直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

大模型评估

回答

大模型评估是当前热门领域,以下是一些常见的评估方法和相关资源:

  • 测试问题类型:
    • 检索和归纳。
    • 推理性。
    • 有日期相关历史事件等。
  • 专业测评网站:
    • https://lmsys.org/blog/2023-05-03-arena/ (系统自带翻译不太友好,可点进去仔细阅读)。
    • 中文语言理解测评基准(CLUE):https://www.cluebenchmarks.com/index.html ,介绍:https://mp.weixin.qq.com/s/6CDnyvMsEXtmsJ9CEUn2Vw 。
    • 斯坦福团队的 AlpacaEval:项目链接:https://github.com/tatsu-lab/alpaca_eval ,排行榜链接:https://tatsu-lab.github.io/alpaca_eval/ 。
    • FlagEval(天秤)大模型评测体系及开放平台:地址:https://github.com/FlagOpen/FlagEval ,简介:旨在建立科学、公正、开放的评测基准、方法、工具集,协助研究人员全方位评估基础模型及训练算法的性能,同时探索利用 AI 方法实现对主观评测的辅助,大幅提升评测的效率和客观性。FlagEval(天秤)创新构建了“能力-任务-指标”三维评测框架,细粒度刻画基础模型的认知能力边界,可视化呈现评测结果。
    • C-Eval:地址:https://github.com/SJTU-LIT/ceval ,简介:构造了一个覆盖人文,社科,理工,其他专业四个大方向,52 个学科(微积分,线代…),从中学到大学研究生以及职业考试,一共 13948 道题目的中文知识和推理型测试集。此外还给出了当前主流中文 LLM 的评测结果。
    • SuperCLUElyb:地址:https://github.com/CLUEbenchmark/SuperCLUElyb ,简介:中文通用大模型匿名对战评价基准,这是一个中文通用大模型对战评价基准,它以众包的方式提供匿名、随机的对战。他们发布了初步的结果和基于 Elo 评级系统的排行榜。
  • 对比不同大语言模型性能的方法:
    • 自定义任务:根据特定需求设计任务,以评估模型在特定领域的表现。
    • 人类评估:结合人类评估者的主观评价,特别是在评估文本质量和伦理问题时。
    • A/B 测试:在实际应用场景中,通过 A/B 测试比较不同模型的表现。
    • 性能指标:使用包括准确率、召回率、F1 分数、BLEU 分数等在内的性能指标来量化比较。

请注意,以上内容由 AI 大模型生成,请仔细甄别。

内容由 AI 大模型生成,请仔细甄别(powered by aily)
其他人在问
怎么评估提示词的效果?
评估提示词的效果可以从以下几个方面进行: 1. 模型的准确率:观察模型生成的回答与预期结果的匹配程度。 2. 流畅度:检查生成的文本在语言表达上是否通顺、自然。 3. 相关性:判断生成的内容与提示词所表达的意图和需求的关联程度。 提示词工程师在评估提示词效果时,通常会采取以下步骤和方法: 1. 设计提示:根据用户需求和模型能力,精心考虑提示的长度、结构、措辞和信息量等因素,以清晰传达用户意图。 2. 优化提示:通过收集用户反馈、分析模型结果和实验不同的提示策略等方式,不断改进提示。 3. 实际测试:包括对基础提示词模板的测试,确保其能兼容国内外各种模型,并生成拟人化的提示词,然后将其应用于不同模型中评估实际应用效果和适应性。 此外,提示工程有几项核心原则: 1. 编写清晰的指令。 2. 将复杂任务分解为简单任务。 3. 给模型一定的时间空间思考。 4. 系统地测试性能变化。 要提高提示技巧,应多学习和实践。同时,可以参考大模型厂商的提示工程指南,以及 LangGPT 结构化提示词知识库中的相关资料,如:
2024-10-15
帮我找知识库里和「评估」相关的内容或文章
