Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

未来什么产业是风口

Answer

未来的产业风口可能包括以下方面:

  • 在 AI 领域,随着技术的发展,生成式 AI 不断拓展应用范围,从简单的文本或代码生成扩展到代理交互。AI 网络协同工作将成为趋势,对新型基础设施的需求会增加,以支持更强大的计算和解决串扰问题。
  • 开源大模型将爆发,大模型未来将无处不在。大国间 AGI 竞争的关键在于“云端超级大模型”,其规模会越来越大,同时也会越做越小并搭载于智能终端。
  • 企业级大模型市场将崛起,企业可能同时拥有多个垂直大模型。多模态成为大模型的关键能力,文生图、文生视频等 AIGC 功能会有突破性增长。
  • ToC 领域将继续涌现杀手级应用,知识工程成为大模型落地的决定性要素,AI Agent 激发大模型潜能成为超级生产力工具。
  • 人形机器人产业发展将获得十倍加速,大模型认知能力的提升将为自动驾驶带来革命性变化,大模型也有助于生物科学等基础科学研究突破瓶颈。
  • AI 安全变得前所未有的重要,芯片性能每年翻 10 倍,6 年将提升 100 万倍,算力规模每半年翻 1 倍。能源成为 AI 甚至人类文明发展的瓶颈,解决可控核聚变是唯一的破解方法,大模型和硬件结合会带来新产业革命。
Content generated by AI large model, please carefully verify (powered by aily)

References

红杉|AI 50 未来公司

过去的科技创新浪潮——网络、互联网和移动技术——在很大程度上都是通信革命。而AI则不同,它是一场生产力革命,与个人电脑更加类似,AI塑造了商业和工业的未来。随着越来越多的AI被开发出来,它们将开始通过AI网络协同工作。在过去的一年里,我们看到生成式AI能够做到的事情已经从简单的文本或代码生成扩展到了代理交互。正如个人电脑和智能手机的兴起推动了对传输数据的互联网带宽的需求一样,AI Agent的发展将推动对新型基础设施的需求,以支持更强大的计算和解决串扰问题。正如英伟达公司首席执行官黄仁勋所说,我们正在进入一个"每个像素都将被生成"的世界。在这个生成的未来,公司建设本身可能会成为AI Agent的工作;而有一天,整个公司可能都会像神经网络一样工作。我们现在在应用领域看到的是下一代公司将使用的不断迭代的工具的最初版本。我们或许可以预期这些公司的规模会更小,但下一代公司具有的便利也意味着它们的数量会大大增加。公司的组建将变得更快、更流畅,并采用新的所有权和管理结构。也许有一天,会出现由一名AI工程师运营的大型公司。

周鸿祎免费课AI系列第二讲-企业如何拥抱AI

一、开源大模型爆发,大模型未来将无处不在二、未来大国间AGI竞争的关键是“云端超级大模型”,规模越做越大三、大模型同时越做越小,搭载于智能终端四、企业级大模型市场崛起,企业会同时拥有多个垂直大模型五、多模态成为大模型的关键能力六、文生图、文生视频等AIGC功能突破性增长七、ToC继续涌现杀手级应用八、知识工程成为大模型落地的决定性要素九、AI Agent激发大模型潜能成为超级生产力工具十、人形机器人产业发展获得十倍加速十一、大模型认知能力不断提升,自动驾驶迎来革命性变化十二、大模型帮助生物科学等基础科学研究突破瓶颈十三、AI安全变得前所未有重要十四、芯片性能每年翻10倍,6年将提升100万倍,算力规模每半年翻1倍十五、能源成为AI甚至人类文明发展瓶颈,唯一破解方法是解决可控核聚变十六、大模型和硬件结合会带来新产业革命

