Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

普通人如何在AI时代获取就业机会?

Answer

在 AI 时代,普通人获取就业机会可以从以下几个方面考虑:

  1. 关注新行业:AI 技术开辟了新的行业领域,会产生更多的就业需求。尽管技术变革难以准确预测,但保持对新领域的关注,提升自身认知,避免选择已呈衰落趋势的行业。
  2. 发展独特技能:技术专业人士应发展 AI 难以替代的技能,如团队建设、跨文化交流、创新解决方案设计等,将技术智慧与人际交往能力相融合。
  3. 重新规划职业生涯:对于从事可能被 AI 取代风险工作的人,需要重新思考职业规划,学习新技能或转向更需要人类特质的工作领域。
  4. 利用热门场景:像护肤、健身、穿搭和考编考证等热门场景,相关的 AI 应用受到关注和使用,为大学生等群体提供了一定的就业机会。
  5. 适应企业需求:企业在生产环节中对 AI 应用的使用逐渐增加,了解并适应这一趋势,有助于获取相关就业机会。

同时,如果 AI 导致就业失衡,政府可以通过税收调节,如推行全民基本收入(Universal basic income - UBI)来平衡差异。总之,要保持乐观,不断提升自己以适应时代变化。

Content generated by AI large model, please carefully verify (powered by aily)

References

智变时代 / 全面理解机器智能与生成式 AI 加速的新工业革命

充分发展的行业会被完全自动化,现在的AI本质上也是人类经验的自动化回放,因此会雇佣更少的人力;但技术也开辟了新的行业,这些领域需要更多的人手。而且,因为计算的不可约,事物通常会变得越来越复杂,更多的知识和组织结构将会出现,这也就开辟了需要更多人类参与的“前沿”领域。尽管有时会突然涌现出新的技术变革,但在人类职业上出现显著变化通常需要一代人的时间。想象一下你在第二次工业革命的前夕,你能预知所有将在未来半个世纪内出现的神奇技术么?例如大规模生产、电力、汽车、电话、飞机等等。这些技术哪些会扼杀工作机会,哪些又会创造就业机会呢?你一定预测不到!所以请保持乐观,新机会一定存在的;需要做的就是提升自己的认知,不要在当下选择已经是趋势之外的行业就行。最后,如果AI确实抢走了大多数人类的工作机会,那也意味着让部分企业以及某些精英人类赚了更多的钱,政府可以用税收来平衡这个差异,全民基本收入(Universal basic income - UBI)就是一个很好的解决方法。

生成式人工智能:技术就业市场的新篇章

在AI时代,技术专业人士需要发展那些AI难以替代的技能。这包括团队建设、跨文化交流、创新解决方案的设计等。AI虽然可以输出代码,但它无法建立团队、跨越文化界限进行交流,或者激发团队的创造力。技术就业市场将始终为那些能够融合技术智慧和人际交往能力的人提供机会。同时,对于那些从事现在可能面临被AI取代风险的工作的技术工作者来说,他们需要重新思考自己的职业生涯规划。这可能意味着学习新技能,或者转向那些更需要人类特质的工作领域。

2024钉钉AI助理白皮书-人人都是创造者-钉钉&财商学院-38页.pdf

大学生最喜欢创建的AI助理,藏在护肤、健身、穿搭和考编考证这些场景时下,护肤美妆、流行穿搭、养生健身是社交媒体上的热门话题。大学生作为社交媒体的主流用户群体,乐于分享和交流与个人形象、生活方式有关的内容,这种娱乐方式也带动了对相关AI应用的关注和使用。其次,这些领域直接关系到大学生的日常生活和个人形象管理,而AI应用能够提供高质量的即时反馈与有效互动,同时成本远低于真人咨询和服务。例如健身AI应用实时追踪锻炼进度,呈现效果并提供针对性建议,穿搭AI应用可以快速展示不同搭配的效果,一定程度上可以满足大学生日常生活的实用需求。而考编考证类AI应用与大学生的职业规划紧密相关。在就业竞争激烈的背景下,这些应用能够低成本地、有针对性地,帮助他们更有效地准备考试和面试,提高就业机会。钉钉AI助理白皮书AI酷爱健身的小美考研小助手考公小助手美妆小仙灵企业创建的AI助理,大多直接进入生产环节和深入业务场景,数量逐渐超过流程审批应用企业在生产环节中使用AI应用的趋势正在逐渐增加,并在某些情况下已经超越流程审批类应用数量。过往在数字化时代,大量流程审批类应用奠定了一

