直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

AI 领域的前沿研究成果

回答

以下是 AI 领域的一些前沿研究成果:

  • 在现代 AI 理解方面,有“AI 典藏”资源列表,包含对 Transformer 和 Latent Diffusion 模型的介绍,以及技术学习资源、构建大型语言模型的实用指南和 AI 市场分析等。其中,2017 年谷歌发布的“Attention is All You Need”论文向世界介绍了 Transformer 模型,开启了生成 AI 的时代。
  • 在医疗领域,ChatGPT 和 Google Bard 等技术加速了医疗健康生物制药的研究。例如,AI 提前三年诊断胰腺癌;两名高中生与医疗技术公司合作发现与胶质母细胞瘤相关的新靶基因;AI 帮助筛选抗衰老的高效药物候选物;利用 AI 寻找阿尔兹海默症的治疗方法等。
  • 在其他数据模态方面,如 DreamFusion:Text-to-3D using 2D diffusion(2022),是来自 Google 和加州大学伯克利分校的研究人员基于 NeRF 从 2D 输入生成 3D 图像的工作。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

入门经典必读

作者:[Derrick Harris](https://a16z.com/author/derrick-harris/),[Matt Bornstein](https://a16z.com/author/matt-bornstein/)和[Guido Appenzeller](https://a16z.com/author/guido-appenzeller/)原文地址:https://a16z.com/2023/05/25/ai-canon/译者:通往AGI之路后半部分:[目录:a16z推荐进阶经典](https://ywh1bkansf.feishu.cn/wiki/EXX1w3QyFiBz8fknLFYce7gvnug)人工智能的研究正在以指数级别的速度增长。对于AI专家来说,跟上所有新发布的内容已经非常困难,对于初学者来说更是难上加难。因此,在这篇文章中,我们分享了一份我们信赖的、用于更深入了解现代AI的精选资源列表。我们称之为“AI典藏”,因为这些论文、博客文章、课程和指南在过去几年中对该领域产生了巨大影响。我们首先对Transformer和Latent Diffusion(潜在扩散)模型进行了简单的介绍,这些模型正在推动当前的AI浪潮。接下来,我们深入研究了技术学习资源;构建大型语言模型(LLMs)的实用指南;以及AI市场的分析。最后,我们列出了一份里程碑式研究成果的参考列表,从2017年谷歌发布的“Attention is All You Need”开始——这篇论文向世界介绍了Transformer模型,并开启了生成AI的时代。

医疗:健康生物制药的研究

chatgpt,google bard在日常工作生活中很有用,这些技术也极大加速了医疗健康生物制药的研究,ai已经在抗癌,抗衰老,早期疾病防治等的研究应用中起着重要作用。以下是一些最新的进展:1、ai提前三年诊断胰腺癌,如果当年有这个,也许乔布斯还在世:https://hms.harvard.edu/news/ai-predicts-future-pancreatic-cancerImage:Rasi Bhadramani/iStock/Getty Images Plus2、两名高中生与医疗技术公司Insilico Medicine及其人工智能平台PandaOmics合作,发现了与胶质母细胞瘤相关的三个新靶基因,这些基因对于有效对抗这种癌症至关重要:https://finance.yahoo.com/news/teenage-geniuses-ai-uncover-cancer-163541619.html3、ai帮助抗衰老;由Integrated Biosciences领导的一项最新研究通过使用人工智能筛查了超过800,000种化合物,专家们发现了三种高效的药物候选物,其药理学性质优于目前已知的抗衰老物质:https://www.earth.com/news/artificial-intelligence-identifies-new-anti-aging-compounds/4、使用ai寻找阿尔兹海默症的治疗方法;亚利桑那大学与哈佛大学共同利用人工智能对健康神经元在疾病进展过程中的分子变化研究,以识别阿尔茨海默病的原因和潜在药物靶点。https://medicalxpress.com/news/2023-05-scientists-ai-drug-alzheimer.html