周鸿祎免费课AI系列课程第二讲-企业如何拥抱AI

一、开源大模型爆发,大模型未来将无处不在二、未来大国间AGI竞争的关键是“云端超级大模型”,规模越做越大三、大模型同时越做越小,搭载于智能终端四、企业级大模型市场崛起,企业会同时拥有多个垂直大模型五、多模态成为大模型的关键能力六、文生图、文生视频等AIGC功能突破性增长七、ToC继续涌现杀手级应用八、知识工程成为大模型落地的决定性要素九、AI Agent激发大模型潜能成为超级生产力工具十、人形机器人产业发展获得十倍加速十一、大模型认知能力不断提升,自动驾驶迎来革命性变化十二、大模型帮助生物科学等基础科学研究突破瓶颈十三、AI安全变得前所未有重要十四、芯片性能每年翻10倍,6年将提升100万倍,算力规模每半年翻1倍十五、能源成为AI甚至人类文明发展瓶颈,唯一破解方法是解决可控核聚变十六、大模型和硬件结合会带来新产业革命

Others are asking
人工智能未来是不是一个赚钱的风口?
人工智能未来很可能是一个赚钱的风口。以下是一些原因: 深度学习被证明有效,随着规模扩大预期会改善,人们持续增加相关资源投入。未来,人工智能模型将作为自主的个人助理执行特定任务,帮助人们协调医疗护理等,在各个领域取得科学进展。 数字化正在重塑生活,从依赖物理资源的稀缺经济转向以数字资源为基础的富足经济。AI 的发展使这种趋势进一步加强,进入更加富足的时代。 科技公司将有机会以前所未有的规模和盈利模式向全球提供即插即用的劳动力和智能解决方案,降低生产和运营成本。 预计 2024 年会有团队花费超过 10 亿美元来训练单个大型模型,生成式 AI 的热潮不会消退。 然而,也存在一些挑战: 如果不能建立足够的基础设施,人工智能可能成为有限资源,导致战争,并主要成为富人的工具。 政府和大型科技公司将继续承受计算需求的压力,逼近电网极限。 AI 介入选举等方面存在伦理挑战。 总之,人工智能领域充满机遇和挑战,是一个充满惊喜、伦理挑战和很多真金白银的奇妙世界。
2024-12-31
AI产业链
AI 产业链大致可分为上游的基础设施层(数据与算力)、中游的技术层(模型与算法)、下游的应用层(应用与分发)。 上游基础设施层布局投入确定性强,但涉及海量资金,入行资源门槛高,未来更多由“国家队”担当重任,普通人可考虑“合作生态”切入机会。 中游技术层处于技术爆炸期,迭代速度快,技术迭代风险高。基础通用大模型研发烧钱,竞争激烈,非巨无霸公司不建议考虑。 下游应用层是广阔蓝海,尽管从业者增加,涌现出一些产品,但成熟应用产品不多,“杀手级”应用稀少。普通个体和小团队强烈推荐重点布局,发展空间巨大。 2024 年美国融资金额超过 1 亿美元的 AI 公司(截止 2024.10.15)有: |项目名称|融资时间|融资金额(亿美元)|轮次|估值(亿美元)|主营|产业链标签|话题标签|投资方|其他信息| ||||||||||| |Zephyr AI|20240313|1.11|A||AI 药物发现和精准医疗|应用|医学|Revolution Growth,礼来公司基金会,EPIQ Capital Group,Jeff Skoll|| |Together AI|20240313|1.06|A|12|AI 基础设施和开源生成|模型|硬件和云平台|Salesforce Ventures,NEA,Kleiner Perkins,Lux Capital|| |Glean|20240227|2.03|D|22|AI 驱动企业搜索|应用|企业服务|Lightspeed Venture Partners,Kleiner Perkins,Sequoia,Databricks Ventures|| |Figure|20240224|6.75|B|27|AI 机器人|应用|机器人|Nvidia,OpenAI,微软|| |Abridge|20240223|1.5|C|8.5|AI 医疗对话转录|应用|医学|Redpoint,Lightspeed Venture Partners,USV,IVP,Spark Capital|| |Recogni|20240220|1.02|C||AI 接口解决方案|基础设施|芯片|GreatPoint Ventures,Celesta Capital,Pledge Ventures,Mayfield,DNS Capital|| 信息来源:Techcrunch