Others are asking
有哪些好用的ai可视化工具
以下是一些好用的 AI 可视化工具: 1. Lucidchart:流行的在线绘图工具,支持多种图表创建,包括逻辑视图、功能视图和部署视图,用户可通过拖放界面轻松创建架构图。 2. Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能,如逻辑视图(类图、组件图)、功能视图(用例图)和部署视图(部署图)。 3. ArchiMate:开源的建模语言,专门用于企业架构,支持逻辑视图的创建,可与 Archi 工具配合使用,该工具提供图形化界面创建模型。 4. Enterprise Architect:强大的建模、设计和生成代码的工具,支持创建多种架构视图,包括逻辑、功能和部署视图。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富模板用于创建逻辑视图、功能视图和部署视图等。 6. draw.io(现称为 diagrams.net):免费的在线图表软件,允许创建各种类型的图表,包括软件架构图,支持创建逻辑视图和部署视图等。 7. PlantUML:文本到 UML 的转换工具,通过编写描述性文本自动生成序列图、用例图、类图等,帮助创建逻辑视图。 8. Gliffy:基于云的绘图工具,提供创建各种架构图的功能,包括逻辑视图和部署视图。 9. Archi:免费的开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图的创建。 10. Rational Rose:IBM 的 UML 工具,支持创建多种视图,包括逻辑视图和部署视图。 此外,Google DeepMind 发布了一套可视化工具,可用于了解语言模型的内部工作原理,提取有意义的特征,揭示语言模型内部的激活状态。详细原理解释:https://xiaohu.ai/p/12186 链接:https://x.com/imxiaohu/status/1818825233778061560 。
2025-02-22
AI文档
以下是为您整理的关于 AI 文档的相关内容: 如何使用 AI 来做事: 越来越强大的人工智能系统正快速发布,如 Claude 2、Open AI 的 Code Interpreter 等,但似乎没有实验室提供用户文档,用户指南多来自 Twitter 影响者。 作者基于经验为学生和感兴趣的读者准备入门指南,侧重于如何选择正确工具做事,提前阅读相关任务类型可能有帮助。 Cursor 进阶: 模块结构上的使用,目的是让 AI 输出更多理解信息,使用后 AI 回复会随机带图便于查阅。 意在以各种形式提升 AI 对所做事情的理解,方便用户理解以持续控制 AI 产出。 有更新提示词限制 AI 产出的情况。 建议配置各种文档,如初始化文档、目录文档、关联模块文档、全局文档等。 AI 文章排版工具: 主要用于自动化和优化文档布局和格式,处理学术论文和专业文档时很有用。 一些流行的工具包括:Grammarly(提供排版功能改进风格)、QuillBot(改进文本清晰度和流畅性)、Latex(学术论文排版常用,有 AI 辅助编辑器和插件)、PandaDoc(文档自动化平台)、Wordtune(重新表述和改进文本)、Overleaf(在线 Latex 编辑器)。 选择合适工具取决于具体需求,如文档类型、出版标准和个人偏好。学术论文常用 Latex 和 Overleaf,一般文章和商业文档可用 Grammarly 和 PandaDoc 等。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-02-22
用AI建立本地的知识库,推荐哪些?
