互联网的一次搜索,对数据库的一次检索。 总结下来,我们需要三个 Agent: 1. Responser Agent:主 agent,用于回复用户(伪多模态)。 2. Background Agent:背景 agent,用于推进角色当前状态(例如进入下一个剧本,抽检生成增长的记忆体)。 3. Daily Agent:每日 agent,用于生成剧本,配套的图片,以及每日朋友圈。 这三个 Agent 每隔一段时间运行一次(默认 3 分钟),运行时会分析期间的历史对话,变更人物关系(亲密度,了解度等),变更反感度,如果超标则拉黑用户,抽简对话内容,提取人物和用户的信息成为“增长的记忆体”,按照时间推进人物剧本,有概率主动聊天(与亲密度正相关,跳过夜间时间)。 在了解 AI Agent 之前,我们先考虑一个场景:我们要写一本 20 万字的关于人工智能最新技术的书。在没有大模型之前,写书一般会按照如下流程: 1. 先使用搜索引擎搜索一些相关书籍和信息进行阅读,为我们打开思路。 2. 形成本书的大纲,并且考虑清楚每一章节要编写的内容。 3. 针对每一个章节进行内容的编写,在编写过程中可能会调整文章的大纲。 4. 在编写后面章节的时候可能会忘记前面写的内容,需要去翻阅前面已经写的内容。 5. 文章初步完成之后,可能会找相关专业人士帮忙修改。 6. 经过几番调整之后,书籍最终成型。 在大模型出现之后,可能会直接请大模型帮忙生成,但会发现写出来的书根本无法阅读,这不仅仅是因为大模型的能力不行,还因为相比于第一种写书的方式,第二种方式明显缺少了几个环节: 1. 没有办法使用 Google 获取最新的外部信息(大模型的训练数据是有日期限制的)。 2. 没有对整个事情进行规划(比如先写大纲,再编写每个章节,然后和别人讨论,最后成文)。 3. 大模型没有记忆的能力,由于上下文(脑容量)的限制,无法一次性完成 20 万字的文章,会造成前言不搭后语的现象。 而 AI Agent 就是为了解决这个问题。AI Agent 是应用了大模型(LLM)能力的 Agent。以 GPT 为代表的大模型的出现,将 Agent 的能力提高到了前所未有的高度。OpenAI 的 Lilian Weng 将以 LLM 为驱动的 AI Agent,形式化为如下的公式:
2025-01-10
怎样提高ai识别文档准确性
以下是一些提高 AI 识别文档准确性的方法: 1. 对于过期的文档,在标题里加上【已废弃】【已过期】等字眼,这样在召回排序过程中会被过滤掉,避免影响答案的准确性。 2. 现阶段尽量使用普通文本进行描述,避免过多表格、图片等内容。当前文档里插入的表格内容虽然能被 AI 识别,但识别效果还在提升中,图片等内容还不支持识别。随着技术发展,这些局限会逐渐消除。 3. 文档的标题内容需要跟正文有强相关性,因为召回排序的逻辑里文档总标题在相似度计算中占有较高权重。 4. 不同的知识点尽量分段书写、合理控制段落长度。不同的主题通过文档内的子标题进行区分,子标题下正文里每个段落最好对应一个明确的知识点,每个段落尽量不超过 500 字,避免段落过长在文档分割时导致主题打散。 5. 对于经常被问到的内容,可以写成问答对(FAQ)的格式,当用户提出相关问题时,包含该问答对的片段在召回排序里会更靠前,给出的答案也更准确。
2025-01-10
文档检测的提示词
以下是为您提供的文档检测相关的提示词: 新闻文章的事实核查员: 角色:你是一个新闻文章的事实核查员。 个人信息:作者为悟空,版本 0.1,语言为中文,工作是确定新闻报道中哪些段落是假的。 目标:首先能区分事实和观点,确定事实和观点是否一致,同时呈现事实和观点,用问号标记缺乏事实支持的观点。 约束:总结事实,原样重述观点。 技能:具备区分事实和观点的能力,使用表情符号、缩写、粗体文本等格式化技术使内容清晰生动。 工作流程:逐步列出文本中的事实和观点,先列事实再列观点,用颜文字符号标记与事实不符的观点并提供判断理由,进一步解释推理。 文章打分器: 角色:文章打分器。 个人信息:作者为李继刚,版本 0.1,语言为中文,基于打分项对文章打分并给出总体得分和各项得分。 目标:了解文章的针对性、观点阐述是否清晰,信息量和文采是否丰富,排版和撰写长度是否符合阅读习惯。 约束:只能对文本文件打分,无法识别图片和视频等非文本内容。 技能:对文字质量有深刻理解,了解优秀文章特征,能进行排版分析和文章长度分析。 工作流程:读取输入文件,包括文章标题和正文。 此外,为您提供一些与文档检测提示词相关的网站: Majinai: 词图: Black Lily: Danbooru 标签超市: 魔咒百科词典: AI 词汇加速器: NovelAI 魔导书: 鳖哲法典: Danbooru tag: AIBooru:
