直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

能识别语音,并提炼其中信息要点的工具有哪些?

回答

以下是一些能够识别语音并提炼其中信息要点的工具:

  1. 语音识别技术原理:
    • 输入:语音是一种计算机无法直接处理的模拟信号。
    • 编码:将模拟信号转变为数字信号,并提取特征处理。
    • 声音分帧:通过移动窗函数把声音切成小段,帧与帧之间有交叠。
    • 特征向量:依据规则(如 MFCC 规则)将每一帧波形变成多维向量。
    • 解码:把帧识别成状态。
    • 组合:把状态组合成音素,再组合成单词,最后输出。
  2. 免费的会议语音转文字工具:
    • 飞书妙记:https://www.feishu.cn/product/minutes ,是飞书的办公套件之一。
    • 通义听悟:https://tingwu.aliyun.com/home ,阿里推出的 AI 会议转录工具。
    • 讯飞听见:https://www.iflyrec.com/ ,讯飞旗下智慧办公服务平台。
    • Otter AI:https://otter.ai/ ,用于转录采访和会议纪要。

更多会议记录工具请访问网站:https://waytoagi.com/sites/category/29 。请注意,内容由 AI 大模型生成,请仔细甄别。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

语音识别

1.输入:语音识别输入的是声音,声音是一种波,是计算机无法直接处理的模拟信号。2.编码:将模拟信号转变成数字信号,并提取其中的特征进行处理。3.声音分帧,通过移动窗函数把声音切开成一小段一小段,每一小段为一帧。帧与帧之间一般是有交叠的。4.特征向量,通过使用某种规则(如依照人耳听声特点提出的MFCC规则),将每一帧波形变成一个多维向量。5.解码6.把帧识别成状态。7.把状态组合成音素。8.把音素组合成单词。9.输出

问:有免费的会议内容转文字的工具吗?

有免费的会议语音转文字的工具,不过大部分有使用的时间限制。超过一定的免费时间后就需要付费了。以下是几款推荐的工具:[飞书妙记](https://www.feishu.cn/product/minutes):飞书的办公套件之一[通义听悟](https://tingwu.aliyun.com/home):阿里推出的AI会议转录工具[讯飞听见](https://www.iflyrec.com/):讯飞旗下智慧办公服务平台[Otter AI](https://otter.ai/):转录采访和会议纪要更多会议记录工具请访问网站:https://waytoagi.com/sites/category/29关键词:免费会议AI工具语音转文字工具音频转写并整理重点的工具有哪些内容由AI大模型生成,请仔细甄别。

生成式人工智能领域的 4 个突破点

LLMs的真正威力在于使自然语言成为行动的媒介。LLMs对常见且有详细文档的系统具有复杂的理解能力,但它们无法执行从这些系统中提取的任何信息。例如,OpenAI的ChatGPT、Anthropic的Claude和Character AI的Lily可以详细描述如何预订航班,但它们本身无法原生地预订航班(尽管像ChatGPT的插件等技术进展正在推动这一边界)。Amodei表示:“这个大脑在理论上拥有所有这些知识,只是缺少从名称到按钮的映射。”他说:“连接这些电缆并不需要太多的训练。你有一个没有实体的大脑,它知道如何移动,但它还没有连接上手臂和腿部。”

其他人在问
请总结本知识库,并提炼出11节面向十岁儿童关于AIGC的课程,三节是提示词工程,2节文生文,2节文生图/图生图,2节文生音频,2节文生视频/图生视频,不需要涉及智能体及文生代码
以下是对本知识库的总结: 包含了不同时间段的 AIGC 周刊内容,如 Open AI 发布 ChatGPT 的 iOS 应用、Google 宣布多项 AI 新功能、AI 歌手相关教程等。 有关于提示词工程的课程及相关技巧介绍。 涉及一些特定的 AIGC 技术和方法,如 Donut 文档理解方法。 提到了谷歌的生成式 AI 学习课程。 以下是为十岁儿童设计的 11 节关于 AIGC 的课程: 1. 提示词工程基础 什么是提示词 提示词的作用 简单的提示词示例 2. 提示词工程进阶 复杂提示词的构建 如何优化提示词 提示词的实际应用 3. 提示词工程实践 设计自己的提示词任务 分享与讨论提示词成果 总结提示词的使用技巧 4. 文生文入门 了解文生文的概念 简单的文生文工具介绍 尝试生成一段文字 5. 文生文提高 优化文生文的输入 让生成的文字更有趣 比较不同文生文的效果 6. 文生图/图生图基础 认识文生图和图生图 常见的文生图工具 用简单描述生成一张图片 7. 文生图/图生图进阶 更复杂的描述生成精美图片 对生成的图片进行修改 分享自己生成的图片 8. 文生音频入门 什么是文生音频 简单的文生音频工具 生成一段简单的音频 9. 文生音频提高 让生成的音频更动听 给音频添加特效 欣赏优秀的文生音频作品 10. 文生视频/图生视频基础 文生视频和图生视频的概念 基本的文生视频工具 制作一个简单的视频 11. 文生视频/图生视频进阶 让视频更精彩 视频的后期处理 展示自己制作的视频
2024-10-31
视频提炼总结成文本,有那些好用的工具?