以下是知识库里与“评估”相关的内容: 提示工程: 评估程序在优化系统设计时很有用。好的评估程序需要具备以下特点: 具有代表性:能够代表真实世界的使用场景,或者至少包含多样化的测试用例。 样本量充足:拥有足够的测试用例,以保证统计结果的可靠性。 易于自动化:可以自动运行或重复执行。 评估工作可以由计算机、人类或两者协作完成。计算机可以使用客观标准以及一些主观或模糊标准自动执行评估,其中模型输出由其他模型查询评估。是一个开源软件框架,提供了创建自动评估程序的工具。 基于模型的评估在评估具有多种可能答案的问题时非常有用,模型可以根据预定义的标准对不同的答案进行评分,帮助我们选择最佳答案。可以用模型进行评估和需要人工评估之间的界限是模糊的,并且随着模型变得越来越强大而不断变化。 OpenAI 官方指南: 评估程序(或称为“Evals”)对于优化系统设计非常有用。良好的评估: 代表现实世界的使用(或至少是多样化的)。 包含许多测试用例以获得更大的统计能力。 易于自动化或重复。 输出的评估可以由计算机、人类或混合来完成。计算机可以使用客观标准以及一些主观或模糊标准来自动评估,其中模型输出由其他模型查询评估。是一个开源软件框架,提供用于创建自动评估的工具。 当存在一系列可能被认为质量相同的输出时,基于模型的评估可能很有用。使用基于模型的评估可以实际评估的内容与需要人工评估的内容之间的界限是模糊的,并且随着模型变得更强大而不断变化。 Gemini 报告: 为了评估 Gemini 模型在政策领域和其他在影响评估中确定的关键风险领域中的表现,在模型开发的整个生命周期中开展了一系列评估。 在训练和优化 Gemini 模型过程中,会进行开发评估以进行“hillclimbing”。这些评估是由 Gemini 团队设计的,或者是针对外部学术基准的评估。评估考虑诸如有用性(指令遵循和创造力)、安全性和事实性等问题。 保证评估是为了治理和审查而进行的,通常在关键里程碑或培训运行结束时由模型开发团队之外的团队进行。保证评估按照模态进行标准化,数据集严格保密。只有高层次的见解被反馈到训练过程中,以协助缓解工作。保证评估包括对 Gemini 政策的测试,并包括对潜在生物危害、说服力和网络安全等危险能力的持续测试。 外部评估由谷歌之外的合作伙伴进行,以发现盲点。外部团体对模型进行了一系列问题的压力测试,包括白宫承诺书中列出的领域,测试通过结构化评估和非结构化的红队测试进行。这些评估的设计是独立的,并且结果定期报告给 Google DeepMind 团队。
2024-09-30
如何自动化 RAG bot 的测试评估工作流?
以下是一个关于自动化 RAG bot 测试评估工作流的参考方案: 首先,对于 RAG bot 的工作流,主要包括以下关键步骤: 1. 开始节点:接收用户选择的小说人物角色名称或向小说人物角色提问的问题。 2. 知识库节点:将输入的角色名称或问题作为查询,在知识库中检索该角色的性格特点、经典台词或相关的上下文信息。 3. 大模型节点:让大模型对检索到的信息进行筛选和处理,并以特定格式(如 JSON 格式)输出结果,或者根据问题和检索到的上下文信息生成答案。 4. 代码节点:对上游输入的数据进行规整和格式化输出。 5. Text2Image 节点:引用上一步输出的用于描述人物性格和特点的特征,作为提示生成人物的角色照。 6. 结束节点:输出人物台词、角色照或答案。 要实现自动化测试评估工作流,可以考虑以下几个方面: 1. 制定明确的测试用例:包括各种类型的输入,如不同的角色名称、问题类型和复杂程度等,以全面覆盖各种可能的情况。 2. 建立监控机制:实时监测工作流中各个节点的运行状态、数据传输和处理时间等关键指标。 3. 数据验证:在每个节点的输出端,验证数据的准确性、完整性和格式的正确性。 4. 性能评估:分析工作流的整体性能,如响应时间、资源利用率等,以优化工作流的效率。 5. 错误处理和恢复测试:模拟各种可能的错误情况,测试工作流的错误处理和恢复能力。 6. 定期回归测试:确保工作流在经过修改或优化后,仍然能够正常运行并满足预期。 通过以上的步骤和方法,可以有效地实现 RAG bot 测试评估工作流的自动化,提高其可靠性和性能。
2024-09-22