进阶:a16z推荐进阶经典

[DreamFusion:Text-to-3D using 2D diffusion](https://arxiv.org/pdf/2209.14988.pdf)(2022):来自Google和加州大学伯克利分校的研究人员的工作,基于NeRF从2D输入生成3D图像。([网站](https://dreamfusion3d.github.io/))特别感谢[Jack Soslow](https://a16z.com/author/jack-soslow/)、[Jay Rughani](https://a16z.com/author/jay-rughani/)、[Marco Mascorro](https://a16z.com/author/marco-mascorro/)、[Martin Casado](https://a16z.com/author/martin-casado/)、[Rajko Radovanovic](https://a16z.com/author/rajko-radovanovic/)和[Vijay Pande](https://a16z.com/author/vijay-pande/)对本文的贡献,也感谢整个a16z团队总是能对AI的最新进展进行积极的讨论。还要感谢[Sonal Chokshi](https://a16z.com/author/sonal-chokshi/)和加密货币团队在公司建立了一系列经典内容。

其他人在问
AI画产品原型
目前有一些基于人工智能生成内容的工具(AIGC)可以用于产品原型设计,以下为您介绍一些流行的工具: 1. UIzard:利用 AI 技术生成用户界面,可根据提供的信息快速生成 UI 设计。 2. Figma:基于云的设计工具,提供自动布局和组件库,其社区开发的一些 AI 插件可增强设计流程。 3. Sketch:流行的矢量图形设计工具,插件系统中有利用 AI 技术辅助设计的插件,如自动生成设计元素。 这些工具的 AI 功能通常包括自动生成设计元素、提供设计建议、优化用户界面布局等,以提高设计效率。随着 AI 技术的发展,未来可能会有更多专门针对产品原型设计的 AIGC 工具出现。 以下为您提供一些 AI 产品在艺术和音乐场景的案例: 1. 艺术:央美毕业展上的 AIGC 简介:今天去看了央美的毕业展,全程惊叹,不仅看到了 stable diffusion 和 Midjourney 的二创作品,甚至还有一个完成度相当高的集成了 prompts generator 和 Midjourney API 的成熟产品。 分类:艺术/音乐 前往查看: 入库时间:2023/11/13 2. 设计:包装设计 简介:包装设计的一些应用 分类:艺术/音乐 前往查看: 入库时间:2023/11/13 3. AIGC 时代的设计新范式 简介:中国传媒大学客座硕导的分享 分类:艺术/音乐 前往查看: 入库时间:2023/11/13 4. 设计:车企利用 SD 设计汽车原型 简介:意柯那(汽车圈子的设计公司)的工作流 分类:艺术/音乐 前往查看: 入库时间:2023/11/13
2024-11-21
用AI写公众号文章