以下是一些将视频提炼总结成文本的好用工具及方法: 1. 飞书妙记:可以先从视频网站上提取出视频的音频部分,利用飞书妙记的免费语音转文字功能将音频上传并转换成文本,然后下载文本进行总结提炼。 2. GPT:对于有字幕的 B 站视频,如果视频作者已上传字幕或后台适配了 AI 字幕,可以通过安装油猴脚本“Bilibili CC 字幕工具”来下载字幕,将字幕文字内容复制发送给 GPT 进行总结。 需要注意的是,目前大部分用 AI 总结视频的工具/插件/应用都是通过提取视频字幕来实现的。同时,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。
2024-10-20
阅读管理学领域的学术文献,哪个AI的大模型提炼信息更精准,更快速
目前在管理学领域学术文献的信息提炼方面,不同的 AI 大模型各有特点,难以确切地说哪个模型更精准、更快速。一些常见的大模型如 GPT4、文心一言等在处理自然语言和提取信息方面都具有一定的能力,但它们在不同类型和主题的文献处理上可能表现各异。这还取决于文献的具体内容、格式和复杂程度等因素。
2024-10-12
找一个做PPT文档提炼强大的ai
以下为您介绍一些强大的做 PPT 文档提炼的 AI 工具及相关信息: 1. GPT4、WPS AI 和 chatPPT:有用户使用这三个工具成功完成了 PPT 制作,包括大纲内容、排版、动画等。 2. 讯飞智文:由科大讯飞推出的 AI 辅助文档编辑工具,利用科大讯飞在语音识别和自然语言处理领域的技术优势,可能提供智能文本生成、语音输入、文档格式化等功能。网址:https://zhiwen.xfyun.cn/ 目前市面上大多数 AI 生成 PPT 按照如下思路完成设计和制作: 1. AI 生成 PPT 大纲 2. 手动优化大纲 3. 导入工具生成 PPT 4. 优化整体结构 推荐 2 篇市场分析的文章供参考: 1. 《》 2. 《》 此外,还有用户分享了超全的 AI 工具生成 PPT 的思路和使用指南,比如以“培训简介”章节为例,逐个让 AI 输出不同章节的内容并提取要点。
2024-09-25
有没有可以提炼短视频标题文字、点赞数、评论数的AI工具
目前市面上有一些 AI 工具可以在一定程度上帮助您提炼短视频的相关信息,例如一些数据分析平台结合了 AI 技术,能够对短视频的标题文字、点赞数和评论数进行分析和提炼。但具体的工具选择可能会因您的需求和使用场景而有所不同。常见的数据分析工具如飞瓜数据、蝉妈妈等,它们在处理短视频数据方面具有一定的能力,但可能需要您进一步探索和筛选,以找到最适合您需求的功能。
2024-09-24
有没有可以提炼短视频标题文字、点赞数、评论数的工具
目前市面上有一些工具可以帮助您提炼短视频的标题文字、点赞数和评论数,例如飞瓜数据、蝉妈妈等。这些工具通常能够提供较为全面的短视频数据分析功能,包括您所需要的标题文字、点赞数和评论数等关键信息。但不同工具的特点和适用范围可能有所差异,您可以根据自己的具体需求和使用习惯进行选择。
2024-09-24
语音转文字
以下是关于语音转文字的相关信息: 推荐工具: OpenAI 的 wishper 相关链接: https://huggingface.co/openai/whisperlargev2 https://huggingface.co/spaces/sanchitgandhi/whisperjax 语音转文本(Speech to text)介绍: 语音转文本 API 提供了转录和翻译两个端点,基于开源大型v2 Whisper 模型。 可用于将音频转录为任何语言,将音频翻译并转录成英语。 文件上传限制为 25MB,支持的输入文件类型包括:mp3、mp4、mpeg、mpga、m4a、wav 和 webm。 快速入门: 转录:输入要转录的音频文件及所需输出格式的音频文字稿,默认响应类型为包含原始文本的 JSON,可通过添加更多带有相关选项的 form 行设置其他参数。 翻译:输入音频文件,输出为被翻译成英文的文本,目前仅支持英语翻译。 处理更长输入: 默认 Whisper API 仅支持小于 25MB 的文件。