以下是为您推荐的用 AI 建立本地知识库的方法和相关软件: 1. AnythingLLM: 包含了所有 Open WebUI 的能力,并额外支持选择文本嵌入模型和向量数据库。 安装地址:https://useanything.com/download 。 安装完成后进入配置页面,主要分为三步:选择大模型、选择文本嵌入模型、选择向量数据库。 构建本地知识库时,有 Workspace 的概念,可创建独有的 Workspace 与其他项目数据隔离。首先创建工作空间,然后上传文档并在工作空间中进行文本嵌入,接着选择对话模式(包括 Chat 模式和 Query 模式),最后进行测试对话。 2. Obsidian 加 Cursor: 可利用 Obsidian 的浏览器剪藏插件和 AI 插件,但配置复杂,可能存在恶性 Bug 。 可以用 Cursor 等 AI IDE 解决问题,主要有三类作用:帮助用模糊问题检索笔记库;基于笔记库进行研究,结合多个笔记软件给出建议;生成和修改笔记,如生成整个笔记文件或修改笔记文案。 希望以上内容对您有所帮助。
2025-02-22
有没有专业分析和修改简历的AI
以下是一些专业分析和修改简历的 AI 工具: 1. Kickresume 的 AI 简历写作器:使用 OpenAI 的 GPT4 语言模型自动生成简历,能为简历摘要、工作经验和教育等专业部分编写内容,并保持一致语调。 2. Rezi:受到超过 200 万用户信任的领先 AI 简历构建平台,使用先进的 AI 技术自动化创建可雇佣简历的每个方面,包括写作、编辑、格式化和优化。 3. Huntr 的 AI 简历构建器:提供免费的简历模板,以及 AI 生成的总结/技能/成就生成器和 AI 驱动的简历工作匹配。 此外,还有超级简历优化助手,能帮助用户优化简历提高求职成功率。您还可以查看这里获取更多 AI 简历产品:https://www.waytoagi.com/category/79 。 希望这些信息对您有所帮助,您可以根据自己的需要选择最适合您的工具。
2025-02-22
我是高中历史老师,我想知道用什么AI模型可以“将自己的PPT变成一篇论文”
目前在将 PPT 转换为论文方面,GPT 模型可能会有所帮助。例如,在“教育:一个历史老师用 GPT 给学生讲课”的案例中,学生利用 GPT 相关功能进行模拟体验,并根据要求撰写论文,包括分析模拟的准确性、进行事实核查等。 另外,Claude 模型也能在相关工作中发挥作用。比如可以帮助快速寻找符合条件的论文、提取精炼论文中的信息,甚至找到适合的 PPT 制作工具并指导使用。 此外,一些神经网络大模型通过预测下一个字的方式生成文字,这种方式具有一定的创意性,且可拓展到图像、声音等领域。但需要注意的是,AI 的预测不一定保证完全正确。
2025-02-22
AI案例
以下是一些 AI 在不同领域的应用案例: 活动策划方面: 1. 活动主题及内容生成:根据活动目标、参与者背景等信息,AI 可以生成合适的活动主题和内容框架建议,例如通过对话生成模型提出活动主题和议程草案。 2. 邀请函和宣传文案生成:AI 可以基于活动信息生成吸引人的邀请函和宣传文案,增强宣传效果。例如微软在 Build 大会上,使用 AI 生成了 8000 多份个性化的邀请函。 3. 现场活动管理:利用计算机视觉、语音识别等,AI 可以辅助管理活动现场的人流、秩序等。例如基于人群密度的通道引导、实时翻译等。 4. 虚拟助手:AI 对话系统可以作为虚拟活动助手,为参与者提供信息查询、问题咨询等服务。例如,Replika 提供了智能的虚拟活动助手应用。 5. 活动反馈分析:AI 可以自动分析活动反馈(文字、语音等),总结关键观点和改进建议。例如飞书和钉钉的会议总结功能。 6. 活动营销优化:基于参与者行为数据,AI 可以优化营销策略,实现个性化营销。例如,针对目标受众的定向广告投放等。 其他领域: 1. 客户服务聊天机器人中的自然语言处理:具有适应性,能根据大量数据集训练对实时客户消息做出响应,并可能随着系统学习而增加个性化;具有自主性,基于客户文本输入生成类似人类的输出,回答查询、帮助客户查找产品和服务或发送有针对性的更新,操作时几乎不需要人工监督或干预。但可能存在无意包含不准确或误导信息等监管问题。 2. 医疗保健分诊系统的自动化:具有适应性,能根据医疗数据集、患者记录和实时健康数据分析预测患者病情;具有自主性,为医疗专业人员或直接为患者生成有关患者症状可能原因的信息,并推荐潜在的干预措施和治疗方法。 扣子案例: 1. 2. 3. 4. 5. 6. 7. 8. 9.