2024-12-31
目前的AI插件产业实践有哪些,需要收费的又有哪些
目前的 AI 插件产业实践中,以开发 AI Share Card 插件为例: 技术方案:将模板生成功能设计为固定的代码组件,让大模型专注于内容总结的功能。若用户需要其他模板,可通过增加更多模板选项或自定义模板代码功能实现。 对 AI 大模型的要求:处理纯文本总结任务,仅需 13B 或更小参数的模型,加上精调的提示词就能产生很好结果。 AI API 服务的选型要求: 较长的上下文窗口,因为内容总结类任务需要较大的上下文长度。 响应速度要快、并发支持要高,以在多人使用插件时保持良好性能表现。 免费或尽量低价,以减少模型 token 费用。例如选用的 GLM4flash(截至 202412,长达 128k 的上下文窗口,完全免费的调用价格,200 RPM 高并发支持)。 需要收费的 AI 插件因具体应用和服务提供商而异,常见的收费方式包括按使用量计费、订阅制等。但像上述提到的 GLM4flash 在特定时间内是免费的。
2024-12-28
我想要一些关于AI的研究报告,技术、产业、产品方面都可以
以下是为您提供的一些关于 AI 的研究报告: 《》:Kimi 发布视觉思考模型 k1,在最新版 App 和 Web 端上线。k1 模型基于强化学习技术打造,原生支持端到端图像理解和思维链技术,并将能力扩展到数学之外的更多基础科学领域。 《》:由量子位智库发布,聚焦 AI 技术及其在各行业的应用趋势。报告指出 AI 已成为科技发展的主旋律,对全球产业产生深远影响。内容涵盖技术、产品、行业篇,探讨了大模型创新、AI 应用格局、产品趋势、行业渗透率等十大趋势。报告还分析了 AI 在千行百业中的落地情况,包括智能驾驶、具身智能、智能硬件、游戏、影视、营销、教育和医疗等行业,展现了 AI 技术如何推动行业变革和增长。 关于 AI 产业的产业链结构,大致可分为:上游的基础设施层(数据与算力)、中游的技术层(模型与算法)、下游的应用层(应用与分发),详细内容参见图 5 和图 6。 此外,还有以下相关的课件和内容供您参考: 【创新公司观察】 2022 2024 年融资 2000w 美金以上的公司列表和详细公司分析:https://ameliadev.notion.site/202220242000w08f50fafd81b420fa7f26ecd6c0b3243?pvs=4 AI Grant 公司列表和详细公司分析(三期):https://ameliadev.notion.site/AIGranta52f291e81f34b418c9919497961e831?pvs=4 AIGC 行业与商业观察(2024.1):https://gamma.app/docs/AIGCDev9q1bax2pspnlxqu 【AI 产品/功能构建】 顶级科技公司产品团队正在构建哪些 AI 功能【总览】:https://gamma.app/docs/AIzawqmb2ff3cv958 顶级科技公司产品团队正在构建哪些 AI 功能【产品分析】:https://gamma.app/docs/AItebxqet8ubz3rje 顶级科技公司产品团队正在构建哪些 AI 功能【思考借鉴】:https://gamma.app/docs/AIcjqug2f9vtw5m8i 【商业观察】 AI 变革公司/产业实践探索 02:2023 年年报,看中国上市公司怎么使用生成式 AI:https://ameliadev.notion.site/AIGranta52f291e81f34b418c9919497961e831?pvs=4 AI 变革公司/产业实践探索 01:安克创新的 AI 实践分析:https://gamma.app/docs/AI01AI5to7cl1o2ebvhrn 【AI 生存探索】