若音频文件更长,需将其分成小于 25MB 的块或使用压缩后格式,避免在句子中间断开声音。可使用 PyDub 开源 Python 软件包来拆分声频文件,但 OpenAI 对其可用性或安全性不作保证。 提示: 可提高 Whisper API 生成的转录质量。 模型会尝试匹配提示的风格,如大写和标点符号。 对模型经常错误识别的特定单词或缩略语,提示很有帮助。 用先前片段的转录引导模型可保留分段文件的上下文。 提示可避免转录中跳过标点符号。 提示可保留填充词汇。 对不同书写风格的语言,添加指示可改进处理问题。
2024-11-23
语音转文字
以下是关于语音转文字的相关信息: 推荐使用 OpenAI 的 wishper,相关链接:https://huggingface.co/openai/whisperlargev2 、https://huggingface.co/spaces/sanchitgandhi/whisperjax 。该项目在 JAX 上运行,后端支持 TPU v48,与 A100 GPU 上的 PyTorch 相比,速度快 70 多倍,是目前最快的 Whisper API。 语音转文本 API 提供转录和翻译两个端点,基于开源大型v2 Whisper 模型。可用于将音频转录为任何语言,将音频翻译并转录成英语。目前文件上传限制为 25MB,支持的输入文件类型包括:mp3、mp4、mpeg、mpga、m4a、wav 和 webm。 转录 API 的输入是音频文件及所需输出格式的音频文字稿,默认响应类型为包含原始文本的 JSON,可通过添加更多带有相关选项的form 行设置其他参数。 翻译 API 输入任意支持语言的音频文件,输出为英文文本,目前仅支持英语翻译。 对于默认情况下 Whisper API 仅支持小于 25MB 的文件,若音频文件更长,需将其分成小于 25MB 的块或使用压缩后格式,可使用 PyDub 开源 Python 软件包来拆分声频文件,但 OpenAI 对其可用性或安全性不作保证。 可以使用提示提高 Whisper API 生成的转录质量,如改善特定单词或缩略语的识别、保留分段文件的上下文、避免标点符号的省略、保留填充词汇、处理不同书写风格等。
2024-11-20
ai语音生成
以下是为您整理的关于 AI 语音生成的相关内容: 工具推荐: Coqui Studio:https://coqui.ai Bark:https://github.com/sunoai/bark Replica Studios:https://replicastudios.com ElevenLabs:作为一款先进的 AI 语音生成工具,在多语言支持、语音质量和灵活性方面表现出色。其 Multilingual v2 模型支持近 30 种语言,能够生成自然、清晰且情感丰富的语音,几乎可以媲美人类真实声音。精准的声音克隆技术和灵活的定制选项使其适用于各种专业应用场景,从内容创作到客户服务,再到游戏开发和教育等领域。但也存在语言切换问题和对高质量音频样本的依赖可能影响用户体验,定价策略可能限制某些用户群体使用,以及引发伦理、版权和对人类工作影响的讨论等问题。 人工智能音频初创公司: adauris.ai:https://www.adauris.ai/ ,将书面内容转化为引人入胜的音频,并实现无缝分发。 Aflorithmic:https://audiostack.ai/ ,专业音频、语音、声音和音乐的扩展服务。 Sonantic(被 Spotify 收购):https://prnewsroomwp.appspot.com/20220613/spotifytoacquiresonanticanaivoiceplatform/ ,提供完全表达的 AI 生成语音,带来引人入胜的逼真表演。 kroop AI:https://www.kroop.ai/ ,利用合成媒体生成和检测,带来无限可能。 dubverse:https://dubverse.ai/ ,一键使您的内容多语言化,触及更多人群。 Resemble.ai:https://www.resemble.ai/ ,生成听起来真实的 AI 声音。 