Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

有哪些AI工具可以辅助技术趋势研究和技术洞察

Answer

以下是一些可以辅助技术趋势研究和技术洞察的 AI 工具:

  • 专利趋势分析和预测方面:
    • Innography:利用 AI 技术分析专利数据,提供技术趋势分析和竞争情报。
    • PatSnap:AI 驱动的平台,分析专利数据和技术趋势,提供全面的专利情报和市场分析。
  • 论文写作方面:
    • 文献管理和搜索:
      • Zotero:结合 AI 技术,可自动提取文献信息,帮助管理和整理参考文献。
      • Semantic Scholar:由 AI 驱动的学术搜索引擎,提供文献推荐和引用分析。
      • 百度学术智能助手:百度推出的学术研究辅助工具,结合自然语言处理和大数据分析技术,能帮助用户快速找资料,提供文献推荐、资料整合和研究趋势分析等功能。
    • 内容生成和辅助写作:
      • Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提高语言质量。
      • Quillbot:基于 AI 的重写和摘要工具,可精简和优化内容。
      • 知网 AI 智能写作:适用于各类文档写作场景,包括研究报告、调研报告、资讯报告等。
    • 研究和数据分析:
      • Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。
      • Knitro:用于数学建模和优化的软件,帮助进行复杂的数据分析和模型构建。
Content generated by AI large model, please carefully verify (powered by aily)

References

问:有没有专利审查方面的AI ?

Innography:利用AI技术分析专利数据,提供技术趋势分析和竞争情报。PatSnap:AI驱动的平台,分析专利数据和技术趋势,提供全面的专利情报和市场分析。

问:有没有专利审查方面的AI ?

AI可以分析大量的专利数据,识别技术发展趋势和竞争情报,帮助企业和研究机构制定战略决策。

问:有没有论文写作的 AI 产品?

在论文写作领域,AI技术的应用正在迅速发展,提供了从文献搜索、内容生成、语言润色到数据分析等多方面的辅助。以下是一些论文写作中常用的AI工具和平台:1.文献管理和搜索:Zotero:结合AI技术,可以自动提取文献信息,帮助研究人员管理和整理参考文献。Semantic Scholar:一个由AI驱动的学术搜索引擎,能够提供相关的文献推荐和引用分析。百度学术智能助手:百度推出的一款学术研究辅助工具,它结合了百度在自然语言处理和大数据分析方面的技术。该工具可以帮助用户快速找到相关学术资料,提供文献推荐、资料整合和研究趋势分析等功能。1.内容生成和辅助写作:Grammarly:通过AI技术提供文本校对、语法修正和写作风格建议,帮助提高论文的语言质量。Quillbot:一个基于AI的重写和摘要工具,可以帮助研究人员精简和优化论文内容。知网AI智能写作:适合各类文档写作的场景,包括:研究报告,调研报告,资讯报告等。1.研究和数据分析:Google Colab:提供基于云的Jupyter笔记本环境,支持AI和机器学习研究,便于进行数据分析和可视化。Knitro:一个用于数学建模和优化的软件,可以帮助研究人员进行复杂的数据分析和模型构建。1.论文结构和格式:

Others are asking
小白如何0基础学Ai
对于 0 基础学习 AI 的小白,以下是一些建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库中有很多大家实践后的作品、文章分享,欢迎实践后进行分享。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人进行互动,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 6. 岗位技能要求: 对于“AI 提示词工程师”岗位,需要具备市场调研、观察目标群体工作流、创造并拆解需求、选型现有 AI 解决方案做成产品来解决需求、抽象出来集成为一个互联网 APP 产品、写 PRD、画 APP 产品原型图、组织团队进行 APP 产品开发等综合能力。 7. 学习资源: 对于 0 基础小白,可在网上找教程,推荐看科普类教程,阅读 OpenAI 的文档,理解每个参数的作用和设计原理。 推荐一些练手的 Prompt 工具和相关教程文档。 8. 学习模式和注意事项: 可以参考《雪梅 May 的 AI 学习日记》,采用输入→模仿→自发创造的学习模式。 注意学习内容可能因 AI 发展迅速而过时,可去 waytoAGI 社区发现自己感兴趣的 AI 领域,学习最新内容。 学习时间可灵活安排,学习资源大多免费开源。
2025-01-06
我先系统了解AIGC 行业