2024-12-24
如何利用 AIGC 技术实现游戏产业的生产力革命,请结合相关技术的原理和框架图进行阐述
利用 AIGC 技术实现游戏产业的生产力革命主要体现在以下几个方面: 1. 降低开发成本:AIGC 技术能够极大程度地减少游戏开发过程中的人力、物力和时间投入。 2. 缩减制作周期:加快游戏的制作速度,使游戏能够更快地面向市场。 3. 提升游戏质量:例如生成新的高质量游戏内容,如地图、角色和场景,改进游戏的图像和声音效果等。 4. 带来新的交互体验:为玩家提供更加丰富和独特的游戏体验。 游戏人工智能技术的未来发展方向还包括: 1. 探索将游戏环境中的成果迁移至现实世界:电子游戏作为人工智能算法的测试场,为人工智能模型的构建与训练提供了理想化的场所,但将游戏中的技术推广到现实世界应用仍面临诸多挑战,需要进一步研究和发展。 2. 为通用人工智能的孵化给予帮助:经多个复杂游戏训练后的“玩游戏”的人工智能体,将为通用人工智能的发展提供支持。 随着游戏中生成式人工智能革命的进展,它将彻底重塑用户生成内容(UGC),创造一个任何人都可以构建游戏的世界,并将游戏市场扩大到超出许多人的想象。在未来几年,深厚的技术知识或艺术掌握将不再是开发游戏所需的基本技能,创作者只会受到他们的精力、创造力和想象力的限制。生成式人工智能将通过使游戏创作民主化来改变和颠覆 UGC 游戏领域,让数百万人能够制作他们的第一款游戏,新一代游戏开发者将释放出一波游戏设计创造力浪潮,从而永远改变游戏行业。
2024-12-24
未来产业变革和技术创新的焦点
未来产业变革和技术创新的焦点主要体现在以下几个方面: AI 行业: 大型语言模型(LLM)面临模型能力提升、算力算法与数据协同、以评测为中心的体系构建以及平衡用户需求与模型推理深度等多重挑战。解决这些问题有助于推动 LLM 技术的有效应用和商业化进程。 2025 年或将成为 AI 技术逐渐成熟、应用落地取得阶段性成果的关键节点,也是 AI 产业链“资产负债表”逐步修复的年份。 大型基座模型能力的优化与提升,通过创新技术强化复杂推理和自我迭代能力,推动在高价值领域应用,同时优化模型效率和运行成本。 推进世界模型与物理世界融合,构建具备空间智能的世界模型,促进机器人、自主驾驶和虚拟现实等领域发展。 实现 AI 的多模态融合,整合多模态数据提升内容生成的多样性与质量,创造全新应用场景。 新工业革命: 生物技术与人工智能结合,如在医疗保健领域,COVID 已激发生物制药和医疗保健行业的新一波创新。 科技变革与投资: 2024 年正处于一场历史性的科技革命之中,AI 革命预计到 2030 年对 GDP 的贡献将超过以往任何一次革命,这场革命是多种科技融合的产物。 回顾历史,第二次工业革命使电力成为主要动力,信息革命由互联网诞生起始,如今正处于移动互联网尾声,向智能革命迈进。
2024-12-18
AI产业或者说AI产业链条上都有哪些事情可以做