Replica:https://www.replicastudios.com/ ,为游戏、电影和元宇宙提供 AI 语音演员。 Respeecher:https://www.respeecher.com/ ,为内容创作者提供语音克隆服务。 amai:https://amai.io/ ,超逼真的文本转语音引擎。 AssemblyAI:https://www.assemblyai.com/ ,使用单一 AI 驱动的 API 进行音频转录和理解。 DAISYS:https://daisys.ai/ ,听起来像真人的新声音。 WellSaid:https://wellsaidlabs.com/ ,从真实人的声音创建逼真的合成语音的文本转语音技术。 Deepsync:https://dubpro.ai/ ,生成听起来完全像你的音频内容。
2024-11-20
有没有语音交互领域的AI Agent的好的思路
以下是关于语音交互领域的 AI Agent 的一些思路: 1. 构建像人一样的 Agent:实现所需的记忆模块、工作流模块和各种工具调用模块,这在工程上具有一定挑战。 2. 驱动躯壳的实现:定义灵魂部分的接口,躯壳部分通过 API 调用,如 HTTP、webSocket 等。要处理好包含情绪的语音表达以及躯壳的口型、表情、动作和语音的同步及匹配,目前主流方案只能做到预设一些表情动作,再做一些逻辑判断来播放预设,语音驱动口型相对成熟但闭源。 3. 保证实时性:由于算法部分组成庞大,几乎不能单机部署,特别是大模型部分,会涉及网络耗时和模型推理耗时,低延时是亟需解决的问题。 4. 实现多元跨模态:不仅要有语音交互,还可根据实际需求加入其他感官,如通过添加摄像头数据获取视觉信息并进行图像解析。 5. 处理拟人化场景:正常与人交流时会有插话、转移话题等情况,需要通过工程手段丝滑处理。 此外,像 AutoGLM 这样的产品,通过模拟人类操作来实现跨应用的控制,展现出了一定的智能理解能力,如能根据用户意图选择合适的应用场景。但仍存在语音识别偏差、操作稳定性需提升、支持平台有限等问题,未来随着多模态理解能力和操作精准度的提高,发展空间较大。
2024-11-19
ai 语音,ai语音,ai 文转语音,有哪些成功的商业化落地项目吗
以下是一些成功的 AI 语音商业化落地项目: 语音合成(TTS)方面: :为所有人提供开放的语音技术。 :基于 AI 的语音引擎能够模仿人类语音的情感和韵律。 :基于 NLP 的最先进文本和音频编辑平台,内置数百种 AI 声音。 :使用突触技术和脑机接口将想象的声音转化为合成 MIDI 乐器的脑控仪器。 :为出版商和创作者开发最具吸引力的 AI 语音软件。 :使用户能够使用文本转语音技术生成播客。 :基于生成机器学习模型构建内容创作的未来。 :从网页仪表板或 VST 插件生成录音室质量的 AI 声音并训练 AI 语音模型。 :演员优先、数字双重声音由最新的 AI 技术驱动,确保高效、真实和符合伦理。 :将书面内容转化为引人入胜的音频,并实现无缝分发。 :专业音频、语音、声音和音乐的扩展服务。 (被 Spotify 收购):提供完全表达的 AI 生成语音,带来引人入胜的逼真表演。 :利用合成媒体生成和检测,带来无限可能。 :一键使您的内容多语言化,触及更多人群。 :生成听起来真实的 AI 声音。 :为游戏、电影和元宇宙提供 AI 语音演员。 :为内容创作者提供语音克隆服务。 :超逼真的文本转语音引擎。 :使用单一 AI 驱动的 API 进行音频转录和理解。 :听起来像真人的新声音。 :从真实人的声音创建逼真的合成语音的文本转语音技术。 :生成听起来完全像你的音频内容。 语音转录方面: :为聋人和重听者提供专业和基于 AI 的字幕(转录和说话人识别)。 :专业的基于 AI 的转录和字幕。 :混合团队高效协作会议所需的一切。 :音频转录软件 从语音到文本到魔法。 :99%准确的字幕、转录和字幕服务。 :为语音不标准的人群提供的应用程序。 :通过 AI 语音识别实现更快速、更准确的语音应用。 :会议的 AI 助手。 :让孩子们的声音被听见的语音技术。 :使用语音识别自动将音频和视频转换为文本和字幕的 SaaS 解决方案。 :实时字幕记录面对面小组会议中的发言内容。 :理解每个声音的自主语音识别技术。 :支持 35 多种语言的自动转录。 :端到端的边缘语音 AI,设备上的语音识别。