以下是关于 AIGC 行业的系统介绍: AIGC(Artificial Intelligence Generated Content,人工智能生成内容)的发展历程可以从内容生产方式的演变来了解。在互联网发展过程中,内容生产方式经历了从 PGC(ProfessionalGenerated Content,专业生成内容)到 UGC(UserGenerated Content,用户生成内容),再到 AIGC 的转变。 在 Web1.0 时代,互联网内容生产以 PGC 为主,由专家和专业机构生产高质量内容,如雅虎、IMDb 等。PGC 的优势在于专业性和易变现,但存在创作门槛高、产量不足等挑战。 随着互联网发展和用户需求多样化,Web 2.0 时代到来,用户参与内容创作,UGC 成为主流。UGC 内容多样、个性化,通过推荐系统满足用户需求,降低了专业门槛,促进了互联网的民主化和个性化内容创作。 在当前,国内 AIGC 行业主要在《网络安全法》《数据安全法》以及《个人信息保护法》的框架下,由《互联网信息服务算法推荐管理规定》、《互联网信息服务深度合成管理规定》、《生成式人工智能服务管理暂行办法》、《科技伦理审查办法(试行)》共同监管。 此外,还有一些具体的应用案例,如 Collov 是来自美国硅谷的家居垂直行业 AIGC 工具,专注于利用人工智能技术来实现空间设计与家具营销二合一,打通供应链,为企业提高更低成本、更智能高效的空间设计与家具营销解决方案。它能够完成人类设计师以及高美感内容的视觉理解、推理和生成任务,并将生成技术服务于家装、工装、建筑、具身智能机器人、智能驾驶等多领域的商业场景,替代传统人工设计和采集流程。AI 技术的应用显著提高了设计和营销的效率,减少了对传统人工的依赖,增强了客户的交付满意度,提升了企业的市场竞争力。
2025-01-06
给我推荐一个快速读电子书的AI工具
以下为您推荐一些快速读电子书的 AI 工具: 1. DeepL(网站):点击页面「翻译文件」按钮,上传 PDF、Word 或 PowerPoint 文件即可。 2. 沉浸式翻译(浏览器插件):安装插件后,点击插件底部「更多」按钮,选择「制作双语 BPUB 电子书」、「翻译本地 PDF 文件」、「翻译 THML/TXT 文件」、「翻译本地字幕文件」。 3. Calibre(电子书管理应用):下载并安装 calibre,并安装翻译插件「Ebook Translator」。 4. 谷歌翻译(网页):使用工具把 PDF 转成 Word,再点击谷歌翻译「Document」按钮,上传 Word 文档。 5. 百度翻译(网页):点击导航栏「文件翻译」,上传 PDF、Word、Excel、PPT、TXT 等格式的文件,支持选择领域和导出格式(不过进阶功能基本都需要付费了)。 6. 彩云小译(App):下载后点击「文档翻译」,可以直接导入 PDF、DOC、DOCX、PPT、PPTX、TXT、epub、srt 等格式的文档并开始翻译(不过有免费次数限制且进阶功能需要付费)。 7. 微信读书(App):下载 App 后将 PDF 文档添加到书架,打开并点击页面上方「切换成电子书」,轻触屏幕唤出翻译按钮。 内容由 AI 大模型生成,请仔细甄别。
2025-01-06
如果用AI来画流程图、结构图的话,应该用哪款产品?
以下是一些可以用于使用 AI 来画流程图、结构图的产品: 1. Lucidchart: 简介:强大的在线图表制作工具,集成了 AI 功能,可自动化绘制多种示意图。 功能:拖放界面,易于使用;支持团队协作和实时编辑;丰富的模板库和自动布局功能。 官网:https://www.lucidchart.com/ 2. Microsoft Visio: 简介:专业的图表绘制工具,适用于复杂的流程图等,AI 功能可帮助自动化布局和优化图表设计。 功能:集成 Office 365,方便与其他 Office 应用程序协同工作;丰富的图表类型和模板;支持自动化和数据驱动的图表更新。 官网:https://www.microsoft.com/enus/microsoft365/visio/flowchartsoftware 3. Diagrams.net: 简介:免费且开源的在线图表绘制工具,适用于各种类型的示意图绘制。 功能:支持本地和云存储(如 Google Drive、Dropbox);多种图形和模板,易于创建和分享图表;可与多种第三方工具集成。 官网:https://www.diagrams.net/ 4. Creately: 简介:在线绘图和协作平台,利用 AI 功能简化图表创建过程。 功能:智能绘图功能,可自动连接和排列图形;丰富的模板库和预定义形状;实时协作功能,适合团队使用。 官网:https://creately.com/ 5. Whimsical: 简介:专注于用户体验和快速绘图的工具,适合创建多种示意图。 功能:直观的用户界面,易于上手;支持拖放操作,快速绘制和修改图表;提供多种协作功能,适合团队工作。 官网:https://whimsical.com/ 6. Miro: 简介:在线白板平台,结合 AI 功能,适用于团队协作和各种示意图绘制。 功能:无缝协作,支持远程团队实时编辑;丰富的图表模板和工具;支持与其他项目管理工具(如 Jira、Trello)集成。 