以下是关于用 AI 抓取数据的相关内容:
为了满足你的要求,我们需要重写上述代码,以便首先抓取文章内容,然后使用假设的OpenAI API key(注意实际操作中需要替换为真实的API key)来生成文章的缩略信息。以下是整个过程的代码:首先,安装必要的库:接下来,使用以下代码:
那么AI把表现一刀劈开,剩下了什么。生成式人工智能是一种全新的信息获取方式,而midjourney等工具所代表的是图形领域的信息获取通过背后的人工智能模型,可以根据用户提供的文本描述生成高度相关和创造性的图像。这种通过文本命令获得图像的方式叫做Prompting,是一种全新形态的人机交互。比如我输入:想象:安塞尔亚当斯的风光摄影,平遥,全景图,云隙光,丁达尔光,史诗的,明暗对照法就能获得以上图像。为什么能达成这样的能力。我们把复杂的计算机专业领域概念拆解成为三个简单的词汇。数据,映射和扩散。首先是数据,包括从公共数据库中获取世界上万事万物的图像存档、历史文献图片,或者创建特定的数据集以覆盖特定的风格或元素。最终,收集数据的目的是,获得足够的基础。用以特征化每一个世界上的物体、风格或概念。第二个部分是映射,在数据处理阶段,AI使用如卷积神经网络的算法,来识别和提取图片中的关键视觉特征,如颜色、形状、纹理等。这个过程涉及到从原始数据中学习到的特征的映射这些映射后的特征将用于生成新的艺术作品。
当然,要培养出鉴赏AI的技能,多少还是需要我们训练训练自己的大脑模型的。那如果不善于此的朋友,想要判断眼前的作品是否是AI造物呢?AI技术自己带来的造假难题,也该由AI自己的同僚互鉴打假来解决。现在已有不少网站在做这件事情,通过对大量的图片数据的抓取和分析,给出对画作属性的判断可能性。例如使用AI来鉴别AI绘图性质的网页:ILLUMINARTY(https://app.illuminarty.ai/)。但在测试过程中,有些结构严谨的真实摄影作品,反而会被识别为AI作图。这跟我们前面提到的,AI作画很难完成严谨真实的结构这一点,是相互矛盾的。鉴别的AI认为,过于严谨的图像不像是真实的人造产物。而画图的AI其实难以生成严谨的结构造型。这就是鉴定AI自身的逻辑算法,并不能像人类一样综合去考虑不符合人的逻辑的各种表现。多试几张,就能磕着瓜子看AI吵架了。甚至作长者摇头抚须状,长叹一声,「AI后生们,还有很长的路要走啊。」我们看完AI显眼包的快乐丢撵后,来聊聊「我们为什么要鉴别AIGC」?已经「知其然」,也大略「知其所以然」,而后终于能顺势讨论讨论「知何由以知其所以然」。