Fine-Tuning是什么,如何评估一个Fine-Tuning的大赛
FineTuning(微调)是一种迁移学习技术,常用于深度学习中。其基本思路是:先有一个在大量数据上训练过的预训练模型,该模型已学会一些基本模式和结构(如在自然语言处理中学会基本语法和单词语义),然后在特定任务数据上继续训练该模型,使其适应新任务。 以下是两个例子帮助您理解: 例子 1:情感分类。假设构建一个判断电影评论积极或消极的模型,先使用大量语料库(如维基百科)预训练模型,使其学会基本语法和单词语义,再收集标注过的电影评论(部分积极,部分消极),在这些评论上继续训练模型,使其学会判断评论情感。 例子 2:图像分类。假设构建一个识别猫和狗图片的模型,先使用大量图片(如 ImageNet 数据集)预训练模型,使其学会识别图片中的基本形状和纹理,再收集标注过的猫和狗的图片,在这些图片上继续训练模型,使其学会区分猫和狗。 对于评估一个 FineTuning 的大赛,需要注意以下几点: 1. 对于需要快速迭代新用例的场景,微调作用较小。 2. 要实现微调功能,需创建包含至少数百个优质示例的大型训练数据集,按格式要求整理数据集,并启动微调自定义 LLM 的训练任务,评估微调性能。 3. 为实现良好微调,要建立模型改进工作流程,不断监控模型性能变化,获得反馈并依据反馈改进模型。 4. 通过记录所有生成的模型,以及评分指标(隐性和显性用户的反馈,以及人类和人工智能的评估),为下一版本创建的训练数据集进行调整。 5. 许多 LLM Ops 平台能自动收集和显示最佳数据,方便进行微调。
2024-08-13
请你结合大疆服务业务的具体场景,设计两个AI的应用落地场景,请从AI在此场景中应该发挥什么作用、怎样和业务场景做耦合、怎样评估AI的落地效果等多个方面进行阐述。
以下为结合大疆服务业务设计的两个 AI 应用落地场景: 场景一:无人机故障预测与维护 AI 发挥的作用: 通过对无人机飞行数据、传感器数据和零部件使用情况的分析,预测可能出现的故障。 与业务场景的耦合: 与大疆的售后服务系统集成,实时获取无人机的运行数据。利用机器学习算法建立故障预测模型,提前通知用户进行维护保养,减少因故障导致的飞行事故和损失。 落地效果评估: 1. 降低无人机故障率,通过对比使用 AI 预测维护前后的故障发生频率来评估。 2. 提高用户满意度,通过用户反馈和满意度调查来衡量。 3. 减少维修成本,统计维修费用和零部件更换成本的变化。 场景二:个性化飞行方案推荐 AI 发挥的作用: 根据用户的飞行历史、偏好、地理环境等因素,为用户生成个性化的飞行方案。 与业务场景的耦合: 在大疆的应用程序中,用户输入相关信息后,AI 系统自动分析并推荐合适的飞行路线、拍摄角度、飞行速度等。 落地效果评估: 1. 增加用户飞行活跃度,通过统计用户的飞行次数和时长来评估。 2. 提升用户对推荐方案的采纳率,通过用户实际采用推荐方案的比例来衡量。 3. 促进产品销售,对比使用个性化推荐功能前后的产品销售数据。
2024-08-11
请你结合大疆服务业务的具体场景,设计两个AI的应用落地场景,请从AI在此场景中应该发挥什么作用、怎样和业务场景做耦合、怎样评估AI的落地效果等多个方面进行阐述。
以下为结合大疆服务业务设计的两个 AI 应用落地场景: 场景一:无人机故障预测与维护 AI 发挥的作用: 通过对无人机运行数据的实时监测和分析,利用机器学习算法预测可能出现的故障。 与业务场景的耦合: 与大疆的无人机飞行数据采集系统相结合,获取各类传感器数据,如电机转速、电池状态、飞行姿态等。 评估落地效果: 1. 降低无人机故障率,减少因故障导致的飞行事故和设备损坏。 2. 提高维护效率,缩短维修时间,降低维修成本。 3. 提升用户对产品的满意度和信任度。 场景二:个性化飞行方案推荐 AI 发挥的作用: 根据用户的飞行历史、偏好以及地理环境等因素,为用户生成个性化的飞行方案。 与业务场景的耦合: 整合大疆的用户数据库和地理信息系统,获取用户的飞行习惯和所在地的地理特征。 评估落地效果: 1. 增加用户的飞行体验,满足不同用户的需求。 2. 促进无人机的使用频率和用户的活跃度。 3. 有助于新产品的推广和销售,根据用户需求推荐适配的新机型和配件。