官网:https://miro.com/ 使用 AI 绘制示意图的步骤: 1. 选择工具:根据具体需求选择合适的 AI 绘图工具。 2. 创建账户:注册并登录该平台。 3. 选择模板:利用平台提供的模板库,选择适合需求的模板。 4. 添加内容:根据需求添加并编辑图形和文字,利用 AI 自动布局功能优化图表布局。 5. 协作和分享:若需要团队协作,可邀请团队成员一起编辑。完成后导出并分享图表。 示例:假设需要创建一个项目管理流程图,可以按照以下步骤使用 Lucidchart: 1. 注册并登录:https://www.lucidchart.com/ 2. 选择模板:在模板库中搜索“项目管理流程图”。 3. 编辑图表:根据项目需求添加和编辑图形和流程步骤。 4. 优化布局:利用 AI 自动布局功能,优化图表的外观。 5. 保存和分享:保存图表并与团队成员分享,或导出为 PDF、PNG 等格式。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-01-06
如何学习AI
以下是关于新手学习 AI 的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式。 6. 对于中学生学习 AI 的补充建议: 从编程语言入手学习,如 Python、JavaScript 等,学习编程语法、数据结构、算法等基础知识。 尝试使用 AI 工具和平台,如 ChatGPT、Midjourney 等,探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 学习 AI 基础知识,包括基本概念、发展历程、主要技术及在教育、医疗、金融等领域的应用案例。 参与 AI 相关的实践项目,如参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决生活中的实际问题。 关注 AI 发展的前沿动态,关注权威媒体和学者,思考 AI 技术对未来社会的影响。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-01-06
我想要学AI视频,我应该怎么做
以下是学习 AI 视频的一些建议和资源: 1. 入门教程: 您可以查看。 学习。 2. 交流群: 如需学习 AI 视频、参与 AI 视频挑战赛或参与 AI 视频提示词共创,可直接扫二维码或联系三思或小歪【备注:AI 视频学社】,但必须有 AI 视频账号才能进群,请勿随便申请好友。 3. 直播: AI 视频学社每周 1 次直播(周五直播),例如。 4. 实践建议: 从简单创作开始,如生成零散视频片段或图片进行混剪,选用现成音乐并根据节奏简单剪辑,顺道学习主流创意软件操作。 在成功产出简单作品后,尝试完成更完整的工作流,比如:选题→剧本→分镜描述→文生图→图生视频→配音配乐→剪辑后期。 此外,在 AI 视频学社,小伙伴们可以通过参与每周举办的比赛快速学习相关知识,每周有高手直播分享前沿知识,不定期组织线上或线下活动,大家一起学习最新软件和知识,学习图生视频、视频生视频等技巧。
2025-01-06
对AI未来发展的洞察
以下是对 AI 未来发展的洞察: 在 2024 年,人工智能领域呈现出以下特点和趋势: 1. 资金投入:预计会有团队花费超过 10 亿美元来训练单个大型模型,生成式 AI 的热潮持续且更加“奢华”。 2. 计算压力:政府和大型科技公司承受着逼近电网极限的计算需求压力。 3. 对选举的影响:虽尚未成真,但仍需警惕。 4. 引领新服务模式:如“智能即服务”,重塑工作和生活,为芯片和云计算行业带来新机遇,GPU 需求预计持续增长。 5. 投资领域:企业软件、AI 驱动的金融服务、AI 健康技术吸引投资,机器人行业投资额超过企业软件,有望成为重要爆发点。 6. 资本趋势:科技巨头通过资本控制 AI 模型公司,加速行业发展。 7. 企业竞争策略:分化为迅速成长为大型模型公司并寻找背书,或保持小规模专注盈利并灵活应对。 8. 大模型争霸:OpenAI、Gemini、Anthropic、LLama 以及来自法国的 Mistral 等公司在技术和标准设定上相互竞争。 未来展望: 1. 提示词工程重要性凸显,带来新挑战和责任。 2. AI 能力持续提升,为企业带来超级个性化、预测性决策、自动创新、智能流程优化等新机遇。 总之,人工智能领域充满惊喜、伦理挑战和巨大的商业价值,未来发展前景激动人心,同时也复杂多元。
2024-11-01
AI 分析调查结果并生成洞察报告
