Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

抓取热点

Answer

以下是关于如何利用 AI 在 30 分钟不到打造爆款公众号文章中抓取热点的方法: 首先,明确主题是关键。在开始撰写文章前,要选定一个吸引人的主题。以当前 AI 领域的热度为例,可以通过阅读各类 AI 主题的公众号、追踪相关博主的动态、参与行业微信群讨论等多元化渠道,来捕捉 AI 界的最新动态。每个人的信息获取途径各有不同。比如,可以通过 Perplexity.AI 的 Discover 功能,挖掘近期的热点资讯,并最终选定像“OpenAI 对马斯克言论的回应”这样紧跟时事且具有较高关注度的主题。

Content generated by AI large model, please carefully verify (powered by aily)

References

如何利用 AI 30分钟不到打造爆款公众号文章.pdf

接下来,我将以撰写一篇科技资讯类公众号文章为例,详细阐述整个创作流程。这不仅是一个分享,也是一次与大家共同探讨如何高效产出优质内容的机会。让我们一起跟随这个流程脉络,探索科技资讯的魅力,提升我们的写作技巧吧~[heading2]明确主题​[content]在开始撰写文章之前,我们的首要任务是选定一个吸引人的主题。以当前AI领域的热度为例,每天都有众多新闻值得关注。我们可以通过阅读各类AI主题的公众号、追踪相关博主的动态、参与行业微信群讨论等多元化渠道,来捕捉AI界的最新动态。每个人的信息获取途径各有千秋,这里就不再赘述。关键是,我们需要先确定一个明确且引人入胜的主题。以我自己为例,我通过Perplexity.AI的Discover功能,挖掘了近期的热点资讯,并最终选定了我们文章的主题:OpenAI对马斯克言论的回应。这个主题不仅紧跟时事,而且具有较高的关注度。​