2024-08-11
我的app应用想要对接大语言模型,结合APP用户自身的数据,实现更精准的对话,是否有行业比较成功的案例可以借鉴
以下是一些在 APP 应用对接大语言模型方面比较成功的案例,可供您借鉴: 1. Poe: 由 Quora 开发,有 APP 版本,支持跨端使用。 集成了 Chat GPT、GPT4、Claude+、Claude、Dragonfly 等模型,同时支持用户自建 Chatbot。 不同语言模型回复效果有差异,适合需要调用多种大语言模型的用户。 Dragonfly 擅长给出较短的回答,并擅长在输入中给出示例时遵循指示。 Claude 更擅长创造性回复,配合 Poe 中的提问引导,非常适合在查阅资料时使用。 支持分享用户和模型的对话内容,但 GPT4、Claude+产品需要付费订阅使用。 访问地址: Poe 中的提问引导真的能够启发到用户,midjourney prompt 扩写 Chatbot 能力很惊人。 2. Perplexity.ai: 本质是个可联网的搜索引擎,完全免费,支持网页版、APP(目前支持 iOS,安卓即将推出)、Chrome 插件。 网页版能力全面,能够根据提问从互联网上搜寻信息并给出总结后的答案。 很多 Chat GPT 中调用插件才能解决的事情(联网查询、旅行、住宿、商品推荐)靠 Perplexity 就可以解决。 能给出信息来源网址,并根据搜索内容给出继续对话的问题建议。 最新推出的 Copilot 能力支持根据搜索内容进行信息补充,每 4h 内使用 5 次,调用 GPT4。 支持分享聊天内容到多渠道。 首页推荐当下流行的新闻、搜索内容。 支持筛选 Academic(包含不同领域的学术研究论文)、Wolfram|Alpha(包含数学、科学、经济学、语言学、工程学、社会科学、文化等领域的知识库)、Wikipedia(维基百科)、Youtube、Reddit(娱乐、社交和新闻网站)、News 进行搜索。 Chrome 插件可针对当前页面给出即时摘要。 访问地址:
2024-10-18
大模型合规
大模型的安全问题包括以下方面: 1. 对齐保障:通过对齐(指令调优),如 ChatGPT 从 GPT3 经过对齐而来,使其更好地理解人类意图,增加安全保障,确保不输出有害内容。对齐任务可拆解为监督微调及获取奖励模型和进行强化学习来调整输出分布。例如 LLAMA2 使用安全有监督微调确保安全,强化学习能让模型根据人类反馈更细粒度思考答案的安全性,面对训练分布外数据也能拒绝不当回答。 2. 数据过滤:在预训练阶段对数据进行过滤,如 baichuan2 采用此技术减少有害输出,但因数据关联性,仅靠此方法可能不够,模型仍可能从关联中学到有害内容,且面对不良信息时可能因缺少知识而处理不当。 3. 越狱问题:用户可能通过越狱(Jailbreak)使模型的对齐失效,重新回答各种问题。 大模型的特点包括: 1. 架构:分为 encoderonly、encoderdecoder、decoderonly 三类,目前熟知的 AI 助手多为 decoderonly 架构,由 transformer 衍生而来。 2. 规模:预训练数据量大,来自互联网的多种来源,且参数众多,如 GPT3 已达 170B 的参数。 GPT3 与 ChatGPT 相比,除形式不同外,安全性也有差别。
2024-10-18
大模型安全相关资料
以下是关于大模型安全的相关资料: 大模型的架构:包括 encoderonly、encoderdecoder 和 decoderonly 三种类型。其中,我们熟知的 AI 助手基本采用 decoderonly 架构,这些架构都是由谷歌 2017 年发布的“attention is all you need”论文中提出的 transformer 衍生而来。 大模型的特点:预训练数据量大,往往来自互联网上的论文、代码、公开网页等,通常用 TB 级别的数据进行预训练;参数非常多,如 Open 在 2020 年发布的 GPT3 就已达到 170B 的参数。 大模型的安全性保障:通过对齐(指令调优),包括监督微调、获取 reward model 与进行强化学习来调整语言模型的输出分布,以保证语言模型不会输出有害内容和信息。例如 LLAMA2 专门使用了安全有监督微调确保安全。但 Alignment 并不足以防护所有安全问题,存在越狱(Jailbreak)现象,会使模型对齐失效。此外,还有隐私问题。 相关资源:如果想进一步了解大语言模型安全,可以访问 Github awesomellmsafety 项目:https://github.com/ydyjya/AwesomeLLMSafety