以下是关于 AI 分析调查结果并生成洞察报告的相关内容: User Evaluation: 这是一个利用人工智能(AI)来提升用户研究和数据分析的工具。 功能特点包括: AI 驱动的转录:支持 57 种以上语言的转录功能,能够即时转录视频和音频内容。 AI 洞察:从数据中快速生成有用的洞察,每个洞察都附有数据来源。 集合管理:使用直观的看板(Kanban)板来组织和分享洞察,添加标签和笔记。 AI 生成报告:生成包含文本、表格和图表的行为分析报告等。 AI 生成演示文稿:一键生成包含 AI 洞察和数据可视化的 PPTX 演示文稿。 多样化数据源:分析来自音频、视频、文本或 CSV 文件的信息以改进产品用户体验。 洞察模板:提供多种洞察模板,帮助提取最有价值的数据洞察。 情感分析:解释音频和视频文件中的客户情感,识别情绪趋势以优化策略。 FeaturesVote: 这是一个帮助企业通过用户反馈来驱动产品增长的工具。 主要功能有: 用户投票板:用户可以发布和投票他们希望看到的功能,企业可以根据投票结果优先开发这些功能。 快速设置:只需 2 分钟即可完成设置,并提供免费计划。 无缝集成:可以将投票小部件无缝添加到应用中,用户无需再次登录即可发布和投票,减少摩擦并增加反馈。 定制化:支持内置的浅色/深色模式,用户识别和配置。 透明度和信任:通过展示不断交付和构建用户需要的功能来增加用户信任和留存率。 中小企业利用人工智能(AI)进行转型: 在数据驱动决策方面,特别是数据分析和洞察部分: 目标是通过使用人工智能(AI)工具来分析大量的客户和市场数据,为企业决策提供有力支持。 首先,利用 AI 工具分析客户数据、市场数据,深入理解客户行为、市场趋势和业务机会。根据企业需求选择能处理大数据并提供深度分析的工具,如数据挖掘、机器学习模型等。收集不同渠道数据,进行分析,识别模式、趋势和相关性。 其次,为营销、产品开发等部门提供基于数据的建议和指导。利用数据分析结果指导企业策略,如市场定位、产品优化等。理解 AI 分析提供的洞察和建议,将其转化为实际业务策略。与相关部门紧密合作,确保数据洞察被有效利用。基于数据洞察制定或调整策略,实施后持续监控效果并收集数据,反馈到 AI 分析中形成闭环,不断优化数据分析和业务决策。 邬嘉文:AI 做用户研究|Claude 3 Opus 可以直接输出用户研究报告: 报告范例中包含了优势和劣势的相关内容及对应的频次。例如优势方面,高质量显示被提及 44 次等;劣势方面,兼容性问题被提及 68 次等。同时提到 GPT 有一定幻觉问题。
2024-10-29
帮我写一篇有关aigc的行业分析,标题为《AIGC行业洞察与概览》,其中框架内容包含以下部分,整体3万字 - 概念导入(AI、AIGC) - AI与人的区别 - AI衍生发展历程(诞生、发展、现状-中外各平台产品及语言模型介绍) - AI在社会各领域的应用实践 - AI技术的底层逻辑概览 - AI的弊端以及风险
以下是为您生成的《AIGC 行业洞察与概览》的部分内容: 一、概念导入 (一)AI 人工智能(Artificial Intelligence,简称 AI)是一种目标,旨在让机器展现智慧。 (二)AIGC GenAI(即生成式 AI)是一种能够从已有数据中学习并生成新的数据或内容的 AI 应用,利用 GenAI 创建的内容即 AIGC(全称 AIGenerated Content)。AIGC 是利用人工智能技术生成内容的新型生产方式,包括文本、图像、音频和视频等内容。 二、AI 与人的区别 三、AI 衍生发展历程 (一)诞生 (二)发展 (三)现状 1. 中外各平台产品及语言模型介绍 (1)语言文本生成利用马尔科夫链、RNN、LSTMs 和 Transformer 等模型生成文本,如 GPT4 和 GeminiUltra。 (2)图像生成依赖于 GANs、VAEs 和 Stable Diffusion 等技术,代表项目有 Stable Diffusion 和 StyleGAN 2。 (3)音视频生成利用扩散模型、GANs 和 Video Diffusion 等,代表项目有 Sora 和 WaveNet。 四、AI 在社会各领域的应用实践 AIGC 技术可以用于多种应用,如自动撰写新闻文章、生成艺术画作、创作音乐、制作视频游戏内容等。 五、AI 技术的底层逻辑概览 (一)机器学习:一种让机器自动从资料中找到公式的手段。 (二)深度学习:一种更厉害的手段,类神经网络,具有非常大量参数的函数。 (三)大语言模型:是一类具有大量参数的“深度学习”模型,Large Language Models,简称 LLMs。 六、AI 的弊端以及风险 作为一种强大的技术,生成式 AI 能够赋能诸多领域,但也存在多重潜在的合规风险。目前,我国对 AIGC 的监管框架由《网络安全法》《数据安全法》及《个人信息保护法》构成,并与《互联网信息服务算法推荐管理规定》、《互联网信息服务深度合成管理规定》、《生成式人工智能服务管理暂行办法》、《科技伦理审查办法(试行)》等形成了共同监管的形势。 由于篇幅限制,目前仅能为您提供约 2000 字的内容,距离 3 万字还有较大差距。后续还需要进一步丰富和完善各个部分的细节及案例分析等。
2024-09-03
有对用户画像洞察的AI工具吗
目前有多种与用户画像洞察相关的 AI 工具。例如,钉钉 AI 助理基于云雀模型开发,具有语音识别和自然语言处理能力,支持多种交互方式,能理解用户指令并回答问题。在目标市场分析方面,可使用能处理复杂数据集并提供深入洞察的 AI 工具,如机器学习模型、数据分析软件等,对包括消费者行为、购买历史、社交媒体互动等广泛的市场数据进行分析,以准确识别和细分目标客户群体。但关于专门针对用户画像洞察的特定 AI 工具,上述内容中未明确提及。
2024-08-14
分析某一领域的最新技术趋势,技术洞察,是否有合适的工具?