AI 产业链大致可分为上游的基础设施层(数据与算力)、中游的技术层(模型与算法)、下游的应用层(应用与分发)。 在基础设施层,布局投入的确定性最强,但入行资源门槛较高,涉及海量资金投入,未来更多由“国家队”承担重任,普通人可考虑“合作生态”的切入机会。 技术层当前处于技术爆炸时刻,迭代速度极快。对于规模不大的团队或个人,需慎重考虑技术迭代风险,基础通用大模型非巨无霸公司不建议考虑。 应用层是一片广阔蓝海,当前针对行业/细分领域的成熟应用产品不多,“杀手级”应用更是稀少,对于普通个体和小团队,强烈推荐重点布局,拥有巨大发展空间。 据 SensorTower 统计,2024 全年全球 AI 移动应用内付费收入预计为 30 亿美元,图像和视频类 AI 应用占据主导,对话机器人类别排名第二。北美和欧洲是主要消费市场,这是中国 AI 公司积极出海的重要原因。 美国红杉资本指出,AI 供应链分为六层,各层盈利能力不同。芯片代工厂和芯片设计商是主要赢家,云厂商是供应链核心承载方,处于重金投入阶段,是整个供应链的“链主”,AI 模型开发商目前面临亏损,应用服务商市场规模有限。行业格局方面,头部阵营基本稳定。
2024-12-05
欧盟人工智能法案在实施中对我国未来立法的影响
欧盟人工智能法案在实施中对我国未来立法主要有以下影响: 1. 参考意义:我国与欧盟在人工智能立法方面处于“齐头并进”态势,且立法理念有共通之处,欧盟的《人工智能法案》对我国人工智能立法工作具有重要参考价值。 2. 产品调整:若AI项目有意拓展欧洲市场,可能因不同市场要求而需根据欧盟法案对产品进行调整。 3. 对中小企业的监管:我国法律制度在一般性规定基础上强化对大型企业监管,而欧盟法案顾及到中小企业弱势地位。将对中小企业的合规义务豁免及合规支持规定纳入我国未来人工智能立法,有利于形成公平竞争秩序,激发中小企业科技创新活力,避免过度监管。 4. 法律衔接:我国《个人信息保护法》规定可能对人工智能研发和部署使用中的个人信息处理形成合规障碍,而欧盟《人工智能法案》在不影响GDPR实施的情况下对涉及个人数据的处理进行了解释和衔接。我国若进行统一的人工智能立法,个人数据处理的合法性问题无法回避,可在立法中进行特别规定。
2025-01-02
未来哪些工作可以被AI替代?
未来可能被 AI 替代的工作包括一些重复性高、规则性强的工作,例如: 1. 数据输入、文档处理等单调的数据处理工作。 2. 部分制造业中的重复性生产操作。 然而,以下工作相对较难被 AI 替代: 1. 涉及团队建设、跨文化交流、创新解决方案设计等需要复杂人际交往和创新能力的工作。 2. 具有灵活性、非常规性和创造性的工作,比如艺术创作、科研创新等。 2023 年 AI 预计将会替代 4 亿 8 亿工作岗位,但同时也会增加 5.55 8.90 亿新岗位。计算被替代的岗位主要是查看岗位任务构成中可自动化任务的占比。发展中国家的某些经济发展必要步骤可能因 AI 而直接被取代,但这一观点有待辩证看待,吴恩达建议发展中国家在垂直领域完成优势积累。
2024-12-25
学习设计专业,未来在Ai时代,如何提升价值,找到工作
在 AI 时代,学习设计专业的您可以通过以下几个方面提升价值并找到工作: 1. 设计专业方面: AI 重新定义了设计师的竞争力边界,您需要具备持续的学习习惯,并将所学快速转化为实践能力。 看似降低了设计门槛,但实则对需求理解、问题分析、审美判断、创意亮点提出了更高要求。 高阶设计师要更显性化设计思考与专业优势,提升设计质量。 2. 工具能力方面: 对现有 AI 工具进行严格评估和选型,确保其能提供标准化输出和一致性体验,提升设计质量和速度,减少设计差异。 建设参数文档库,而非基于个人喜好的自然语言。 基于业务场景特征,训练专属 AI 模型、集成相应 AI 能力形成新工具,形成更有效的设计资产。 3. 工作流程方面: 将 AI 深入到日常设计流程,形成新的工作方式与流程。 基于不同的 AI 能力特性,差异化对待不同业务形态和需求,使设计流程更加精细化。 找到更合理的人&机结合方式,持续探索优化。 4. 设计团队方面: 团队必须制定并执行明确的 AI 融合策略,保证所需硬件设备的支持。 营造积极主动的创新环境,增强对市场动态的快速适应能力,确保团队整体的未来发力方向。 总之,随着技术不断进步,AI 在视觉设计领域将扮演更重要角色,为设计师和用户创造更多可能性。现在开始学习相关知识和技能,您就可以保持领先优势。