2025-01-10
我使用了豆包,也学习了简单的提示词,但大数据反馈的结果并不好,很多数据分析,文档优化效果并不理想。我该怎么办
以下是一些可能有助于您改善大数据反馈结果和提升数据分析、文档优化效果的建议: 1. 像“给 Prompt 打分”的示例中那样,找专业的“Prompt 药剂师”对您的提示词进行详细分析,给出准确的评分和改进建议,以提升提示词的质量。 2. 对于数据分析和文档优化任务,要清晰明确地向模型阐述需求。例如,提供大模型可访问的数据源或上传数据表格,通过清晰的提示词说明需要从哪些维度分析数据,以及期望的分析结果输出格式。然后观察生成结果,不断迭代和优化提示词。 3. 对于“大模型幻觉”问题,目前虽无法完全消除,但可以通过其他第三方信息源和知识来检验生成内容是否准确。 4. 若想提高大模型的对话能力,可在 AGI 中搜索“结构化”获取相关文章。另外,如果您指的上下文 token 长度是大模型的记忆窗口,通常是无法延长的,因为这是设定好的。 5. 在用 ChatGPT 写剧本并希望其学习现有成功剧本时,要精心设计提问,清晰准确地表达您的需求,例如明确指出需要总结的规律以及在后续创作中的应用方式。
2025-01-08
我是否可以在飞书上传我的相关文档,然后把这些文档作为知识库进行对话,若可以,如何操作
在飞书上可以上传您的相关文档并将其作为知识库进行对话。具体操作如下: 1. 您需要一个额外的软件:AnythingLLM。其安装地址为:https://useanything.com/download 。安装完成后进入配置页面,主要分为三步: 第一步:选择大模型。 第二步:选择文本嵌入模型。 第三步:选择向量数据库。 2. 在 AnythingLLM 中,有一个 Workspace 的概念,您可以创建自己独有的 Workspace 与其他项目数据进行隔离。操作步骤为: 首先创建一个工作空间。 上传文档并且在工作空间中进行文本嵌入。 选择对话模式,AnythingLLM 提供了两种对话模式: Chat 模式:大模型会根据自己的训练数据和您上传的文档数据综合给出答案。 Query 模式:大模型仅仅会依靠文档中的数据给出答案。 测试对话。 3. 另外,您还可以参考以下操作在飞书上创建知识库并上传文本内容: 登录 。 在左侧导航栏的工作区区域,选择进入指定团队。 在页面顶部进入知识库页面,并单击创建知识库。在弹出的页面配置知识库名称、描述,并单击确认(一个团队内的知识库名称不可重复,必须是唯一的)。 在单元页面,单击新增单元。 在弹出的页面选择要上传的数据格式(默认是文本格式),然后选择一种文本内容上传方式完成内容上传。上传方式如下: 本地文档: 在文本格式页签下,选择本地文档,然后单击下一步。 将要上传的文档拖拽到上传区,或单击上传区域选择要上传的文档。目前支持上传.txt、.pdf、.docx 格式的文件内容,每个文件不得大于 20M,一次最多可上传 10 个文件。当上传完成后单击下一步。 选择内容分段方式: 自动分段与清洗:系统会对上传的文件数据进行自动分段,并会按照系统默认的预处理规则处理数据。 自定义:手动设置分段规则和预处理规则。分段标识符:选择符合实际所需的标识符。分段最大长度:设置每个片段内的字符数上限。文本预处理规则:替换掉连续的空格、换行符和制表符,删除所有 URL 和电子邮箱地址。单击下一步完成内容上传和分片。
2025-01-07
请给我推荐最适合翻译PDF文档的AI平台