利用 AI 写公众号文章的关键在于提供清晰且具有指导性的提示词(prompt): 1. 基本提示词能让 AI 生成基础文章,若想提升质量,可提供更详细、具创意的提示词,以更好地捕捉文章的语气、风格和重点。例如:“请根据我们收集的关于 OpenAI 回应马斯克言论的资讯,创作一篇既深入又易于理解的科技资讯文章。文章应该有一个吸引人的标题,开头部分要概述事件的背景和重要性,主体部分详细分析 OpenAI 的回应内容及其可能产生的影响,结尾处提出一些引人深思的问题或观点。” 2. 提示词不仅为 AI 提供明确指导,还设定文章基本结构和内容要求,AI 会据此生成结构完整、内容丰富、观点鲜明的文章,但最终产出的内容可能需要微调,以符合预期和公众号风格。 3. 此外,还可通过以下方式利用 AI 辅助写作: 草拟各类初稿,如博客文章、论文、宣传材料等,只需给出提示。 将文本粘贴给 AI,要求其改进内容、提供针对特定受众的建议、创建不同风格的草稿、使内容更生动或添加例子等,以激发自己写出更好的作品。 让 AI 协助完成没时间做的任务,如写邮件、创建销售模板、提供商业计划的下一步等。 当在任务中遇到困难挑战而分心时,AI 能提供动力。
2024-11-21
入门学习AI
以下是为新手提供的 AI 入门学习建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 推荐新手使用 Kimi 智能助手入门学习和体验 AI,其不用科学上网、不用付费、支持实时联网,是国内最早支持 20 万字无损上下文的 AI,也是目前对长文理解做的最好的 Ai 产品,能一次搜索几十个数据来源,无广告,能定向指定搜索源。 PC 端: 移动端 Android/ios:
2024-11-21
Langchain
LangChain 是一个用于构建高级语言模型应用程序的框架,具有以下特点和功能: 旨在简化开发人员使用语言模型构建端到端应用程序的过程,提供一系列工具、组件和接口,使创建由大型语言模型(LLM)和聊天模型支持的应用程序更易实现。 核心概念包括组件和链,组件是模块化构建块,可组合创建强大应用,链是一系列组件或其他链按顺序执行以完成特定任务。 具有模型抽象、提示模板和值、链、代理等功能。 支持多种用例,如针对特定文档的问答、聊天机器人、代理等,可与外部数据源交互并提供内存功能。 LangChain 与 RAG(检索增强生成)的关系: 框架与技术:LangChain 作为框架,提供实现 RAG 必需的工具和组件,RAG 技术可在其框架内实施利用。 模块化实现:允许开发者通过模块化组件构建 RAG 应用程序,如使用检索器和生成模型创建完整的 RAG 流程。 简化开发:通过提供现成的链和提示模板简化 RAG 应用开发过程。 提高性能:利用 LangChain 实现 RAG 可创建更高效、准确的应用,尤其在需大量外部信息辅助决策的场景。 应用构建:通过丰富的 API 和组件库支持构建复杂的 RAG 应用,如智能问答系统、内容推荐引擎等。 开发 LangChain 应用构建 RAG 应用时,LangChain 提供以下组件: 数据加载器:从数据源加载数据并转换为文档对象,包含页面内容和元数据。 文本分割器:将文档对象分割成多个较小文档对象,方便后续检索和生成。 文本嵌入器:将文本转换为高维向量,用于衡量文本相似度以实现检索。 向量存储器:存储和查询嵌入,通常使用索引技术加速检索。 检索器:根据文本查询返回相关文档对象,常见实现是向量存储器检索器。 聊天模型:基于大模型实现文本生成功能。 使用 LangChain 构建 RAG 应用的一般流程如下:(具体流程未给出)
2024-11-21
Aigc
AIGC 即 AI generated content,又称为生成式 AI,意为人工智能生成内容。例如 AI 文本续写,文字转图像的 AI 图、AI 主持人等都属于 AIGC 的应用。 AIGC 常见的产品项目和媒介众多。语言文字类有 OpenAI 的 GPT、Google 的 Bard、百度的文心一言等;语音声音类有 Google 的 WaveNet、微软的 Deep Nerual Network、百度的 DeepSpeech 等;图片美术类有早期的 GEN 等图片识别/生成技术,去年大热的扩散模型带火了我们熟悉的 Midjourney、先驱者谷歌的 Disco Diffusion、一直在排队测试的 OpenAI 的 Dalle·2 以及 stability ai 和 runaway 共同推出的 Stable Diffusion 等。 SD 是 Stable Diffusion 的简称,是由初创公司 StabilityAI、CompVis 与 Runway 合作开发,2022 年发布的深度学习文本到图像生成模型,主要用于根据文本的描述产生详细图像,是一种扩散模型的变体,叫做“潜在扩散模型”。