2024-11-19
ai生成语音
以下是一些人工智能生成语音的相关信息: 人工智能音频初创公司: :将书面内容转化为引人入胜的音频,并实现无缝分发。 :提供专业音频、语音、声音和音乐的扩展服务。 (被 Spotify 收购):提供完全表达的 AI 生成语音,带来引人入胜的逼真表演。 :利用合成媒体生成和检测,带来无限可能。 :一键使您的内容多语言化,触及更多人群。 :生成听起来真实的 AI 声音。 :为游戏、电影和元宇宙提供 AI 语音演员。 :为内容创作者提供语音克隆服务。 :超逼真的文本转语音引擎。 :使用单一 AI 驱动的 API 进行音频转录和理解。 :听起来像真人的新声音。 :从真实人的声音创建逼真的合成语音的文本转语音技术。 :生成听起来完全像你的音频内容。 生成式 AI 在游戏领域的机会: 许多创业公司正在尝试创造人工智能生成的音乐,如 Soundful、Musico、Harmonai、Infinite Album 和 Aiva。 很多公司试图为游戏中的人物创造逼真的声音,包括 Sonantic、Coqui、Replica Studios、Resemble.ai、Readspeaker.ai 等。 生成式人工智能用于语音的优势包括即时对话生成、角色扮演、控制音效、本地化等。 借助生成性 AI 对话,角色可以对玩家的行为做出充分的反应。 使用与玩家的化身相匹配的生成声音可以维持玩家扮演幻想角色的幻觉。 可以控制声音的细微差别,如语调、转折、情感共鸣、音素长度、口音等。 像 Deepdub 这样的公司专门专注于对话本地化这个细分市场。
2024-11-17
我是一个老师,相信AI时代人人都能成为学霸,我认为学霸具有三个心法和一个方法,方法一,建立学霸的信念系统(我行、我能、我可以),方法二,不要和别人比,方法三、主动积极的思考力。学霸的终极方法是自学。自学+AI无所不能。你觉得我怎么能帮助每一个学生成为学霸,有哪些步骤和要点?
在 AI 时代帮助每个学生成为学霸,以下是一些步骤和要点: 1. 培养获取知识的能力:教导学生掌握利用 AI 技术获取和处理信息的方法,提高获取知识的效率。 2. 促进知识内化:引导学生将获取的信息和知识有效内化,转化为智慧。例如,通过实践反思、交流讨论等方式,提升知识的转化速度和质量。 3. 建立信念系统:帮助学生树立“我行、我能、我可以”的信念,增强学习的自信心。 4. 培养独立思考:鼓励学生主动积极思考,不盲目与他人比较,专注自身的成长和进步。 5. 强调自学:引导学生重视自学,让他们明白自学结合 AI 能够带来强大的能力。 6. 培养创造能力: 鼓励学生勇于尝试新事物,将失败视为学习的一部分。 培养批判性思维,不盲目跟从权威。 引导学生从实践中反思,提炼洞见。 促进学生与不同背景的人交流,激发新的思路。 持续学习和不断创造是相辅相成的,通过积累知识和经验,并将其转化为实际价值,学生能够在 AI 时代更好地成长和发展。
2024-10-08
请输出人工智能通识课的50个知识要点
很抱歉,暂时没有关于人工智能通识课的 50 个知识要点的相关内容。但以下为您提供一些常见的人工智能知识要点作为参考: 1. 人工智能的定义和发展历程 2. 机器学习的基本概念和方法 3. 深度学习的原理和应用 4. 神经网络的结构和工作机制 5. 监督学习、无监督学习和强化学习 6. 数据预处理和特征工程 7. 模型评估指标和方法 8. 常见的机器学习算法,如决策树、随机森林、支持向量机等 9. 自然语言处理的基本任务和技术 10. 计算机视觉的应用和算法 11. 语音识别和合成的原理 12. 智能推荐系统的工作原理 13. 人工智能在医疗、金融、交通等领域的应用 14. 伦理和社会问题,如算法偏见、数据隐私等 15. 人工智能的局限性和挑战 16. 知识表示和推理 17. 遗传算法和进化计算 18. 