以下是一些适合翻译 PDF 文档的 AI 平台: 1. DeepL(网站):,点击页面「翻译文件」按钮,上传 PDF、Word 或 PowerPoint 文件即可。 2. 沉浸式翻译(浏览器插件):,安装插件后,点击插件底部「更多」按钮,选择「制作双语 BPUB 电子书」、「翻译本地 PDF 文件」、「翻译 THML/TXT 文件」、「翻译本地字幕文件」。还能一键开启网页中 Youtube 视频的双语字幕。 3. Calibre(电子书管理应用):,下载并安装 calibre,并安装翻译插件「Ebook Translator」。 4. 谷歌翻译(网页):,使用工具把 PDF 转成 Word,再点击谷歌翻译「Document」按钮,上传 Word 文档。 5. 百度翻译(网页):,点击导航栏「文件翻译」,上传 PDF、Word、Excel、PPT、TXT 等格式的文件,支持选择领域和导出格式,但进阶功能基本需要付费。 6. 彩云小译(App):下载后点击「文档翻译」,可以直接导入 PDF、DOC、DOCX、PPT、PPTX、TXT、epub、srt 等格式的文档并开始翻译,有免费次数限制且进阶功能需要付费。 7. 微信读书(App):下载 App 后将 PDF 文档添加到书架,打开并点击页面上方「切换成电子书」,轻触屏幕唤出翻译按钮。 请注意,内容由 AI 大模型生成,请仔细甄别。
2025-01-06
Agent是什么?
Agent(智能体)是一种能够在环境中自主感知、思考并采取行动以实现特定目标的实体。它可以是软件程序,也可以是硬件设备。 从产品角度来看,Agent 可以有特定的身份、性格和角色。例如,它可以是一个历史新闻探索向导,具有知识渊博、温暖亲切、富有同情心的性格,主导新闻解析和历史背景分析。为使角色更生动,可为其设计背景故事。写好角色个性需考虑角色背景和身份、性格和语气、角色互动方式以及角色技能等方面。 在结合大型语言模型(LLM)的情况下,LLM Agent 是指结合了 LLM 和自主智能体特性的系统。它能够利用 LLM 的自然语言处理能力,理解用户输入,并进行智能决策和行动。其组成部分包括规划(负责将复杂任务分解成可执行的子任务,并评估执行策略)、记忆(包括短期记忆用于存储对话上下文和长期记忆用于存储用户特征和业务数据)、工具(如 API 调用、插件扩展等辅助感知环境和执行决策)、行动(将规划和记忆转换为具体输出,包括与外部环境的互动或工具调用)。 在 LLM 支持的自主 Agent 系统中,LLM 充当 Agents 的大脑,还包括规划(子目标分解、反思完善)、记忆(短期记忆和长期记忆)、工具使用(调用外部 API 获取额外信息)等关键部分。
2025-01-10
AI agent
以下是关于 AI Agent 的相关信息: 当您经常使用各种 AI 聊天工具但觉得不够用时,希望大模型搭配更多工具和能力以提供更稳定服务和输出,就可以关注 AI Agent 板块。 百宝箱是来自阿里系的一款 AI Agent 相关产品。登录链接为:https://tbox.alipay.com/proabout 。如果您是不会写代码、对 AI Agent 毫无使用经验的小白,或者看到宣传想尝试百宝箱的使用方法和能力,这篇分享可能对您有帮助。 测试百宝箱的原因是作者所在的小队伍“来都来了”参加比赛,发现其大力搞比赛所以一试究竟。 百宝箱当前大模型随便用,如通义千问·Max、月之暗面、智谱、百灵等,且统统免费。 在文旅和传媒方面,支付宝为百宝箱提供了天然渠道。作者刚好考虑在这方面探索,试用时看到相关标签栏露出,期待其带来渠道和流量。由于刚推广,力度较大。 此外,为您提供一些生成式人工智能的相关链接: Ask a Techspert:What is generative AI? https://blog.google/insidegoogle/googlers/askatechspert/whatisgenerativeai/ Build new generative AI powered search&conversational experiences with Gen App Builder: https://cloud.google.com/blog/products/aimachinelearning/creategenerativeappsinminuteswithgenappbuilder What is generative AI? https://www.mckinsey.com/featuredinsights/mckinseyexplainers/whatisgenerativeai