其代码模型权重已公开发布,可以在大多数配备有适度 GPU 的电脑硬件上运行,当前版本为 2.1 稳定版。源代码库为 github.com/StabilityAI/stablediffusion 。 AIGC 是一种利用人工智能技术生成各种类型内容的应用方式,在内容创作、广告、媒体等领域有着广泛的应用,包括文字生成、图像生成、视频生成等。 AIGC、UGC 和 PGC 都是内容生成的不同方式。AIGC 由人工智能生成内容,优势在于快速、大规模生成内容,适用于自动化新闻、广告创作等;UGC 由用户生成内容,优势在于内容丰富多样,适用于社交媒体、社区论坛等;PGC 由专业人士或机构生成内容,优势在于内容质量高、专业性强,适用于新闻媒体、专业网站等。 AIGC 在 CRM 领域有着广阔的应用前景,主要包括个性化营销内容创作、客户服务对话系统、产品推荐引擎、CRM 数据分析报告生成、智能翻译和本地化、虚拟数字人和营销视频内容生成、客户反馈分析等方面。不过在应用过程中,仍需解决算法偏差、版权和知识产权等伦理法律问题。
2024-11-21
Ai是什么
AI 是一门令人兴奋的科学,它是某种模仿人类思维可以理解自然语言并输出自然语言的东西,其生态位是一种似人而非人的存在。 从技术角度看,AI 研究如何使计算机表现出智能行为,例如做一些人类所擅长的事情。最初计算机用于按照明确的程序进行数字运算,而对于像根据照片判断一个人的年龄这类无法明确编程的任务,正是 AI 所感兴趣的。 AI 已经渗透到各行各业,有着广泛的应用场景: 医疗保健方面,包括医学影像分析、药物研发、个性化医疗、机器人辅助手术等。 金融服务领域,涵盖风控和反欺诈、信用评估、投资分析、客户服务等。 零售和电子商务中,有产品推荐、搜索和个性化、动态定价、聊天机器人等应用。 制造业里,涉及预测性维护、质量控制、供应链管理、机器人自动化等。 交通运输行业也有相关应用。
2024-11-21
大模型有哪些前沿论文
以下是一些关于大模型的前沿论文: 2017 年发布的《Attention Is All You Need》,开启了大模型发展的序幕。 2018 年 Google 提出的 BERT(Bidirectional Encoder Representations from Transformers),创新性地采用双向预训练并行获取上下文语义信息及掩码语言建模,参数规模在 110M 到 340M 之间。 2018 年 OpenAI 提出的 GPT(Generative Pretrained Transformer),开创了仅使用自回归语言建模作为预训练目标的方式,参数规模达 1750 亿。 2021 年 Meta 提出的 Large LAnguage Model Approach(LLAMA),是首个开源模型,为构建更大规模、更通用的语言模型提供了方法与工具,参数规模在十亿到千亿之间。 2024 年苹果公布的《MM1:Methods,Analysis & Insights from Multimodal LLM Pretraining》,这是一个具有高达 30B 参数的多模态 LLM 系列,探讨了不同架构组件和数据选择的重要性。
2024-11-15
可以找到产品相关的前沿科技报道和论文 的AI工具
以下是一些可以帮助找到产品相关前沿科技报道和论文的 AI 工具: 文献管理和搜索: Zotero:结合 AI 技术,能自动提取文献信息,助您管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化内容。 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化,助力复杂数据分析和模型构建。 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化编写过程。 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 使用这些工具时,应结合自身写作风格和需求,选择最合适的辅助工具。 此外,在“AI+教育”方面,也有一些相关案例和投稿,如: 《AI 洞察:一线医生如何实际使用 ChatGPT》:来自纽约时报最新报道,再现了 ChatGPT 在美国一流医院的实际场景。 《笔记:与 AI+教育前辈聊天》:亲测有效的让某人主动学习 AI 的方式。 《数学:OpenAI 发表论文大幅提高 ChatGPT 的数学准确性》:探讨了 ChatGPT 在数学方面的挑战和改进。 《书籍推荐:三本神经科学书籍》:强调多学科交叉对学习和运用 AI 的作用。