模糊逻辑和不确定性处理 19. 人工智能与人类智能的比较 20. 智能机器人的发展和应用 21. 自动驾驶技术的原理和挑战 22. 情感计算和情感分析 23. 图像分类和目标检测 24. 文本分类和情感分类 25. 命名实体识别和信息抽取 26. 关系抽取和知识图谱 27. 机器翻译的方法和技术 28. 问答系统的设计和实现 29. 语音情感识别 30. 图像生成和风格迁移 31. 文本生成和摘要提取 32. 强化学习中的策略优化 33. 深度强化学习在游戏中的应用 34. 人工智能的硬件支持,如 GPU 加速 35. 分布式机器学习和云计算 36. 模型压缩和量化 37. 迁移学习和领域自适应 38. 半监督学习和弱监督学习 39. 异常检测和故障诊断 40. 时间序列预测和分析 41. 多模态数据融合 42. 人工智能的安全和防护 43. 可解释性人工智能 44. 对抗生成网络的原理和应用 45. 胶囊网络和注意力机制 46. 图神经网络和社交网络分析 47. 预训练语言模型,如 GPT、ELMO 等 48. 人工智能的开源框架和工具 49. 人工智能的教育和培训 50. 未来人工智能的发展趋势和展望
2024-09-12
请选择一个产业,比如手机、汽车、石油化工等产业,围绕行业传感器的技术原理和应用,进行背景概况、传感器分类、发展历程、智能传感器、产业链结构、应用领域、发展趋势和展望等要点完成调研分析报告和PPT。
很抱歉,目前知识库中没有您所需的关于特定产业(如手机、汽车、石油化工等)中行业传感器的完整调研分析报告和 PPT 内容。但以下为您提供一个大致的框架和思路,您可以据此进行进一步的资料收集和研究: 一、背景概况 介绍所选产业的发展现状和重要性,阐述传感器在该产业中的关键作用。 二、传感器分类 列举该产业中常见的传感器类型,如压力传感器、温度传感器、位置传感器等,并说明其特点和适用场景。 三、发展历程 回顾传感器在该产业中的发展阶段,从早期的简单传感器到如今的高精度、智能化传感器的演变过程。 四、智能传感器 着重介绍智能传感器的特点和优势,如具备自诊断、自校准、自适应等功能。 五、产业链结构 分析传感器产业链的各个环节,包括原材料供应商、传感器制造商、系统集成商、终端用户等。 六、应用领域 详细阐述传感器在该产业的具体应用领域,如生产过程监控、质量检测、设备故障诊断等。 七、发展趋势和展望 探讨未来传感器在该产业的发展趋势,如微型化、集成化、智能化、无线化等,并对其前景进行展望。 希望以上框架对您有所帮助,祝您顺利完成调研分析报告和 PPT。
2024-09-06
gpt是否可以识别图片中的人脸、人物
GPT 可以在一定程度上对图片中的人物进行识别和描述。例如,可以利用 GPT 的识图功能对人物照片的内容进行细致描述,包括人物的年龄、发型、肤色、五官、穿着、表情等方面,还能对人物所处的背景进行分析。但需要注意的是,其识别和描述的准确性可能会受到多种因素的影响,如图片的质量、清晰度、复杂程度等。同时,对于 GPT 是否能准确识别所有人脸和人物,还存在一定的不确定性和局限性。
2024-11-24
喂AI文档,表格不识别怎么办
如果 AI 文档中的表格不被识别,您可以参考以下内容: 召回排序过程中会过滤掉标题里携带了【已废弃】、【已过期】、【已停用】、【已删除】、【已作废】、【已过时】、【弃用】等字眼的片段。如果某些文档已经过期、内容不再准确,但是又需要保留存档,可以在文档总标题里加上关键字眼,避免这些文档进入问答、影响答案的准确性。 当前文档里插入的表格(包括普通表格、电子表格、多维表格)内容虽然已经能被 AI 识别,但是识别效果还在进一步提升中。某篇文档如果主要用于 AI 智能问答,现阶段为了保证更好的问答效果,可以尽量都使用普通文本描述,避免大量有价值的信息都包含在表格中。 随着飞书团队持续丰富支持识别的数据类型,这些局限会逐渐消除、问答效果也会持续提升。
2024-11-18
识别英文语音为字幕的工具