2024-12-24
我现在是一家公司的实习生,目前参与的项目是AI法律大模型未来法官助手,这个系统的功能是提取案件中的信息,自动填写到预设好的要件中,比如犯罪嫌疑人的姓名、身份证号、出生日期、事发经过等等,我该如何去学习提示词
以下是关于如何学习提示词运用的建议: 1. 理解提示词的作用:提示词为模型提供上下文和指示,其质量直接影响模型输出质量。 2. 学习提示词的构建技巧: 明确任务目标,用简洁准确的语言描述。 给予足够的背景信息和示例,帮助模型理解语境。 使用清晰的指令,如“解释”“总结”“创作”等。 对特殊要求应给予明确指示,如输出格式、字数限制等。 3. 参考优秀案例:研究和学习已有的优秀提示词案例,在领域社区、Github 等资源中获取大量案例。 4. 实践、迭代、优化:多与语言模型互动,根据输出结果提高提示词质量,尝试各种变体,比较分析输出差异,持续优化提示词构建。 5. 活用提示工程工具:如 Anthropic 的 Constitutional AI 等,辅助构建和优化提示词。 6. 跟上前沿研究:提示工程是前沿研究领域,持续关注最新研究成果和方法论。 精心设计的提示词能最大限度发挥语言模型的潜力,多实践、多学习、多总结,终可掌握窍门。同时,在与大模型交互时,方法论不是关键,不断尝试和交互是最佳方法,无需严格遵循规则,未达成目的就锲而不舍地再尝试或更换模型。另外,用 Markdown 格式清晰表达问题有助于提高与模型交流的效率和精确性,其具有结构清晰、格式化强调、适用性广等优点。
2024-12-23
ai工具在行业的运用以及未来的发展
AI 工具在行业中的运用十分广泛,以下为您详细介绍: 1. 客户服务领域: OpenAI 的 ChatGPT 等生成式人工智能应用程序在不到一年的时间里掀起革命,能以类似人类的方式处理并回答复杂问题,预计将使客户服务中心生产力提高 30%到 50%。 各行业公司已开始探索将生成式 AI 融入客户服务中心,如 Octopus Energy 引入后显著提高了电子邮件回复质量和客户满意度,带来更丰富全面的服务体验。 但发展中存在挑战,如受数据训练内在偏见影响产生不准确结果,目前阶段通常需要人工监督。预计其融入将经历几个阶段,最终几乎能在每个用户旅程中提供支持。 2. 医疗领域:利用大模型生成合成数据,如微调 Stable Diffusion 中的 UNet 和 CLIP 文本编码器,从大量真实胸部 X 射线及其报告生成大型数据集,产生高保真度和概念正确的合成 X 射线扫描数据,用于数据增强和自监督学习。 3. 机器人领域:苹果 Vision Pro 在机器人研究领域引起轰动,其高分辨率、高级跟踪和处理能力被用于远程操作控制机器人的运动和动作。 4. 企业自动化领域:传统机器人流程自动化面临高昂成本等问题,新方法如 FlowMind 和 ECLAIR 使用基础模型解决限制。FlowMind 专注金融工作流,通过 API 使用 LLM 生成可执行工作流,在工作流理解方面准确率高;ECLAIR 采取更广泛方法,使用多模态模型从演示中学习,直接与企业环境中的图形用户界面交互,提高网页导航任务完成率。 5. 小型企业领域:工具服务小型企业将是生成式 AI 的一个杀手级用例。AI 工具可为小型企业带来即时影响,如 Sameday 可接电话预约,Truelark 处理短信等,许多通用内容创建工具在中小企业中已获显著用户基础,也出现为特定类型企业工作流量身定制的垂直化工具。 未来,AI 工具在各行业的应用有望不断深化和拓展,为经济发展和社会进步带来更多机遇和挑战。
2024-12-23