2024-10-30
ai行业前沿技术突破
以下是关于 AI 行业前沿技术突破的相关内容: 2024 年,AI 模型在生物医学、气象预测等领域取得了重要突破。诺贝尔物理学奖和化学奖先后颁给了 AI,这不仅推动了机器学习的理论创新,还揭示了蛋白质折叠问题,标志着人工智能已成为一门科学学科和加速科学的工具。 在具体的技术应用方面: 基于深度学习和 Transformer 架构的蛋白质结构预测模型 AlphaFold 3 能够高精度地预测包括蛋白质、DNA、RNA、配体等生物分子的结构和相互作用,将为细胞功能解析、药物设计和生物科学的发展提供有力支持。 DeepMind 展示的新的实验生物学能力 AlphaProteo 是一种能够设计出具有三到三百倍亲和力的亚纳米摩尔蛋白结合剂的生成模型。 生物学前沿模型的扩展方面,Meta 发布的 ESM3 是一种前沿多模态生成模型,它在蛋白质序列、结构和功能上进行训练,能够学习预测任何模态组合的完成情况。 此外,在学习路径方面,偏向技术研究方向需要掌握数学基础(如线性代数、概率论、优化理论等)、机器学习基础(监督学习、无监督学习、强化学习等)、深度学习(神经网络、卷积网络、递归网络、注意力机制等)、自然语言处理(语言模型、文本分类、机器翻译等)、计算机视觉(图像分类、目标检测、语义分割等)等,还包括前沿领域如大模型、多模态 AI、自监督学习、小样本学习等以及科研实践。 偏向应用方向则需要具备编程基础(Python、C++等)、机器学习基础(监督学习、无监督学习等)、深度学习框架(TensorFlow、PyTorch 等),了解应用领域(自然语言处理、计算机视觉、推荐系统等)、数据处理(数据采集、清洗、特征工程等)、模型部署(模型优化、模型服务等),并进行行业实践。 AI 技术的发展历程大致为:早期阶段有专家系统、博弈论、机器学习初步理论;知识驱动时期有专家系统、知识表示、自动推理;统计学习时期有机器学习算法(决策树、支持向量机、贝叶斯方法等);深度学习时期有深度神经网络、卷积神经网络、循环神经网络等。 当前 AI 前沿技术点包括: 大模型,如 GPT、PaLM 等。 多模态 AI,如视觉语言模型(CLIP、Stable Diffusion)、多模态融合。 自监督学习,如自监督预训练、对比学习、掩码语言模型等。 小样本学习,如元学习、一次学习、提示学习等。 可解释 AI,包括模型可解释性、因果推理、符号推理等。 机器人学,涉及强化学习、运动规划、人机交互等。 量子 AI,包含量子机器学习、量子神经网络等。 AI 芯片和硬件加速。
2024-10-28
帮忙生写最近人工智能领域的前沿技术新闻简报
以下是最近人工智能领域的前沿技术新闻简报: 1. Netflix 列出了一个年薪 90 万美元的机器学习平台产品经理的 AI 产品工作岗位,详情可访问: 2. Shopify 的 AI 助手现已上线。Sidekick 是一个帮助机器人,它知道如何在 Shopify 中执行任何操作,包括提取相关数据、操作新功能或创建报告,详情可访问: 3. Artifact(Ins 创始人做的 AI 新闻浏览软件)推出了自定义内容阅读语音的功能,详情可访问: 4. OpenAI、谷歌、微软和 Anthropic 组建了前沿模型论坛,主要目的是确保 AI 模型的安全发展,详情可访问: 5. Open AI 悄咪咪下线了他们的 ChatGPT 生成内容的检测器,详情可访问:
2024-10-14
有哪些前沿的大语言模型公司
目前,前沿的大语言模型公司包括: OpenAI:其 GPT4 是先进且广泛使用的大型语言模型,在多种任务上表现卓越。 Anthropic 公司:推出了 Claude 3 。 谷歌:有 Gemini 等大语言模型。 百度:文心一言。 阿里巴巴:通义大模型。 如果想了解国内的大模型效果,可以参考第三方基准评测报告: 。内容由 AI 大模型生成,请仔细甄别。