目前在分析某一领域的最新技术趋势和技术洞察方面,常见且有效的工具包括: 1. Gartner 魔力象限:提供对特定技术领域供应商的评估和分析。 2. Forrester 研究报告:涵盖了各种技术领域的趋势洞察。 3. 行业专业数据库,如 IEEE Xplore、Web of Science 等,可获取最新的研究文献。 但具体选择哪种工具,取决于您所关注的领域以及具体的需求。
2024-08-08
高效微调技术-LoRA 全量微调与少量参数微调
以下是关于高效微调技术 LoRA 全量微调与少量参数微调的相关信息: LoRA 微调: 微调脚本: 脚本见: 具体实现代码见: 单机多卡的微调可以通过修改脚本中的include localhost:0来实现。 加载微调模型: 基于 LoRA 微调的模型参数见:基于 Llama2 的中文微调模型,LoRA 参数需要和基础模型参数结合使用。 通过加载预训练模型参数和微调模型参数,示例代码中,base_model_name_or_path 为预训练模型参数保存路径,finetune_model_path 为微调模型参数保存路径。 全量参数微调: 微调脚本: 脚本见: 具体实现代码见: 加载微调模型: 对于全量参数微调的模型,调用方式同模型调用代码示例,只需要修改其中的模型名称或者保存路径即可。 此外,关于微调还有以下补充信息: 微调模型意味着改变模型的权重,现在微调变得越来越容易,因为开发了许多技术并建立了代码库。 像 LoRA 这样的参数高效微调技术只训练模型的小部分稀疏片段,模型大部分保持基础模型状态,效果好且成本低。 微调技术上更为复杂,需要更多技术专业知识,包括人工数据合同承包商的数据集和复杂的合成数据流程,会减慢迭代周期。 SFT(有监督的微调)相对简单明了,RLHF(基于人类反馈的强化学习)则是非常研究性的领域,难度大,不适合初学者。 目前除了传统的全量训练和 freeze 冻结某些层方式,还发展出了很多种高效的微调方法,如 LoRA、Prefix Tuning、PTuning、Prompt Tuning、AdaLoRA、3、MultiTask Prompt Tuning 等。本篇主要采用 LoRA 方式,主要思路是训练一个参数量较小的分支,然后再与底模合并,从而在模型中注入新的知识。
2025-01-06
RAG技术基本了解
RAG(Retrieval Augmented Generation,检索增强生成)是一种结合信息检索和文本生成能力的技术,主要用于处理需要广泛知识的任务,如问答系统,能够提供详细而准确的回答。 其基本流程包括以下几个步骤: 1. 文档加载:从多种不同来源加载文档,如 PDF 在内的非结构化数据、SQL 在内的结构化数据以及 Python、Java 之类的代码等。 2. 文本分割:文本分割器把文档切分为指定大小的块,称为“文档块”或者“文档片”。 3. 存储:涉及将切分好的文档块进行嵌入转换成向量的形式,并将 Embedding 后的向量数据存储到向量数据库。 4. 检索:通过某种检索算法从向量数据库中找到与输入问题相似的嵌入片。 5. 输出:把问题以及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示一起来生成更加合理的答案。 RAG 由两部分组成:一个“检索器”和一个“生成器”。检索器从外部知识中快速找到与问题相关的信息,生成器则利用这些信息来制作精确和连贯的答案。 在实际应用中,例如构建能够利用私有数据或实时数据进行推理的 AI 应用时,将相关信息检索并插入到模型的输入中,即检索增强生成,可以提高生成的质量和准确性。首先给定一个用户的输入,RAG 会从一个数据源中检索出与之相关的文本片段作为上下文,然后将用户的输入和检索到的上下文拼接成一个完整的输入传递给大模型,最后从大模型的输出中提取或格式化所需的信息返回给用户。
2025-01-06
提示词工程技术
提示词工程师(Prompt Engineer)是在与人工智能模型交互时,负责设计和优化提示的专业人员。他们的目标是通过精心构造的提示,引导模型产生准确、有用和相关的回答。 提示词工程师的主要职责包括: 1. 设计提示:根据用户需求和模型能力设计有效的提示,考虑提示的长度、结构、措辞和信息量等因素,以清晰传达用户意图并引导模型生成满意结果。 2. 优化提示:通过收集用户反馈、分析模型结果和实验不同的提示策略等方式不断优化提示,提高模型性能。 3. 评估提示:使用各种指标如模型的准确率、流畅度和相关性等来评估提示的有效性。 提示词工程师需要具备以下技能和知识: 1. 领域知识:对所工作的领域有深入了解,以便设计出有效的提示。 2. 自然语言处理(NLP):了解 NLP 的基本原理和技术,能够理解和生成自然语言文本。 3. 