常见的提示词写法误区主要包括以下几点:
在写提示词时,还需注意以下语法方面: 根据想画的内容写提示词,多个提示词之间使用英文半角符号[,]。一般而言,概念性、大范围、风格化的关键词写在前面,叙述画面内容的关键词其次,最后是描述细节的关键词,大致顺序如:(画面质量提示词),(画面主题内容)(风格),(相关艺术家),(其他细节)。不过在模型中,每个词语本身自带的权重可能有所不同,如果模型训练集中较多地出现某种关键词,输入一个词就能极大地影响画面,反之输入很多相关词汇对画面影响效果可能有限。提示词的顺序很重要,越靠后的权重越低。关键词最好具有特异性,措辞越不抽象越好,尽可能避免留下解释空间的措辞。可以使用括号人工修改提示词的权重,如:(word)-将权重提高 1.1 倍,((word))-将权重提高 1.21 倍(= 1.1 * 1.1)。
1、忽略基础知识的重要性很多同学急于上手写复杂的提示词,基础教程瞟了几眼就当看过了,然后在已经能copy模板写好几千token的提示词之后,问出非常基础的问题:为什么我问了两轮之后GPT就会失忆呢?为什么我给了他特定的一段话但是他好像把它和别的内容混淆了呢?为什么大模型无法指定准确的字数呢,有什么其他办法能让它生成的长度靠谱一些吗?我理解基础教程的枯燥,加上之前很多都是英文硬翻,读起来的确很令人烦躁,但现在有很多翻译和解读非常好的教程了,建议收藏,多读两遍,跟着示例做一下符合自己需求的小例子。2、试图用一个Prompt解决10个问题很多同学入坑提示词可能是被某个结构严谨、设计精妙的提示词吸引,惊为天人,一惊之后暗下决心:自己也要写出这样的Prompt!
根据自己想画的内容写出提示词,多个提示词之间使用英文半角符号[,],如:masterpiece,best quality,ultra-detailed,illustration,close-up,straight on,face focus,1girl,white hair,golden eyes,long hair,halo,angel wings,serene expression,looking at viewer一般而言,概念性的、大范围的、风格化的关键词写在前面,叙述画面内容的关键词其次,最后是描述细节的关键词,大致顺序如:(画面质量提示词),(画面主题内容)(风格),(相关艺术家),(其他细节)不过在模型中,每个词语本身自带的权重可能有所不同,如果模型训练集中较多地出现某种关键词,我们在提示词中只输入一个词就能极大地影响画面,反之如果模型训练集中较少地出现某种关键词,我们在提示词中可能输入很多个相关词汇都对画面的影响效果有限。提示词的顺序很重要,越靠后的权重越低。关键词最好具有特异性,譬如Anime(动漫)一词就相对泛化,而Jojo一词就能清晰地指向Jojo动漫的画风。措辞越不抽象越好,尽可能避免留下解释空间的措辞。可以使用括号人工修改提示词的权重,方法如:(word)-将权重提高1.1倍((word))-将权重提高1.21倍(= 1.1 * 1.1)
如果你突然发现你花在飞书代码块和markdown记事本上的时间好像远远超过了你和GPT对话的时间,你要警惕一下:你是否过于关注Prompt的文本本身,而忽略了在写作过程中你本可以和GPT进行深度对话,来检验它对你方法论的熟悉程度,或者让他针对某个逻辑给出完善的建议,或者在你的Prompt版本迭代中反复测试生成结果,来对Prompt进行优化和改善。在昨天的实战案例中,我看到学员们撰写了一个焦虑情绪测试和生成建议的Prompt,它的结构和语句、各模块的作用上挑不出什么毛病,生成结果除了太宽泛也没有太大问题。但实际作为一个焦虑患者的用户使用这套Prompt的时候会产生很多体验上的、情绪上的问题,这在一定程度上说明,如果过于纠结Prompt的文法而忽略了它作为一个对话工具的预设,没有在对话场景中代入用户体验去反复测试,很可能出现写出来的Prompt围观群众都觉得不错,但真正的用户压根不会去用的情况。