2024-09-28
了解人智能前沿
以下是关于人工智能前沿的一些信息: 在具身智能赛道方面,目前其底层动作技能还没看到可以泛化的办法。相关参考资料包括:Li,Junnan 等人的“Blip2: Bootstrapping languageimage pretraining with frozen image encoders and large language models”,Sun,Quan 等人的“Generative pretraining in multimodality”,BAI 资本的万字干货带你入门“具身智能”,以及中金的一系列关于人形机器人的研究等。 在职业变迁方面,充分发展的行业可能会被完全自动化,AI 本质上是人类经验的自动化回放,会雇佣更少人力,但技术也会开辟新行业。尽管技术变革可能突然涌现,但人类职业显著变化通常需一代人时间。若 AI 抢走多数人类工作机会,政府可用税收平衡差异,如全民基本收入(Universal basic income UBI)。 在机器之心的进化方面,涵盖了 AI 进化史、软件 2.0 的崛起、面向智能的架构、一统江湖的模型、现实世界的 AI 以及 AI 进化的未来等内容。文中提到在无特别指明情况下,为书写简洁,会用 AI(Artifical Intelligence)代表人工智能,用 ML(Machine Learning)代表机器学习,DL(Deep Learning)代表深度学习等。
2024-09-20
有没有语音交互领域的AI Agent的好的思路
以下是关于语音交互领域的 AI Agent 的一些思路: 1. 构建像人一样的 Agent:实现所需的记忆模块、工作流模块和各种工具调用模块,这在工程上具有一定挑战。 2. 驱动躯壳的实现:定义灵魂部分的接口,躯壳部分通过 API 调用,如 HTTP、webSocket 等。要处理好包含情绪的语音表达以及躯壳的口型、表情、动作和语音的同步及匹配,目前主流方案只能做到预设一些表情动作,再做一些逻辑判断来播放预设,语音驱动口型相对成熟但闭源。 3. 保证实时性:由于算法部分组成庞大,几乎不能单机部署,特别是大模型部分,会涉及网络耗时和模型推理耗时,低延时是亟需解决的问题。 4. 实现多元跨模态:不仅要有语音交互,还可根据实际需求加入其他感官,如通过添加摄像头数据获取视觉信息并进行图像解析。 5. 处理拟人化场景:正常与人交流时会有插话、转移话题等情况,需要通过工程手段丝滑处理。 此外,像 AutoGLM 这样的产品,通过模拟人类操作来实现跨应用的控制,展现出了一定的智能理解能力,如能根据用户意图选择合适的应用场景。但仍存在语音识别偏差、操作稳定性需提升、支持平台有限等问题,未来随着多模态理解能力和操作精准度的提高,发展空间较大。
2024-11-19
利用哪个AI可以快速了解一个领域的发展方向
以下是关于您问题的回答: 要快速了解一个领域的发展方向,可以从以下几个方面入手: 技术研究方向: 1. 数学基础:包括线性代数、概率论、优化理论等。 2. 机器学习基础:如监督学习、无监督学习、强化学习等。 3. 深度学习:涵盖神经网络、卷积网络、递归网络、注意力机制等。 4. 自然语言处理:包含语言模型、文本分类、机器翻译等。 5. 计算机视觉:有图像分类、目标检测、语义分割等。 6. 前沿领域:例如大模型、多模态 AI、自监督学习、小样本学习等。 7. 科研实践:包括论文阅读、模型实现、实验设计等。 应用方向: 1. 编程基础:如 Python、C++等。 2. 机器学习基础:像监督学习、无监督学习等。 3. 深度学习框架:例如 TensorFlow、PyTorch 等。 4. 应用领域:如自然语言处理、计算机视觉、推荐系统等。 5. 数据处理:涉及数据采集、清洗、特征工程等。 6. 模型部署:包含模型优化、模型服务等。 7. 行业实践:比如项目实战、案例分析等。 AI 技术的发展历程和前沿技术点概括如下: AI 技术发展历程: 1. 早期阶段(1950s 1960s):专家系统、博弈论、机器学习初步理论。 2. 知识驱动时期(1970s 1980s):专家系统、知识表示、自动推理。 3. 统计学习时期(1990s 2000s):机器学习算法(决策树、支持向量机、贝叶斯方法等)。 