人工智能(AI):了解 AI 的基本原理和技术,能够理解和使用 AI 模型。 4. 沟通能力:具备良好的沟通能力,与用户、团队成员和其他利益相关者有效沟通。 以下是一些提示词工程师工作的实际案例: 在推理任务方面,目前对于大语言模型来说具有挑战性,但通过更高级的提示词工程技术可以改进。例如在涉及数学能力的推理任务中,通过设计不同的提示词和示例来展示算术功能。 在实现让 LLM 获得 tool calling 的功能方面,采用的提示词工程主要有两部分代码组成:提示词注入和工具结果回传。提示词注入用于将工具信息以及使用工具的提示词添加到系统提示中,包含 TOOL_EAXMPLE、tools_instructions、REUTRN_FORMAT 三个部分。工具结果回传则是解析 tool calling 的输出,并将工具返回的内容再次嵌入 LLM。利用正则表达式抓取输出中的“tool”和“parameters”参数,对于不同工具采用相应的处理方式。通过以上提示词工程,可以避免微调,让完全没有 tool calling 能力的 LLM 获得稳定的 tool calling 能力。 提示词工程师是一个新兴的职业,随着人工智能技术的不断发展,对提示词工程师的需求将会越来越大。
2025-01-06
RAG技术路线知识库搭建流程
RAG 技术路线知识库搭建流程主要包括以下步骤: 1. 文档加载:从多种不同来源加载文档,如 PDF 在内的非结构化数据、SQL 在内的结构化数据以及 Python、Java 之类的代码等。LangChain 提供了 100 多种不同的文档加载器。 2. 文本分割:文本分割器把 Documents 切分为指定大小的块,称为“文档块”或者“文档片”。 3. 存储: 将切分好的文档块进行嵌入转换成向量的形式。 将 Embedding 后的向量数据存储到向量数据库。 4. 检索:通过某种检索算法找到与输入问题相似的嵌入片。 5. 输出:把问题以及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示一起来生成更加合理的答案。 在构建知识库的过程中,还涉及到文档解析环节,即将各种类型的资料(包括但不限于 Word、PDF、Excel 和图片等)转换成文字,为后续流程奠定基础。针对图片一般使用 OCR 图像识别技术,针对文档一般将其转换成 Markdown 格式。文档解析完成之后,要进行预处理。 基于 Coze 的知识库问答是典型的 RAG 方案,其重要一环是文档切片(Segment),但 RAG 方案存在一些缺点,如跨分片总结和推理能力弱、文档有序性被打破、表格解析失败等。
2025-01-06
RAG技术基本了解
RAG(Retrieval Augmented Generation,检索增强生成)是一种结合信息检索和文本生成能力的技术,主要用于处理需要广泛知识的任务,如问答系统,能够提供详细而准确的回答。 其基本流程包括以下几个步骤: 1. 文档加载:从多种不同来源加载文档,如PDF 在内的非结构化数据、SQL 在内的结构化数据以及 Python、Java 之类的代码等。 2. 文本分割:文本分割器把文档切分为指定大小的块,称为“文档块”或者“文档片”。 3. 存储:涉及将切分好的文档块进行嵌入转换成向量的形式,并将 Embedding 后的向量数据存储到向量数据库。 4. 检索:通过某种检索算法从向量数据库中找到与输入问题相似的嵌入片。 5. 输出:把问题以及检索出来的嵌入片一起提交给 LLM(大语言模型),LLM 会通过问题和检索出来的提示一起来生成更加合理的答案。 RAG 由两部分组成:一个“检索器”和一个“生成器”。检索器从外部知识中快速找到与问题相关的信息,生成器则利用这些信息来制作精确和连贯的答案。在给定一个用户的输入(如问题或话题)时,RAG 会从数据源中检索出相关的文本片段作为上下文,然后将用户输入和检索到的上下文拼接成完整输入传递给大模型,并从大模型的输出中提取或格式化所需信息返回给用户。
2025-01-06
端到端语音技术现在进展到什么程度了
端到端语音技术目前取得了显著进展。 在语音合成方面: 语音合成将文本转换为可听的声音信息,是人机交互的重要接口,一般包括 TTS、歌唱合成等领域。 当代工业界主流语音合成系统包括文本前端和声学后端两个部分。文本前端将输入文本转换为层次化的语音学表征,声学后端基于此生成语音,主要技术路线包括单元挑选波形拼接、统计参数和端到端语音合成方法,当代主要采用端到端声学后端。 端到端声学后端一般包括声学模型和声码器两部分,也出现了直接从音素映射为波形的完全端到端语音合成系统。 在全模态智能体方面: OpenAI 发布的 GPT4o 是新模型通过端到端的神经网络,把视觉、语音和文本数据混合训练,对音频输入的平均反应时间为 300 毫秒,与人类对话的反应时间相似。 直接拿音频数据来训练的好处是模型能从数据中感悟到人类表达的情绪、语调、风格等,能听到几乎真实的人类的声音。 OpenAI 未公开 GPT4o 的技术细节,唯一线索来自内部模型炼丹师的一篇博客,项目名是 AudioLM,目标是用端到端的方式扩大语音模型的能力。