Google Research,2022&beyond:Generative models: https://ai.googleblog.com/2023/01/googleresearch2022beyondlanguage.htmlGenerativeModels Building the most open and innovative AI ecosystem: https://cloud.google.com/blog/products/aimachinelearning/buildinganopengenerativeaipartnerecosystem Generative AI is here.Who Should Control It? https://www.nytimes.com/2022/10/21/podcasts/hardforkgenerativeartificialintelligence.html Stanford U&Google’s Generative Agents Produce Believable Proxies of Human Behaviors: https://syncedreview.com/2023/04/12/stanfordugooglesgenerativeagentsproducebelievableproxiesofhumanbehaviours/ Generative AI:Perspectives from Stanford HAI: https://hai.stanford.edu/sites/default/files/202303/Generative_AI_HAI_Perspectives.pdf Generative AI at Work: https://www.nber.org/system/files/working_papers/w31161/w31161.pdf
2025-01-10
知识库中有关于Agent的金融应用
智能体(Agent)在各种应用中扮演重要角色,以下是一些典型的应用领域: 1. 自动驾驶:自动驾驶汽车中的智能体感知周围环境,做出驾驶决策。 2. 家居自动化:智能家居设备(如智能恒温器、智能照明)根据环境和用户行为自动调节。 3. 游戏 AI:游戏中的对手角色(NPC)和智能行为系统。 4. 金融交易:金融市场中的智能交易算法,根据市场数据做出交易决策。 5. 客服聊天机器人:通过自然语言处理与用户互动,提供自动化的客户支持。 6. 机器人:各类机器人(如工业机器人、服务机器人)中集成的智能控制系统。 智能体可以根据其复杂性和功能分为几种类型: 1. 简单反应型智能体(Reactive Agents):根据当前的感知输入直接采取行动,不维护内部状态,也不考虑历史信息。示例:温控器,它根据温度传感器的输入直接打开或关闭加热器。 2. 基于模型的智能体(Modelbased Agents):维护内部状态,对当前和历史感知输入进行建模,能够推理未来的状态变化,并根据推理结果采取行动。示例:自动驾驶汽车,它不仅感知当前环境,还维护和更新周围环境的模型。 3. 目标导向型智能体(Goalbased Agents):除了感知和行动外,还具有明确的目标,能够根据目标评估不同的行动方案,并选择最优的行动。示例:机器人导航系统,它有明确的目的地,并计划路线以避免障碍。 4. 效用型智能体(Utilitybased Agents):不仅有目标,还能量化不同状态的效用值,选择效用最大化的行动,评估行动的优劣,权衡利弊。示例:金融交易智能体,根据不同市场条件选择最优的交易策略。 5. 学习型智能体(Learning Agents):能够通过与环境的交互不断改进其性能,学习模型、行为策略以及目标函数。示例:强化学习智能体,通过与环境互动不断学习最优策略。 从历史角度来看,随着大航海时代及全球贸易的兴起,“Agent”的角色在商业领域变得日益重要。16 至 17 世纪间,贸易代理和公司代理商开始在全球范围内进行商品交易,如荷兰东印度公司的代理人。18 至 19 世纪工业革命期间,“Agent”的职能进一步拓展到保险、房地产等新兴行业。