AI 在医药领域具有巨大的潜力,主要体现在以下几个方面:
首先来看医疗行业,这是关乎每个人生命健康的重要领域。大模型在医疗行业的应用主要涵盖三个方向:疾病的诊断与预测、药物研发以及个性化医疗。从医疗前期的图像诊断,基因组学和精准医疗到药物研发阶段再到最后病人的个性化医疗,人工智能都有其适合的应用场景。例如,在2020年,麻省理工学院利用AI发现了一种名为Halicin的新型广谱抗生素,它不仅能有效杀灭对现有抗生素产生耐药性的细菌,而且不会使细菌产生新的耐药性。这一突破性发现源于AI的助力。研究者先搞了一个由两千个性能已知的分子组成的训练集,这些分子都被标记好了是不是可以抑制细菌生长,用它们去训练AI。AI自己学习这些分子都有什么特点,总结了一套“什么样的分子能抗菌”的规律。之后又对美国FDA已通过的六万多个分子中进行分析,最终成功识别出了一个符合所有要求的分子,这就是Halicin。之后研究者开始做实验证明,它真的非常好使,大概很快就会用于临床,造福人类。这个例子充分展示了AI大模型在医疗领域的巨大潜力,目前很多医疗研究机构都进行医疗大模型的开发研究,大模型在医疗领域大有可为!
AI在医疗药品零售领域有着多方面的应用前景:1.药品推荐系统利用机器学习算法分析用户购买记录、症状描述等数据,为用户推荐合适的非处方药品和保健品,提升销售转化率。1.药品库存管理通过分析历史销售数据、天气、疫情等因素,AI系统可以预测未来某段时间内的药品需求量,优化药店的库存管理策略,降低成本。1.药品识别与查询借助计算机视觉技术,用户可以用手机拍摄药品图像,AI系统自动识别药名并提供说明、用法、禁忌等信息查询服务。1.客户服务智能助手基于自然语言处理技术,AI虚拟助手可以回答顾客关于购药、用药、保健等常见问题,减轻人工客服的工作压力。1.药店运营分析AI可以分析药店的销售、顾客流量、库存等大数据,发现潜在的运营问题和优化空间,为决策提供参考。1.药品质量监控通过机器视觉、图像识别等技术,AI能够自动检测药品的包装、标签、颜色等是否合格,及时发现问题。1.药品防伪追溯利用区块链等技术,AI可以实现全流程的药品溯源,确保药品供应链的安全性和真实可信度。
在所有这些领域(以及尚未出现的其他领域),生物制药和医疗保健的工业化都可以取得长足进展。例如,机器可以学习一个人经过徒弟式培训才能做到的事情。我们可以轻松地进行复制,这使我们可以像启动基于云的服务器一样扩展专业知识:立即、廉价(与专家劳动力相比)并具有巨大的规模。而且,这不仅限于计算:自动化和机器人技术同样实现了规模,同时进一步实现了以前不可能实现的真正的生物[可再现性](https://a16z.com/2018/11/12/how-to-engineer-biology/)——从而解决了“未工业化”的生物学的最大弱点。生物技术现在可以大规模地扩展。