2025-01-03
我希望ai辅助我做pdf文件的读书笔记,应该使用什么工具,并分哪几步开始进行呢
以下是一些可以辅助您做 PDF 文件读书笔记的工具及步骤: 工具: 1. DeepL(网站): ,点击页面「翻译文件」按钮,上传 PDF、Word 或 PowerPoint 文件即可。 2. 沉浸式翻译(浏览器插件): ,安装插件后,点击插件底部「更多」按钮,选择「制作双语 BPUB 电子书」、「翻译本地 PDF 文件」、「翻译 THML/TXT 文件」、「翻译本地字幕文件」。 3. Calibre(电子书管理应用): ,下载并安装 calibre,并安装翻译插件「Ebook Translator」。 4. 谷歌翻译(网页): ,使用工具把 PDF 转成 Word,再点击谷歌翻译「Document」按钮,上传 Word 文档。 5. 百度翻译(网页): ,点击导航栏「文件翻译」,上传 PDF、Word、Excel、PPT、TXT 等格式的文件,支持选择领域和导出格式(不过进阶功能基本都需要付费了)。 6. 彩云小译(App):下载后点击「文档翻译」,可以直接导入 PDF、DOC、DOCX、PPT、PPTX、TXT、epub、srt 等格式的文档并开始翻译(不过有免费次数限制且进阶功能需要付费)。 7. 微信读书(App):下载 App 后将 PDF 文档添加到书架,打开并点击页面上方「切换成电子书」,轻触屏幕唤出翻译按钮。 步骤: 1. 选择适合您需求的工具。 2. 按照所选工具的指引,进行文件上传或相关操作。 3. 根据工具的功能和您的需求,对翻译或处理的结果进行调整和优化。 请注意,不同工具的功能和效果可能有所差异,您可以根据实际情况进行选择和尝试。同时,内容由 AI 大模型生成,请仔细甄别。
2025-01-05
关于医疗辅助诊断的AI有哪些
以下是一些关于医疗辅助诊断的 AI 应用: 1. 医学影像分析:AI 可用于分析 X 射线、CT 扫描和 MRI 等医学图像,辅助诊断疾病。 2. 药物研发:用于加速药物研发过程,比如识别潜在的药物候选物和设计新的治疗方法。 3. 个性化医疗:通过分析患者数据,为每个患者提供个性化的治疗方案。 4. 机器人辅助手术:控制手术机器人,提高手术的精度和安全性。 5. 平安好医生 APP 中的 AI 医疗诊断辅助系统:辅助医生进行疾病诊断,提高诊断准确性。用户上传症状描述和检查报告后,系统能给出初步的诊断建议和治疗方案,为医生提供参考。
2025-01-02
wps AI 可以辅助一些财务工作吗
WPS AI 可以辅助一些财务工作。生成式 AI 能够帮助金融服务团队改进内部流程,简化财务团队的日常工作。具体表现为: 1. 预测方面:帮助编写 Excel、SQL 和 BI 工具中的公式和查询,实现分析自动化,发现模式,从更广泛、更复杂的数据集中为预测建议输入,并建议如何适应模型以支持公司决策。 2. 报告方面:自动创建文本、图表、图形等内容,并根据不同示例调整报告,无需手动整合数据和分析到外部和内部报告中。 3. 会计和税务方面:综合、总结并就税法和潜在扣除项提出可能的答案。 4. 采购和应付账款方面:帮助自动生成和调整合同、采购订单和发票以及提醒。
2025-01-02
如何更好的使用AI辅助日常办公
以下是关于如何更好地使用 AI 辅助日常办公的一些建议: 写作方面: 草拟初稿:可以让 AI 为博客文章、论文、宣传材料、演讲、讲座等各种类型的文本生成初稿,只需给出明确的提示。 改进内容:将写好的文本粘贴到 AI 中,要求它改进内容,或提供针对特定受众的更好建议,还可以要求它以不同风格创建多个草稿,使其更生动并添加例子。 完成任务方面: 把 AI 当作实习生,让它帮忙写邮件、创建销售模板、提供商业计划的下一步等没时间做的事情。 案例参考: 产品经理使用 GPT 解决性能差和历史数据存档问题,大幅提升效率。 腾讯运营将 ChatGPT 视为日常工作的辅助工具。 针对不同群体的建议: 技术爱好者: 从小项目开始,熟悉 AI 能力和局限性。 探索 AI 编程工具,如 GitHub Copilot 或 Cursor。 参与 AI 社区,与其他开发者交流。 构建 AI 驱动的项目,如聊天机器人或图像识别应用。 内容创作者: 用 AI 辅助头脑风暴,获取创意方向。 建立 AI 写作流程,从生成大纲开始逐步整合。 尝试用 AI 辅助翻译和本地化内容以拓展国际市场。 利用 AI 工具优化 SEO。
2025-01-02
国内主流AI辅助编程工具,比较优缺点