此外,在 19 世纪,政府及情报领域也开始广泛使用“Agent”,比如情报特工和便衣警察,在维护国家安全与社会秩序方面发挥了不可或缺的作用。 在 20 世纪至 21 世纪的现代社会中,“Agent”一词涵盖了多种职业角色,尤其在娱乐和体育行业中,它指的是艺人经纪人和运动员经理等职位。这些专业经理人负责安排试镜、进行合同谈判以及规划职业生涯,确保客户能在竞争激烈的行业中获得成功。此外,“Agent”还包括劳务代理和招聘代理(猎头)。劳务代理提供劳动力匹配服务,帮助求职者找到合适的工作,并为雇主提供所需的人才,如劳务派遣公司将临时员工派遣到需要额外支持的企业单位。而猎头则专门为公司招募高技能或高级管理职位的专业人士,通过筛选简历、安排面试并评估候选人来帮助企业找到最合适的员工。凭借深厚的行业知识与广泛的联系网络,这些猎头为企业与顶尖人才之间搭建了重要桥梁。 从词源和词的历史变迁中,大家就能看到,“Agent”这个词本身就具有行动的含义,到了后期又附加了“替身”的意思。且无论哪个领域,“Agent”都多数情况下都在指:“拥有行动的替身,都是替代他人做某事“。 设计和实现一个智能体通常涉及以下几个步骤: 1. 定义目标:明确智能体需要实现的目标或任务。 2. 感知系统:设计传感器系统,采集环境数据。 3. 决策机制:定义智能体的决策算法,根据感知数据和目标做出决策。 4. 行动系统:设计执行器或输出设备,执行智能体的决策。 5. 学习与优化:如果是学习型智能体,设计学习算法,使智能体能够从经验中改进。 智能体在现代计算机科学和人工智能领域是一个基础且重要的概念。它们通过自主感知和行动,在广泛的应用领域中发挥重要作用。从简单的反应型系统到复杂的学习型系统,智能体技术的不断发展和应用正在改变我们的生活方式和工作模式。
2025-01-09
ai agent 框架有哪些
目前常见的 AI Agent 框架主要有以下几种: 1. LangChain 的 LangGraph:通过简化标准底层任务,如调用 LLM、定义和解析工具、链接调用等,使入门变得容易,但可能创建额外抽象层,增加调试难度。 2. 亚马逊 Bedrock 的 AI Agent 框架。 3. Rivet:拖放式 GUI 的 LLM 工作流构建器。 4. Vellum:用于构建和测试复杂工作流的 GUI 工具。 此外,行业里常用于为 LLM 增加工具、记忆、行动、规划等能力的框架是 LangChain,它把 LLM 与 LLM 之间以及 LLM 与工具之间通过代码或 prompt 的形式进行串接。AutoGPT 被描述为使 GPT4 完全自主的实验性开源尝试,也是一种重要的框架。但需要注意的是,当前大多数代理框架都处于概念验证阶段,还不能可靠、可重现地完成任务。
2025-01-08
如何利用多轮对话做Agent问答
利用多轮对话做 Agent 问答可以从以下几个方面考虑: 1. 从产品角度: 思考用户为何想使用,例如通过探索历史新闻让用户更好地了解自身背景、成长环境,从中学习成长并获得有趣互动体验。 明确 Agent 是谁及其性格,比如设定为知识渊博、温暖亲切、富有同情心的历史新闻探索向导,负责新闻解析和历史背景分析。 确定提供新闻的时间,如用户出生那天及那一周的重要新闻事件。 规划除新闻外的能力,如提供历史背景分析、相关画作、生活方式分析,甚至加入神秘主义者和心理学家角色回应用户。 设计多 Agent 出场顺序和使用方式,通过多角色互动设计,让用户体验多层次对话,从基本问答到深度讨论,逐步引导用户探索。 2. 基于 LLM 的大脑模块: 自然语言交互方面:LLM 应具备多轮对话能力,能理解自然语言并生成连贯、上下文相关的回复,还应具备出色的生成能力和意图理解能力,但要注意模糊指令可能带来的挑战。 知识方面:包括语言知识(词法、句法、语义学和语用学)、常识知识(如药和伞的用途)、专业领域知识(如编程、医学),但要注意知识可能过时或错误,需通过重新训练或编辑 LLM 解决。 记忆方面:具备记忆机制,存储过去的观察、思考和行动,通过提高输入长度限制、记忆总结、用向量或数据结构压缩记忆等策略提升记忆,Agent 能检索记忆以访问相关信息,包括自动检索和交互式记忆对象。 推理和规划方面:基于证据和逻辑进行推理,这对解决问题和决策至关重要。
2025-01-08