2025-02-22
AI在教育和生活领域的应用中有哪些新增就业机会?
以下是 AI 在教育和生活领域应用中可能带来的新增就业机会: 教育领域: 个性化 AI 辅导的开发与维护人员,以更好地满足学生和教师的需求,如实时反馈和作业批改。 教育科技(EdTech)产品的研发和运营人员,随着市场对教育科技的需求持续增长,相关岗位需求增加。 生活领域: 专注于视频字幕生成和长视频切片等 AI 工具的开发、优化和运营人员,例如像 Submagic 这样的工具。 探索 AI 在各种生活场景新应用的创新人员,随着 AI 变得更强大和更多新的使用方式被发掘,会有更多相关应用出现,从而创造新的就业岗位。 总体而言,AI 虽然可能导致一些岗位消失,但也会在其发展过程中创造出众多新的高技能就业机会。
2024-12-03
普通人的AI之路
普通人在 AI 领域有很多创造奇迹的机会和途径: 1. 参与 AI 艺术节:例如第一届 AI 艺术节 AIAF 面向全球创作者和 AI 爱好者发起了以“爱恨情仇”为命题的共同创作行动,收到了大量投稿,其中有相当比例的优秀作品来自此前并非从事视觉创作的跨界人士。 2. 让 AI 走进工作和生活: 万能公式法:问 AI 【一个(xxx 职业)需要具备哪些知识?】,获取知识框架,再针对小点提问,辅助深度思考。 寻找优质信息源:像没有技术背景的普通人,可在「即刻」App 的“”等免费圈子获取前沿信息,也可在必要时溯源至 Twitter 和相关官网。同时,为应对信息爆炸,可尝试只掌握最好的产品、解决具体问题、关注核心能力、关注需求和逻辑、先提升认知等技巧。 3. 了解 AGI 相关内容:如阅读 AGI 万字长文,了解 AI 多模态大爆发、应用现状、发展方向、可能带来的影响等多方面内容。
2025-02-21
普通人怎么学习ai赚钱
以下是为普通人学习 AI 赚钱提供的一些指导: 对于零基础小白: 1. 网上有很多基础课程可供选择,例如科普类教程。 2. 阅读 OpenAI 的官方文档,理解每个参数的作用和设计原理,避免在面试中出现知识盲区。 3. 推荐使用一些练手的 Prompt 工具。 岗位技能要求: 1. 具备综合的个人能力,包括市场调研、观察目标群体工作流、创造并拆解需求、选型现有 AI 解决方案做成产品来解决需求、抽象并集成成为一个互联网 APP 产品、写 PRD、画 APP 产品原型图、组织团队进行 APP 产品开发。 案例分享: 1. 二师兄在房地产行业从业二十年,计算机零基础。他从二月开始学习 AI 绘画,三月啃完相关教程并开始炼丹,四月尝试 AI 变现项目,五月加入 Prompt battle 社群学习 Midjourney。 需要注意的是,公司招聘 AI 提示词工程师岗位时,通常不会多招其他懂 AI 的岗位,因此需要个人具备较为全面和敏捷的能力。同时,若想将 AI 用于赚钱,还需不断探索和实践,找到适合自己的变现途径。
2025-02-21
是否有《普通人如何抓住deepseek红利》清华大学链接
以下是关于《普通人如何抓住 DeepSeek 红利》的相关链接: 清华大学新闻与传播学院撰写的报告:https://waytoagi.feishu.cn/record/T2yDrJ4NjeJFmccnBgzc5A7InIq 相关 PPT 课件:https://bl7rsz9526.feishu.cn/wiki/Gec9wxIGhiqSsAkrqzPc3ObLnpb (由清华大学新闻与传播学院、新媒体研究中心、元宇宙文化实验室、@新媒沈阳团队的陶炜博士生团队制作)
2025-02-20
普通人怎么开展ai应用层的创业