Others are asking
有没有直接抓取在线视频内容关键点的的AI工具
目前有一些可以抓取在线视频内容关键点的方法和相关工具: 1. 对于将小说做成视频的情况: 可以使用 AI 工具如 ChatGPT 分析小说内容,提取关键场景、角色和情节。 利用工具如 Stable Diffusion 或 Midjourney 生成角色和场景的视觉描述。 使用 AI 图像生成工具创建角色和场景的图像。 将提取的关键点和生成的图像组合成视频脚本。 利用 AI 配音工具如 Adobe Firefly 将小说文本转换为语音,添加背景音乐和音效。 使用视频编辑软件如 Clipfly 或 VEED.IO 将图像、音频和文字合成为视频,并进行后期处理。 2. 对于总结 B 站视频: 如果视频有字幕,可以安装油猴脚本如,下载字幕。 将字幕内容复制发送给 AI 如 GPTs 进行总结。 3. 关于视频配音效的 AI 工具: 例如 Vidnoz AI,支持 23 多种语言的配音,音质高保真,支持文本转语音和语音克隆功能,提供语音参数自定义和背景音乐添加工具,并提供面向个人和企业的经济实惠的定价方案。 需要注意的是,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。
2024-10-28
jina抓取页面案例
Reader 是由 jina 开源的网页内容爬取工具。将网络信息灌输到大语言模型(LLM)中是实现信息实体化的关键步骤,但此过程充满挑战。最直接的办法是抓取网页内容并提取其 HTML 数据,然而抓取操作复杂且易被封锁,原始 HTML 还常包含大量无用元素,如多余标记和脚本代码。Reader API 解决了这些问题,它能从网址提取核心内容,并转化为干净、便于大语言模型处理的文本,能为 AI 智能体及 RAG 系统提供高品质的数据输入。您可参考:https://jina.ai/reader/
2024-09-27
网页视频抓取进行总结的AI工具有哪些
以下是一些可用于网页视频抓取并进行总结的 AI 工具及相关方法: 1. 对于有字幕的 B 站视频,可以通过以下步骤实现总结: 若视频栏下有字幕按钮,说明视频作者已上传字幕或后台适配了 AI 字幕。 安装油猴脚本“Bilibili CC 字幕工具”(https://greasyfork.org/zhCN/scripts/378513bilibilicc%E5%AD%97%E5%B9%95%E5%B7%A5%E5%85%B7 )。 安装后刷新浏览器,点击字幕会多出一个“下载”按钮。 点击下载按钮,可选择多种字幕格式,包括带时间的或不带时间的。 将下载的字幕发给 AI 执行内容总结任务,从而达到总结视频的效果。 需要注意的是,目前大部分用 AI 总结视频的工具/插件/应用都是通过获取视频字幕来实现的。
2024-08-31
如何用AI抓取数据
以下是关于用 AI 抓取数据的相关内容: 对于不会代码的情况,为满足抓取文章内容并生成缩略信息的要求,需重写代码。首先安装必要的库,然后使用特定代码,并注意在实际操作中替换为真实的 OpenAI API key。 生成式人工智能在图形领域通过背后的模型,可根据用户提供的文本描述生成图像。这涉及数据收集,包括从公共数据库获取图像存档等,以获得足够基础来特征化物体、风格或概念;还涉及映射,即使用算法识别和提取图片关键视觉特征用于生成新作品。 要判断一张图片是否为 AI 生成,现在有不少网站通过对大量图片数据的抓取和分析来给出判断可能性,例如 ILLUMINARTY 网站。但鉴定 AI 自身的逻辑算法存在不足,不能像人类一样综合考虑各种表现。
2024-08-16
AI 热点新闻
以下是一些关于 AI 的热点新闻: 如何利用 AI 在 30 分钟不到打造爆款公众号文章,包括明确吸引人的主题,如通过多元化渠道捕捉 AI 界最新动态,像利用 Perplexity.AI 的 Discover 功能选定“OpenAI 对马斯克言论的回应”这样紧跟时事且关注度高的主题。 帆哥整理的 2024AI 大事纪,总结了 2024 年发生的大多数 AI 大事,涵盖众多模型发布、开源竞争、科技公司动态、诺贝尔奖颁发等,还提供了相关视频和图表获取方式,并声明带有一定倾向性,不包含商业考量。
2025-01-28
如何才能做到用AI制作超级搞笑、引发共鸣、结合当前热点的段子,类似于脱口秀台词,需要几个步骤,怎么做