4. 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等。 当前 AI 前沿技术点: 1. 大模型(Large Language Models):如 GPT、PaLM 等。 2. 多模态 AI:像视觉 语言模型(CLIP、Stable Diffusion)、多模态融合。 3. 自监督学习:包括自监督预训练、对比学习、掩码语言模型等。 4. 小样本学习:例如元学习、一次学习、提示学习等。 5. 可解释 AI:涉及模型可解释性、因果推理、符号推理等。 6. 机器人学:涵盖强化学习、运动规划、人机交互等。 7. 量子 AI:包括量子机器学习、量子神经网络等。 8. AI 芯片和硬件加速。 此外,AI 在医疗药品零售领域也有广泛的应用,例如: 1. 药品推荐系统:利用机器学习算法分析用户购买记录、症状描述等数据,为用户推荐合适的非处方药品和保健品,提升销售转化率。 2. 药品库存管理:通过分析历史销售数据、天气、疫情等因素,AI 系统可以预测未来某段时间内的药品需求量,优化药店的库存管理策略,降低成本。 3. 药品识别与查询:借助计算机视觉技术,用户可以用手机拍摄药品图像,AI 系统自动识别药名并提供说明、用法、禁忌等信息查询服务。 4. 客户服务智能助手:基于自然语言处理技术,AI 虚拟助手可以回答顾客关于购药、用药、保健等常见问题,减轻人工客服的工作压力。 5. 药店运营分析:AI 可以分析药店的销售、顾客流量、库存等大数据,发现潜在的运营问题和优化空间,为决策提供参考。 6. 药品质量监控:通过机器视觉、图像识别等技术,AI 能够自动检测药品的包装、标签、颜色等是否合格,及时发现问题。 7. 药品防伪追溯:利用区块链等技术,AI 可以实现全流程的药品溯源,确保药品供应链的安全性和真实可信度。 总之,AI 技术在药品零售领域可以提升购药体验、优化库存管理、降低运营成本、保障药品质量安全,是一个值得重视的发展方向。
2024-11-18
我是一个大学生,现在需要快速了解一个领域的研究发展脉络,请推荐一个ai软件帮我推荐需要看的论文和总结文章大意
以下为您推荐几款可以帮助您修改医学课题、推荐相关论文并总结文章大意的 AI 工具: 1. Scite.ai:这是一个为研究人员、学者和行业专业人员打造的创新平台,旨在增强他们对科学文献的洞察。它提供了一系列工具,如引用声明搜索、自定义仪表板和参考检查,这些都能简化您的学术工作。网址:https://scite.ai/ 2. Scholarcy:这是一款科研神器,主要为做科研、学术、写论文的人准备。它可以从文档中提取结构化数据,并通过知识归纳引擎生成文章概要,精炼地呈现文章的总结信息,分析中包含关键概念、摘要、学术亮点、学术总结、比较分析、局限等板块的内容。网址:https://www.scholarcy.com/ 3. ChatGPT:这是一个强大的自然语言处理模型,可以提供有关医学课题的修改意见。您可以向它提供您的文章,并提出您的问题和需求,它将尽力为您提供帮助。网址:https://chat.openai.com/ 这些工具可以从不同的角度审视和改进您的医学课题,提供专业的修改意见和建议。您可以根据自己的具体需求选择合适的工具进行尝试。请注意,内容由 AI 大模型生成,请仔细甄别。
2024-11-18
你是ai领域专家,我是新手小白,给我一些入门nlp的系统性建议
以下是给您的入门 NLP 的系统性建议: 自然语言处理(NLP)是人工智能领域的重要分支,其起源早于“人工智能”概念的诞生,艾伦·图灵在开创性论文《计算机器与智能》中提出的“图灵测试”是该领域被广泛认可的起点。这个概念涵盖了自然语言理解(NLU)和自然语言生成(NLG)两大核心领域。 对于新手入门 NLP,首先要理解 NLP 的基本概念和发展历程,了解其在人工智能中的重要地位。深入学习“图灵测试”的理念,体会让计算机与人类自然流畅对话的目标。 重点掌握 NLU,学会让机器准确理解人类语言的复杂性和微妙之处。同时关注 NLG,研究如何让机器生成流畅、自然、符合语境的人类语言。 通过实际案例和项目实践,加深对 NLP 核心领域的理解和应用能力。
2024-11-18
电商领域的ai助手有哪些?
