Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AIGC在CRM中有什么应用

Answer

AIGC(AI 生成性内容)在 CRM(客户关系管理)领域有着广阔的应用前景,主要包括以下几个方面:

  1. 个性化营销内容创作 AIGC 可以根据客户的个人信息、购买历史、偏好等数据,生成高度个性化且富有创意的营销文案、视觉内容等,替代人工撰写,提高营销效率和转化率。
  2. 客户服务对话系统 基于 AIGC 的对话模型,可以开发智能客服系统,通过自然语言交互的方式解答客户的咨询、投诉等,缓解人工客服的压力。
  3. 产品推荐引擎 借助 AIGC 生成丰富的产品描述、视觉展示等内容,相结合推荐算法,为客户推荐更贴合需求的产品,提升销售业绩。
  4. CRM 数据分析报告生成 AIGC 可以自动生成期望的数据分析报告内容,包括文字、图表、视频演示等形式,加快分析报告的生产流程。
  5. 智能翻译和本地化 AIGC 技术能够提供高质量的多语种翻译及本地化服务,帮助企业打造精准的全球化营销内容。
  6. 虚拟数字人和营销视频内容生成
    AIGC 可以快速生成虚拟数字人形象、场景背景和营销视频内容,降低视频制作成本。
  7. 客户反馈分析 AIGC 可以高效分析海量的客户反馈文本和多媒体信息,挖掘客户需求和潜在痛点。

总的来说,AIGC 为 CRM 系统带来了自动化内容生成、智能交互和个性化服务的能力,有望显著提升营销效率和客户体验。不过在应用过程中,仍需解决算法偏差、版权和知识产权等伦理法律问题。

Content generated by AI large model, please carefully verify (powered by aily)