以下是一些识别英文语音为字幕的工具: 1. Whisper(https://github.com/openai/whisper):这是一个优秀的字幕处理工具,能很好地识别视频/音频中的语言。Medium 尺寸能很好地解决英文的问题,中文处理方面,据宝玉 xp 的说法,Large 尺寸效果会好一些。但仅处理成英文对母语是中文的绝大部分人来说不够,最好有纯中文或双语字幕。 2. Reccloud:免费的在线 AI 字幕生成工具,可直接上传视频精准识别,能对识别的字幕进行翻译,自动生成双语字幕。已处理 1.2 亿+视频,识别准确率接近 100%。 3. 绘影字幕:一站式专业视频自动字幕编辑器,提供简单、准确、快速的字幕制作和翻译服务,支持 95 种语言,准确率高达 98%,可自定义字幕样式。 4. Arctime:可对视频语音自动识别并转换为字幕,支持自动打轴,支持 Windows 和 Linux 等主流平台,支持 SRT 和 ASS 等字幕功能。 5. 网易见外:国内知名语音平台,支持视频智能字幕功能,转换正确率较高,支持音频转写功能。 以上工具各有特点,您可以根据自身需求选择最适合的视频自动字幕工具。请注意,内容由 AI 大模型生成,请仔细甄别。
2024-11-17
识别英文语音为字幕的工具
以下是一些识别英文语音为字幕的工具: 1. Whisper(https://github.com/openai/whisper):这是一个优秀的字幕处理工具,能很好地识别视频/音频中的语言。Medium 尺寸能很好地解决英文的问题,中文处理方面,据宝玉 xp 的说法,Large 尺寸效果会好一些。但仅处理成英文对母语是中文的绝大部分人来说不够,最好有纯中文或双语字幕。 2. Reccloud:免费的在线 AI 字幕生成工具,可直接上传视频精准识别,能对识别的字幕进行翻译,自动生成双语字幕。已处理 1.2 亿+视频,识别准确率接近 100%。 3. 绘影字幕:一站式专业视频自动字幕编辑器,提供简单、准确、快速的字幕制作和翻译服务,支持 95 种语言,准确率高达 98%,可自定义字幕样式。 4. Arctime:可对视频语音自动识别并转换为字幕,支持自动打轴,支持 Windows 和 Linux 等主流平台,支持 SRT 和 ASS 等字幕功能。 5. 网易见外:国内知名语音平台,支持视频智能字幕功能,转换正确率较高,支持音频转写功能。 以上工具各有特点,您可以根据自身需求选择最适合的视频自动字幕工具。请注意,内容由 AI 大模型生成,请仔细甄别。
2024-11-17
识别英文歌歌词的AI工具
以下为您推荐识别英文歌歌词的 AI 工具:Suno。但需要注意的是,目前使用该工具做 hiphop 存在一定难度,比如咬字太清楚,没有懒音、吞音、连读和方言,可能导致原本两音可读完的“马水”,AI 一定会念“马思唯”,从而错开一个字,使 flow 和 beat 对不上后面全乱拍。稍微有点作用的解决方法是替换拟音歌词和手动断句,标记好主歌副歌位置。
2024-11-17
AI 图像识别的发展历程
AI 图像识别的发展历程如下: 早期处理印刷体图片的方法是将图片变成黑白、调整为固定尺寸,与数据库对比得出结论,但这种方法存在多种字体、拍摄角度等例外情况,且本质上是通过不断添加规则来解决问题,不可行。 神经网络专门处理未知规则的情况,如手写体识别。其发展得益于生物学研究的支持,并在数学上提供了方向。 CNN(卷积神经网络)的结构基于大脑中两类细胞的级联模型,在计算上更高效、快速,在自然语言处理和图像识别等应用中表现出色。 ImageNet 数据集变得越来越有名,为年度 DL 竞赛提供了基准,在短短七年内使获胜算法对图像中物体分类的准确率从 72%提高到 98%,超过人类平均能力,引领了 DL 革命,并开创了新数据集的先例。 2012 年以来,在 Deep Learning 理论和数据集的支持下,深度神经网络算法大爆发,如卷积神经网络(CNN)、递归神经网络(RNN)和长短期记忆网络(LSTM)等,每种都有不同特性。例如,递归神经网络是较高层神经元直接连接到较低层神经元;福岛邦彦创建的人工神经网络模型基于人脑中视觉的运作方式,架构基于初级视觉皮层中的简单细胞和复杂细胞,简单细胞检测局部特征,复杂细胞汇总信息。
2024-11-14