以下是一些电商领域的 AI 助手: 1. Synthesia:允许用户创建由 AI 生成的高质量视频,包括数字人视频。提供多种定价计划,可用于制作营销视频、产品演示等。 2. HeyGen:基于云的 AI 视频制作平台,用户可从 100 多个 AI 头像库中选择,并通过输入文本生成数字人视频,适合制作营销视频和虚拟主持人等。 3. Jasper AI:人工智能写作助手,可用于生成营销文案、博客内容、电子邮件等,提供多种语气和风格选择,写作质量较高。 4. Copy.ai:AI 营销文案生成工具,可快速生成广告文案、社交媒体帖子、电子邮件等营销内容,有免费和付费两种计划。 5. Writesonic:专注于营销内容创作,如博客文章、产品描述、视频脚本等,提供多种语气和行业定制选项。 此外,还有一些其他相关的 AI 工具: 1. 淘宝拍照搜商品:通过图像识别为用户推荐相似商品。 2. 阿里小蜜等电商客服:为企业提供智能客服解决方案,可自动回答客户问题,处理订单查询等任务。 更多的相关产品可以查看 WaytoAGI 网站:https://www.waytoagi.com/sites?tag=8 。总的来说,这些 AI 工具能够帮助电商人员高效创作各种营销内容,提高工作效率。用户可根据实际需求选择合适的工具。请注意,内容由 AI 大模型生成,请仔细甄别。
2024-11-18
哪个AI比较擅长医学相关领域?
以下是一些在医学相关领域表现出色的 AI: 1. AlphaFold:由 DeepMind 开发,在蛋白质结构预测方面表现出色,其预测准确度超过其他系统,为科学家和药物开发提供了巨大帮助。 2. ESMFold(Meta 的蛋白质结构预测 AI 模型):截至目前已经进行了 7 亿次预测。 3. 多伦多大学研究人员开发的新 AI 系统:利用类似 Stable Diffusion、Midjourney 的生成扩散技术创造出自然界中不存在的蛋白质。 4. 华盛顿大学 David Baker 教授团队开发的 RF Diffusion:基于 DALLE 的人工智能系统,用于根据科学家的需求生成合适的蛋白质结构。 5. 洛桑联邦理工学院科学家们开发的 PeSTo:基于神经网络的新工具,可以预测蛋白质如何与其他物质相互作用,速度快、且通用性强。 6. Surrey 大学开发的人工智能系统:用于识别个体细胞中的蛋白质模式,这一进展可用于理解肿瘤的差异并开发药物。 此外,ChatGPT、Google Bard 等技术在日常工作生活中很有用,也极大加速了医疗健康生物制药的研究,AI 已经在抗癌、抗衰老、早期疾病防治(如提前三年诊断胰腺癌、帮助早期诊断帕金森等)、寻找阿尔兹海默症的治疗方法等方面起着重要作用。例如: 1. 两名高中生与医疗技术公司 Insilico Medicine 及其人工智能平台 PandaOmics 合作,发现了与胶质母细胞瘤相关的三个新靶基因,这些基因对于有效对抗这种癌症至关重要。 2. 由 Integrated Biosciences 领导的一项最新研究通过使用人工智能筛查了超过 800,000 种化合物,专家们发现了三种高效的药物候选物,其药理学性质优于目前已知的抗衰老物质。 3. 亚利桑那大学与哈佛大学共同利用人工智能对健康神经元在疾病进展过程中的分子变化研究,以识别阿尔茨海默病的原因和潜在药物靶点。 相关文献参考: 1. https://www.sciencedaily.com/releases/2023/05/230504121014.htm 2. https://www.wevolver.com/article/pestoanewaitoolforpredictingproteininteractions 3. https://www.sciencedirect.com/science/article/pii/S0958166923000514 4. https://hms.harvard.edu/news/aipredictsfuturepancreaticcancer 5. https://finance.yahoo.com/news/teenagegeniusesaiuncovercancer163541619.html 6. https://www.earth.com/news/artificialintelligenceidentifiesnewantiagingcompounds/ 7. https://medicalxpress.com/news/202305scientistsaidrugalzheimer.html
2024-11-17