以下是国内主流的 AI 辅助编程工具及其优缺点: GitHub Copilot: 优点:由全球最大的程序员社区和代码托管平台 GitHub 联合 OpenAI 和微软 Azure 团队推出,支持多种语言和 IDE,能为程序员快速提供代码建议,帮助开发者更快、更少地编写代码。 缺点:暂未明确。 通义灵码: 优点:阿里巴巴团队推出,基于通义大模型,提供行级/函数级实时续写、自然语言生成代码、单元测试生成、代码注释生成、代码解释、研发智能问答、异常报错排查等能力。 缺点:暂未明确。 CodeWhisperer: 优点:亚马逊 AWS 团队推出,由机器学习技术驱动,可为开发人员实时提供代码建议。 缺点:暂未明确。 CodeGeeX: 优点:智谱 AI 推出的开源免费 AI 编程助手,基于 130 亿参数的预训练大模型,可快速生成代码,提升开发效率。 缺点:暂未明确。 Cody: 优点:代码搜索平台 Sourcegraph 推出,借助 Sourcegraph 强大的代码语义索引和分析能力,了解开发者的整个代码库,不止是代码片段。 缺点:暂未明确。 CodeFuse: 优点:蚂蚁集团支付宝团队为国内开发者提供智能研发服务的免费 AI 代码助手,基于蚂蚁集团自研的基础大模型进行微调的代码大模型。 缺点:暂未明确。 Codeium: 优点:由 AI 驱动的编程助手工具,通过提供代码建议、重构提示和代码解释来帮助软件开发人员,提高编程效率和准确性。 缺点:暂未明确。 需要注意的是,每个工具的功能和适用场景可能会有所不同,您可以根据自己的需求来选择最适合您的工具。更多辅助编程 AI 产品,还可以查看这里:https://www.waytoagi.com/category/65 。 此外,Cursor 作为一款 AI 编程助手,具有以下核心功能和优势: 核心功能: 全语言支持,包括但不限于 Python、JavaScript、Java、C++、Go 和 Rust 等。 能够快速构建完整的项目框架。 在 IDE 环境中实时提供代码建议、自动补全和错误修正等功能。 支持多项目管理。 能够理解和分析技术文档,并基于文档内容生成相应的代码实现。 优势: 开发效率显著提升,能在短时间内完成功能性演示项目。 降低入门门槛,加速初学者学习过程。 跨语言开发支持,方便开发者切换语言。 减少重复性工作,让开发者集中精力于创造性任务。 实时学习新技术,更新知识库。
2024-12-30
辅助写论文
以下是关于辅助写论文的相关内容: 在论文写作领域,AI 技术的应用发展迅速,能提供多方面的辅助,包括文献搜索、内容生成、语言润色、数据分析、论文结构和格式以及研究伦理和抄袭检测等。 常用的 AI 工具和平台有: 1. 文献管理和搜索: Zotero:结合 AI 技术,自动提取文献信息,便于管理和整理参考文献。 Semantic Scholar:AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:提供文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化内容。 3. 研究和数据分析: Google Colab:支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化,助力复杂数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:检测潜在抄袭问题。 利用 AI 写课题的步骤和建议如下: 1. 确定课题主题:明确研究兴趣和目标,选择有价值和创新性的主题。 2. 收集背景资料:使用学术搜索引擎和文献管理软件搜集相关文献和资料。 3. 分析和总结信息:借助 AI 文本分析工具提取关键信息和主要观点。 4. 生成大纲:用 AI 写作助手生成包括引言、文献综述、方法论、结果和讨论等部分的大纲。 5. 撰写文献综述:利用 AI 工具辅助撰写,保证准确性和完整性。 6. 构建方法论:根据需求,采用 AI 建议的方法和技术设计研究方法。 7. 数据分析:若涉及数据收集和分析,使用 AI 数据分析工具处理和解释。 8. 撰写和编辑:用 AI 写作工具撰写各部分,并检查语法和风格。 9. 生成参考文献:使用 AI 文献管理工具生成正确格式。 10. 审阅和修改:借助 AI 审阅工具检查逻辑性和一致性,根据反馈修改。 11. 提交前的检查:用 AI 抄袭检测工具确保原创性,做最后的格式调整。 需要注意的是,AI 工具可作为辅助,但不能完全替代研究者的专业判断和创造性思维,使用时应保持批判性思维,确保研究质量和学术诚信。同时,对于孩子使用 AI 辅助写作文,可将任务改为让孩子提交与 AI 共同完成作文的聊天记录,重点关注孩子能否对 AI 作文进行点评批改、让其迭代出更好的文章。
2024-12-26