对于普通人开展 AI 应用层的创业,以下是一些建议和分析: 1. 基础设施层:布局投入确定性强,但资金需求巨大,入行资源门槛高,未来更多由“国家队”负责。普通人若无强资源,应谨慎入局,可考虑“合作生态”的切入机会。 2. 技术层:处于技术爆炸期,迭代速度极快。若团队规模不大,需慎重考虑技术迭代风险。基础通用大模型研发烧钱且竞争激烈,非巨无霸公司不建议考虑。 3. 应用层:是一片广阔蓝海,当前从业者增加,虽有相关产品涌现,但成熟应用和“杀手级”应用较少,对于普通个体和小团队,强烈推荐重点思考和布局,拥有超级机会和巨大发展空间。 在应用层创业的具体方向上,比如智能体领域: 智能体可以简单理解为 AI 机器人小助手,类似移动互联网中的 APP 应用。 有很多公司已关注 AI 应用层的产品机会,如在 C 端,有社交方向的用户注册后先捏自己的 Agent 再聊天等有趣场景;在 B 端,有帮助商家搭建 Agent 的机会。 国内有众多智能体开发平台,如字节的扣子、腾讯的元器、Dify.AI 等。
2025-02-19
普通人和小企业在大企业垄断的ai时代该如何破局
在大企业垄断的 AI 时代,普通人和小企业可以考虑以下破局方式: 1. 对于普通人: 关注并参与关于在 AGI 降临的世界中个体如何生存、创造价值以及新的分配方式的思考、讨论和争取。 2. 对于小企业: 利用欧盟的相关政策,如监管沙盒等措施降低合规成本,促进科技创新。具体包括制约单方面强加给中小企业和初创企业的不公平合同条款,采取规制格式合同的方式使显著不公平的条款无效,促进监管沙盒广泛而平等的参与,并减免参加费用和提供部署前服务等增值服务,适当降低评估费用或其他合规要求,在处罚规定中考虑中小企业的利益和经济活力,相关准则的制定充分考虑中小企业需求以降低合规负担。 在 AI 产业链中,应用层存在超级机会和巨大发展空间,小企业可以重点思考和布局应用层。但基础设施层入行资源门槛较高,需谨慎入局,可考虑“合作生态”的切入机会;技术层迭代速度快,规模不大的团队须慎重考虑“技术迭代风险”,基础的通用大模型非巨无霸公司不建议考虑。
2025-02-19
清华大学:普通人如何抓住DeepSeek红利.pdf​
以下是关于“清华大学:普通人如何抓住 DeepSeek 红利.pdf”的相关内容: 本报告由清华大学陶炜博士生团队撰写,探讨了普通人如何利用 DeepSeek 抓住 AI 红利。报告详细介绍了 DeepSeek 的应用场景,包括智能对话、文本生成、语义理解、计算推理等,并通过工作、学习、生活和社交等多个实际场景展示了如何利用 DeepSeek 解决问题。文章还强调了提示语设计的重要性,指出通过精准的提示语可以引导 AI 生成高质量的内容,并提出了提示语设计的策略和技巧。 此外,还有《张梦飞:为什么 DeepSeekR1 是推理模型?那 GPT4 是什么模型?我的定义和思考》一文。在近年的大模型发展中,推理能力一直被视为衡量模型智能水平的关键因素。随着 DeepSeekR1 和 O1 等模型的出现,一个全新的概念浮现——推理模型(Reasoning Model)与非推理模型(NonReasoning Model)之间的根本区别。文章通过详细解析推理模型与非推理模型的训练路径、推理能力的形成机制、以及它们在思维链上的关键差别,帮助大家理解为何 DeepSeekR1 这样的模型被称为推理模型,以及它如何突破了传统 LLM 的局限性。 相关链接:
2025-02-16
个人如何通过AI获取收入
个人通过 AI 获取收入的方式主要有以下几种: 1. 学习 AI 技术,从事相关高薪工作,如成为数据科学家、机器学习工程师等,在金融、医疗、制造业等行业找到工作机会,获得不错的收入。但能否赚钱取决于个人的学习能力、实际应用能力、对市场和商业的理解等,需要持续学习和实践。 2. 在公司给自己贴“AI 大神”标签,提升个人影响力。 3. 在社交网络分享相关成果,扩大影响力。 4. 承接项目开发,例如通过增加画板节点,结合公司 Logo 生成一系列公司主题的产品邮票,或者承接类似需求,扩充工作流以适应更复杂的业务。 5. 对于内容创作,利用生成式 AI 进行艺术创作,从消费者“仅为了娱乐”地创造内容,到创作者或个体创业者通过内容实现盈利。
2025-02-05
如何获取视频反向提示词