2024-10-18
目前最好用的机关公文写作大模型或智能体
目前在机关公文写作方面表现较好的大模型或智能体有: 智谱清言:由智谱 AI 和清华大学推出,基础模型为 ChatGLM 大模型。在工具使用排名国内第一,在计算、逻辑推理、传统安全能力上排名国内前三。更擅长专业能力,但在代码能力上还有优化空间,知识百科方面稍显不足。可应用场景广泛,在 AI 智能体方面相关的应用,包括任务规划、工具使用及长文本记忆相关场景表现出色,在较复杂推理应用上效果不错,也适用于广告文案、文学写作等。 此外,在大模型中,智能体是大模型的一个重要发展方向。智能体可以理解为在大模型(如 LLM)基础上增加了工具、记忆、行动、规划等能力。目前行业里主要用到的如 langchain 框架,能通过代码或 prompt 的形式将 LLM 与 LLM 之间以及 LLM 与工具之间进行串接。
2024-10-18
你知道有支持个性化训练的大预言模型么
以下是一些支持个性化训练的大语言模型: 1. Character.ai:更注重人格属性,试图满足社交、情感、陪伴等需求,与 ChatGPT 侧重不同,后者注重提高效率和解放生产力。 2. Midjourney:今天发布了模型个性化 Personalization 或 'p'的早期测试版本。模型个性化会学习用户的喜好,以便更可能用用户的口味来填补空白。其要求包括目前从成对排名中的投票和喜欢的探索页面上的图像中学习,需要大约 200 个成对排名/喜欢才能生效。使用时只需在提示后输入 'p',或使用提示栏中的设置按钮为所有提示启用个性化功能,还可以使用 's 100'控制个性化效果的强度。但需注意个性化目前不是一个稳定的功能,会随着进行更多的成对排名而变化,且可能会在接下来的几周内推出算法更新。
2024-10-18
我该如何利用文心一言、kimi等已有的大语言模型去作个性化训练?
已有的大语言模型如文心一言、kimi 等通常不支持个人进行个性化训练。 大语言模型的相关知识包括: 国内大模型有通用模型如文心一言、讯飞星火等,处理自然语言;还有垂直模型,专注特定领域。 大语言模型工作原理包括训练数据、算力、模型参数,在训练数据一致情况下,模型参数越大能力越强。 Transformer 是大语言模型训练架构,具备自我注意力机制能理解上下文和文本关联。 大模型可能因错误数据导致给出错误答案,优质数据集对其很重要。 Prompt 分为 system prompt、user prompt 和 assistant prompt,写好 prompt 的法则包括清晰说明、指定角色、使用分隔符、提供样本等。 Fine tuning 是基于通用大模型,针对特定领域任务提供数据进行学习和调整,以适应特定领域的需求。 学习大型语言模型(LLM)的开发是一个系统性的过程,需要涵盖多个方面的知识和技能: 掌握深度学习和自然语言处理基础,包括机器学习、深度学习、神经网络等基础理论,以及自然语言处理基础,如词向量、序列模型、注意力机制等。 理解 Transformer 和 BERT 等模型原理,掌握相关论文。 学习 LLM 模型训练和微调,包括大规模文本语料预处理,使用预训练框架,以及微调 LLM 模型进行特定任务迁移。 掌握 LLM 模型优化和部署,包括模型压缩、蒸馏、并行等优化技术,模型评估和可解释性,以及模型服务化、在线推理、多语言支持等。 进行 LLM 工程实践和案例学习,结合行业场景,进行个性化的 LLM 训练,分析和优化具体 LLM 工程案例,研究 LLM 新模型、新方法的最新进展。 持续跟踪前沿发展动态。 机器学习是人工智能的一个子领域,深度学习是机器学习的一个子领域,大语言模型是深度学习在自然语言处理领域的应用之一,具有生成式 AI 的特点。
2024-10-18