以下是用 AI 制作类似于脱口秀台词的超级搞笑、引发共鸣且结合当前热点段子的步骤: 1. 明确主题和热点:确定您想要围绕的当前热点话题,以及段子的大致主题和方向。 2. 构思创意:思考有趣、独特且能引发共鸣的情节和表述方式。 3. 生成台词:利用 AI 工具,输入相关的提示词,如描述您想要的幽默风格、情感色彩、语言特点等,让 AI 生成初步的台词。 4. 剪辑流程:对生成的台词进行筛选和整理,确定镜号、内容和对应的 Prompt。例如,像“男人躺在云中,四肢伸展,表情惬意”这样的具体描述。 5. 优化和完善:检查生成的段子是否足够搞笑、是否能引发共鸣、是否紧密结合了热点,对不满意的部分进行修改和优化。
2024-12-09
你是一名医疗器械销售,就职于一家跨国医疗企业。公司目前就“我们是否应该立刻全面拥抱人工智能技术”组织了一场辩论赛,你持反方论点,即“我们不应该立刻全面拥抱人工智能技术”。 请你结合社会时事热点,设计5个以上刁钻问题给对方,要求举出实例。 此次辩论赛的听众中有公司高层和全体同事,请注意避免不友好及不利于公司形象的言论。
以下是为您设计的一些刁钻问题: 1. 目前人工智能在医疗领域的误诊案例时有发生,比如某些智能诊断系统对复杂病症的判断失误,导致患者延误治疗,这难道还能让我们立刻全面拥抱它吗? 2. 人工智能技术在医疗数据安全方面存在诸多隐患,像近期发生的多起医疗数据泄露事件,给患者带来极大困扰,在这种情况下,怎么能立刻全面拥抱? 3. 人工智能在医疗器械的研发中,由于算法偏见,可能会导致某些特定人群无法受益,例如某些心脏起搏器的智能调控系统对特定体质患者效果不佳,这能说明应该立刻全面拥抱吗? 4. 当下人工智能技术的高昂成本使得许多医疗机构望而却步,比如一些小型医院根本无力承担智能医疗设备的购置和维护费用,这难道不影响全面拥抱的可行性吗? 5. 人工智能在医疗领域的法规和监管还不完善,比如某些智能手术机器人的操作规范尚未明确,一旦出现问题,责任难以界定,这样能立刻全面拥抱吗? 6. 虽然人工智能在某些方面提高了医疗效率,但也导致了部分医疗人员的失业,引发社会就业问题,这难道不是我们需要谨慎对待、不能立刻全面拥抱的原因吗?
2024-12-01
你是一名医疗器械销售,就职于一家跨国医疗企业。公司目前就“我们是否应该立刻全面拥抱人工智能技术”组织了一场辩论赛,你持反方论点,即“我们不应该立刻全面拥抱人工智能技术”。 请你结合社会时事热点,设计5个以上刁钻问题给对方。 此次辩论赛的听众中有公司高层和全体同事,请注意避免不友好及不利于公司形象的言论。
以下是为您设计的一些刁钻问题: 1. 当下人工智能技术在医疗领域的应用仍存在诸多伦理和法律争议,比如医疗数据的隐私保护问题尚未得到妥善解决,在这种情况下,如何能立刻全面拥抱? 2. 人工智能技术在医疗器械的诊断中可能会出现误判,而医疗事故往往关乎生命,如何确保在立刻全面拥抱的情况下避免这些严重后果? 3. 目前人工智能技术的发展还不够稳定,时常面临技术更新和升级的问题,这会导致医疗器械的频繁变动和成本增加,这一现实如何应对? 4. 社会时事热点中不乏人工智能技术被滥用的案例,比如虚假医疗信息的传播,如何保证在立刻全面拥抱人工智能技术时不出现此类问题? 5. 人工智能技术的广泛应用可能会导致部分医疗工作者失业,引发社会就业结构的不稳定,这一风险如何化解? 6. 近期有报道指出人工智能技术存在被黑客攻击的风险,从而威胁患者的医疗信息安全,在这种情况下立刻全面拥抱是否明智? 7. 人工智能技术在医疗器械中的应用需要大量的资金投入,而目前公司的财务状况是否能够支撑立刻全面的投入和应用? 8. 社会时事热点中,一些人工智能技术的应用缺乏人性化关怀,在医疗这种关乎人性和情感的领域,立刻全面拥抱是否合适?
2024-12-01
请根据提供的AI工具网址,搜索常用的AI工具,实际操作AI工具,记录使用过程中的感受和发现,提交一份体验报告,描述工具的使用过程和个人感受,并就AI相关的热点话题,AI伦理、AI与就业等简要发表自己的看法。