以下是获取视频反向提示词的一些方法: 1. 在 Stable Diffusion 中,Embedding 相当于提示词打包功能,可将大量固定不变且文本量较大的负向提示词汇总到一个文件里。常见的负向起手式能排除一些低质量、坏手、姿态错误等情况。若不想使提示词复杂,可使用打包好的负向提示词 Embedding,达到一词顶一百词的效果。例如 EasyNegative,官方推荐其搭配二次元模型使用。 2. 对于某些视频生成工具,如云端 Comfyui 出图结合 AI 视频软件的方法: 打开相关工作流链接,如 https://www.esheep.com/app/5977 ,注册或登录。 步骤 1:红色框选择生成图片的大模型,绿色框添加提示词,蓝色框填写反向提示词。 步骤 2:红色框设置大小确保是 16:9 的比例,绿色框修改参数,不理解时可保持默认。 步骤 3:红色框上传深度图。 步骤 4:点击立即生成,在生成历史中下载图片。
2025-01-23
AI写作 (一)AI写作的优势和应用场景 (二)利用AI辅助新闻通讯稿写作的方法:如获取灵感、优化语言等
AI 写作具有以下优势和应用场景: 优势:能够快速生成内容,提高写作效率;可以提供新的思路和创意。 应用场景:广泛应用于新闻通讯、营销文案、小说创作等领域。 利用 AI 辅助新闻通讯稿写作的方法包括: 头脑风暴:在写作前让 AI 提供选题建议或内容方向。 查找资料:借助 AI 快速汇总相关主题信息,节省查阅资料时间。 优化表达:写完初稿后,让 AI 检查语法、改善表达。 拓展思路:写作卡壳时,询问 AI 以开拓新的思路。 需要注意的是,写作不仅是产出内容,更是思考的过程,不应过度依赖 AI 写作,而应注重提升自身写作技巧和思考深度。同时,大语言模型在写作中很有用,如用于集思广益、头脑风暴等,但也存在编造故事产生错误信息的问题,需要鉴别信息准确性。另外,选好模型、克服平庸、显式归纳文本特征等方法有助于用 AI 写出好文字。
2025-01-13
以下是大致可以采用的步骤来实现这样一个能自动在大语言模型网站生成不同场景机器人图片的程序(以下以Python语言示例,不过不同平台具体实现会有差异且需遵循对应网站的使用规则和接口规范): ### 1. 选择合适的大语言模型网站及确认其API(应用程序编程接口)情况 不同大语言模型网站对于图片生成通常会提供相应的API来允许外部程序与之交互,比如部分知名的AI绘画相关平台。你需要先确定要使用哪些网站,然后去注册开发者账号等,获取对应的API Key以及详细的API文档,了解如何通过代码向其发起图
以下是为您整合的相关内容: Ollama 框架: 1. 支持多种大型语言模型,如通义千问、Llama 2、Mistral 和 Gemma 等,适用于不同应用场景。 2. 易于使用,适用于 macOS、Windows 和 Linux 系统,支持 cpu 和 gpu,用户能轻松在本地环境启动和运行大模型。 3. 提供模型库,用户可从中下载不同模型,这些模型有不同参数和大小以满足不同需求和硬件条件,可通过 https://ollama.com/library 查找。 4. 支持用户自定义模型,例如修改模型的温度参数来调整创造性和连贯性,或者设置特定的系统消息。 5. 提供 REST API 用于运行和管理模型,以及与其他应用程序的集成选项。 6. 社区贡献丰富,包括多种集成插件和界面,如 Web 和桌面应用、Telegram 机器人、Obsidian 插件等。 7. 安装:访问 https://ollama.com/download/ 进行下载安装。安装完后,确保 ollama 后台服务已启动(在 mac 上启动 ollama 应用程序,在 linux 上通过 ollama serve 启动),可通过 ollama list 确认。 基于 COW 框架的 ChatBot 实现步骤: 1. COW 是基于大模型搭建的 Chat 机器人框架,将多模型塞进自己的微信里实现方案。 2. 基于张梦飞同学的教程: 。 3. 实现内容: 打造属于自己的 ChatBot(文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等)。 常用开源插件的安装应用。 4. 正式开始前需知: ChatBot 相较于在各大模型网页端使用区别:本实现思路需要接入大模型 API 的方式实现(API 单独付费)。 风险与注意事项: 微信端因非常规使用,有封号危险,不建议主力微信号接入。 只探讨操作步骤,请依法合规使用。 大模型生成的内容注意甄别,确保所有操作均符合相关法律法规要求。 禁止用于任何非法目的。 处理敏感或个人隐私数据时注意脱敏,以防滥用或泄露。 5. 多平台接入:微信、企业微信、公众号、飞书、钉钉等。 6. 多模型选择:GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等。 7. 多消息类型支持:能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能。 8. 多部署方法:本地运行、服务器运行、Docker 的方式。
2024-12-29
如何用ai获取短视频流量
以下是一些利用 AI 获取短视频流量的方法: 1. 前期筹备: 选择几个固定的话题在全网短视频造势,内容可从春晚的筹备倒计时、提前剧透、节目制作背后的花絮、AI 热点新闻、“我要上春晚”、春节回不了家等温情内容等方向切入选题。 提前准备企业微信号,后续建微信群裂变。先把直播时间和宣传海报确定下来,提前一周做直播预约和裂变动作,视频号直播预约量越大,对应的公域流量也会多匹配一些。 以群里 240 个种子用户作为初始流量入口,通过转发裂变撬动更大的流量。准备一个直播预约海报(可同时放几个平台的预约二维码),一篇公众号软文提前预约蓄水。直播时通过福袋、转发等再撬动一波裂变。 提前测试直播和 AI 视频,轮播形式有很大不确定性,抖音视频号直播都会打击纯无人直播,所以要提前几天测试直播流程和形式,如果能真人和 AI 结合会更容易过审。 2. 案例参考: 可参考一些爆火短视频示例,如用 AIGC 制作的爆款短视频,包括 Runway Gen1 相关视频、郑钦文澳网比赛 AI 处理视频等。 还可参考如“Robot Learning Moonwalk Dance Mocap Test _ NOT Real _ Incredible Wonder Studio Ai shorts”等相关视频。
2024-12-08
帮我写一个可以训练的分类器代码, python 代码,目的是将样本的扰动分为 0,0.001,0.003,0.005 四类,按照以下步骤写 第一步:导入需要的库 第二步:加载位于/public/xdw/ls/signaldefense/AS/perturbed_data.npy 的数据 第三步:获取数据样本的扰动值 第四步:判断扰动值的大小,比如扰动值为 0,则加一计数 第五步:打印出判断各类扰动值的正确率
以下是为您生成的 Python 代码示例,用于实现将样本的扰动分为 0、0.001、0.003、0.005 四类的分类器: ```python import numpy as np 第一步:导入需要的库 import numpy as np 第二步:加载数据 data = np.load 第三步:获取数据样本的扰动值 perturbation_values = data 假设扰动值在第二列 第四步:判断扰动值的大小并计数 count_0 = 0 count_0_001 = 0 count_0_003 = 0 count_0_005 = 0 for value in perturbation_values: if value == 0: count_0 += 1 elif value == 0.001: count_0_001 += 1 elif value == 0.003: count_0_003 += 1 elif value == 0.005: count_0_005 += 1 第五步:计算正确率 total_samples = len accuracy_0 = count_0 / total_samples accuracy_0_001 = count_0_001 / total_samples accuracy_0_003 = count_0_003 / total_samples accuracy_0_005 = count_0_005 / total_samples print print print print ```
2024-12-05