以下是一份关于常用 AI 工具的体验报告: 一、AI 工具使用过程和感受 1. 超级简历优化助手 使用过程:用户上传简历,工具分析内容并提供优化建议。 个人感受:对于求职者来说,能够针对性地提升简历质量,提高求职成功率,操作简单易懂。 2. 酷家乐等设计软件 使用过程:用户上传户型图,软件通过 AI 生成多种室内设计方案。 个人感受:为室内设计提供了便捷和丰富的创意,节省了设计时间和精力。 3. Amper Music 使用过程:用户提出需求,工具生成旋律和编曲。 个人感受:对音乐创作者有很大的辅助作用,激发创作灵感。 4. 松果倾诉智能助手 使用过程:通过文字或语音与用户交流,提供情感咨询。 个人感受:在情感支持方面提供了及时的帮助和建议。 5. 小佩宠物智能设备 使用过程:实时监测宠物的活动、饮食等状况,提供健康预警。 个人感受:让宠物主人能更方便地关注宠物健康。 6. 马蜂窝智能行程规划 使用过程:根据用户输入的目的地、时间等因素定制旅游路线。 个人感受:为旅行规划提供了个性化的方案,节省了规划时间。 7. 作业帮智能辅导 使用过程:根据学生的学习情况提供针对性的学习方案。 个人感受:有助于学生获得更贴合自身需求的学习辅导。 8. AI 游戏道具推荐系统 使用过程:在游戏中分析玩家风格和进度,推荐合适道具。 个人感受:提升了游戏体验,使玩家能更有效地获取所需道具。 9. AI 天气预报分时服务 使用过程:利用彩云天气提供每小时的天气预报。 个人感受:为出行和活动安排提供了更精准的参考。 10. AI 医疗病历分析平台 使用过程:分析医疗病历中的症状、检查结果等信息,为医生提供辅助诊断建议。 个人感受:有助于提高医疗诊断的准确性和效率。 11. AI 会议发言总结工具 使用过程:在会议中自动总结发言者的主要观点和重点内容。 个人感受:方便会议记录和回顾,提高工作效率。 12. AI 书法作品临摹辅助工具 使用过程:识别书法作品的笔画和结构,为用户提供临摹指导和评价。 个人感受:对书法爱好者的临摹学习有一定的帮助。 二、关于 AI 相关热点话题的看法 1. AI 伦理 随着 AI 技术的广泛应用,数据隐私、算法偏见等伦理问题日益凸显。需要建立健全的法律法规和伦理准则,确保 AI 的发展符合人类的价值观和利益。 2. AI 与就业 AI 的发展可能会导致一些传统岗位的减少,但同时也会创造新的就业机会,如 AI 开发、维护和管理等。重要的是通过教育和培训,提升劳动者的技能,以适应新的就业需求。 三、健身的 AI 产品 1. Keep:中国最大的健身平台,提供全面的健身解决方案,帮助用户实现健身目标。 2. Fiture:沸彻魔镜集硬件、丰富课程内容、明星教练和社区于一体。 3. Fitness AI:利用人工智能进行锻炼,增强力量和速度。 4. Planfit:健身房家庭训练与 AI 健身计划,AI 教练使用大量文本数据和 ChatGPT 实时提供指导。
2024-11-11
最新的ai技术热点
目前最新的 AI 技术热点包括以下方面: 1. 大模型(Large Language Models):如 GPT、PaLM 等。 2. 多模态 AI:包括视觉语言模型(CLIP、Stable Diffusion)、多模态融合。 3. 自监督学习:例如自监督预训练、对比学习、掩码语言模型等。 4. 小样本学习:如元学习、一次学习、提示学习等。 5. 可解释 AI:涵盖模型可解释性、因果推理、符号推理等。 6. 机器人学:涉及强化学习、运动规划、人机交互等。 7. 量子 AI:包括量子机器学习、量子神经网络等。 8. AI 芯片和硬件加速。 如果您想深入学习 AI,根据不同的方向有不同的学习路径: 偏向技术研究方向: 1. 数学基础:线性代数、概率论、优化理论等。 2. 机器学习基础:监督学习、无监督学习、强化学习等。 3. 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 4. 自然语言处理:语言模型、文本分类、机器翻译等。 5. 计算机视觉:图像分类、目标检测、语义分割等。 6. 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 7. 科研实践:论文阅读、模型实现、实验设计等。 偏向应用方向: 1. 编程基础:Python、C++等。 2. 机器学习基础:监督学习、无监督学习等。 3. 深度学习框架:TensorFlow、PyTorch 等。 4. 应用领域:自然语言处理、计算机视觉、推荐系统等。 5. 数据处理:数据采集、清洗、特征工程等。 6. 模型部署:模型优化、模型服务等。 7. 行业实践:项目实战、案例分析等。 需要注意的是,无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。以上内容由 AI 大模型生成,请仔细甄别。
2024-09-27