References

Others are asking
请问还有哪些AIGC活动还未到截止日期
以下是一些尚未到截止日期的 AIGC 活动: 2024 上海国际公益广告大赛:截止 10 月 31 日。作品提交:sipsac.cn,主题为“潮起东方创益未来”,板块包括美丽世界、文化中国、科技生活,类型有平面、音视频、数字创新,金奖 3 万、银奖 1 万、铜奖 5 千,还有全场大奖 10 万。 首届“海丝之光”AI 青瓷设计大赛:截止 2024 年 11 月 10 日。报名链接:,团队参赛最多 5 人,网络投票+专家评审,一等奖 10000 元,二等奖 5000 元,三等奖 1000 元。 百万奖金池重磅赛事“2024 AIGC 营销视频生态创新大赛 '真 AI 牛奶,真 AI 创意'”:作品提交时间为 10 月 11 日 11 月 30 日,专家评审时间为 12 月 1 日 12 月 9 日,成果发布时间为 12 月 10 日。 中国神兽复兴计划 AI 创作大赛开启:9 月 1 日 9 月 24 日。利用 AI 复原《山海经》中的经典神兽,赢取 35 万元现金和实体大奖,获奖作品将获得全网流量曝光,由中央美术学院等权威高校支持。 生成式人工智能(AIGC)网络微短剧、微电影大赛征集评选活动:9 月 3 日 11 月 3 日。一等奖 2 名,奖杯、荣誉证书 10000;二等奖 2 名,奖杯、荣誉证书 8000;三等奖 6 名,奖杯、荣誉证书 3000。 ComfyUI 共学 WaytoAGI 共学计划:8 月 20 23 日每晚 8 点,会议链接:。 全球 AI 视觉创意大赛(瓦卡奖 VACAT):8 月 22 日 9 月 22 日。全球 AI 视觉创意大赛(瓦卡奖 VACAT Vision Arts Created by AI Technology),致力于构建 AI 视觉创意界的“奥斯卡”平台,推动 AI 视觉技术的应用与创新。
2025-01-30
请联网搜索近期有什么AIGC相关的比赛活动
以下是近期的 AIGC 相关比赛活动: 【线上⬆️】,时间为 9 月 1 日 9 月 24 日。利用 AI 复原《山海经》中的经典神兽,赢取 35 万元现金和实体大奖,获奖作品将获得全网流量曝光,由中央美术学院等权威高校支持。 ,时间为 9 月 3 日 11 月 3 日。一等奖 2 名,奖杯、荣誉证书及 10000 元奖励;二等奖 2 名,奖杯、荣誉证书及 8000 元奖励;三等奖 6 名,奖杯、荣誉证书及 3000 元奖励。 【线上⬆️】 。 【线上⬆️】,时间为 8 月 22 日 9 月 22 日。全球 AI 视觉创意大赛(瓦卡奖 VACAT Vision Arts Created by AI Technology),致力于构建 AI 视觉创意界的“奥斯卡”平台,推动 AI 视觉技术的应用与创新。 ,截止时间为 10 月 31 日。作品提交:sipsac.cn,主题为“潮起东方创益未来”,板块包括美丽世界、文化中国、科技生活,类型有平面、音视频、数字创新,金奖 3 万、银奖 1 万、铜奖 5 千,另外有全场大奖 10 万。 ,截止时间为 2024 年 11 月 10 日。让创意点亮传统,传承经典,一等奖 10000 元,二等奖 5000 元,三等奖 1000 元。 ,作品提交时间为 10.11 11.30,专家评审时间为 12.1 12.9,成果发布时间为 12.10 。 ,时间为 1 月 24 日 2 月 28 日。需用魔搭平台【AIGC 专区】麦橘超然模型作底模训练 LORA 模型,描绘心中理想世界,风格不限。提交 LoRA 及 6 张以上高质量作品,单张图片分辨率不低于 1024x1024 像素,每组作品展现一个世界观场景;避免鲜血、骷髅等敏感元素。一等奖 1 名,奖金 5000 元 + 证书;二等奖 3 名,奖金 3000 元 + 证书;三等奖 10 名,奖金 1000 元 + 证书。魔搭社区 AIGC 代言人奖:作品发小红书带一丹一世界话题并@魔搭 ModelScope 社区官方,浏览量满 800,前 20 名可得 300 元天猫超市卡。
2025-01-30
AIGC和AGI的区别
AIGC(人工智能生成内容)是利用人工智能技术生成各种类型内容的应用方式,包括文字、图像、视频等。它在内容创作、广告、媒体等领域广泛应用。 AGI(通用人工智能)则是一种让机器具备像人类一样的通用智能的目标,能够理解、学习和处理各种不同的任务和领域。 AIGC 侧重于内容的生成,是通过机器学习和深度学习算法,根据输入的数据和指令生成符合特定要求的内容。而 AGI 追求的是更广泛和通用的智能能力。 例如,AIGC 可以生成文章、艺术作品、短视频等具体的内容形式;AGI 则是期望机器能够像人类一样进行思考、推理、解决复杂的综合性问题等。 总的来说,AIGC 是 AGI 在内容生成方面的一种具体应用,而 AGI 是更宏观和高远的人工智能发展目标。
2025-01-19
什么是AIGC
AIGC 即 AI generated content,又称为生成式 AI,是一种利用人工智能技术生成各种类型内容的应用方式。 AIGC 能够通过机器学习和深度学习算法,根据输入的数据和指令生成符合特定要求的内容,例如 AI 文本续写、文字转图像的 AI 图、AI 主持人等。其应用领域广泛,包括内容创作、广告、媒体等。 能进行 AIGC 的产品项目和媒介众多。在语言文字类,有 OpenAI 的 GPT、Google 的 Bard、百度的文心一言等;在语音声音类,有 Google 的 WaveNet、微软的 Deep Nerual Network、百度的 DeepSpeech 等;在图片美术类,有早期的 GEN 等图片识别/生成技术,去年大热的扩散模型又带火了 Midjourney、谷歌的 Disco Diffusion、OpenAI 的 Dalle·2 以及 stability ai 和 runaway 共同推出的 Stable Diffusion 等。 AIGC、UGC 和 PGC 都是内容生成的不同方式。UGC 是由用户生成的内容,反映用户的真实想法和创意,适用于社交媒体、社区论坛等互动性强的平台。PGC 是由专业人士或机构生成的内容,内容质量高、专业性强,适用于新闻媒体、专业网站等需要高质量内容的平台。AIGC 的优势在于可以快速、大规模地生成内容,适用于需要大量内容的场景,如自动化新闻、广告创作等。
2025-01-19
什么是AIGC
AIGC 即 AI generated content,又称为生成式 AI,是一种利用人工智能技术生成各种类型内容的应用方式。 AIGC 能够通过机器学习和深度学习算法,根据输入的数据和指令生成符合特定要求的内容,其应用领域广泛,包括但不限于内容创作、广告、媒体等。 例如,在文字生成方面,可使用大型语言模型(如 GPT 系列模型)生成文章、故事、对话等内容;在图像生成方面,可使用 Stable Diffusion、DALLE 等模型生成艺术作品、照片等;在视频生成方面,可使用 Runway、KLING 等模型生成动画、短视频等。 AIGC 与 UGC(普通用户生产)、PGC(专业用户生产)都是内容生成的不同方式。UGC 是由用户生成的内容,优势在于内容丰富多样,能反映用户真实想法和创意,适用于社交媒体、社区论坛等互动性强的平台。PGC 是由专业人士或机构生成的内容,优势在于内容质量高、专业性强,适用于新闻媒体、专业网站等需要高质量内容的平台。 能进行 AIGC 的产品项目众多,媒介也多样。语言文字类有 OpenAI 的 GPT、Google 的 Bard、百度的文心一言等;语音声音类有 Google 的 WaveNet、微软的 Deep Nerual Network、百度的 DeepSpeech 等,还有合成 AI 孙燕姿大火的开源模型 Sovits;图片美术类有早期的 GEN 等图片识别/生成技术,去年大热的扩散模型带火了生成质量很高的 Midjourney、先驱者谷歌的 Disco Diffusion、一直在排队测试的 OpenAI 的 Dalle·2,以及 stability ai 和 runaway 共同推出的 Stable Diffusion。Stable Diffusion 是由初创公司 StabilityAI、CompVis 与 Runway 合作开发,2022 年发布的深度学习文本到图像生成模型,代码模型权重已公开发布,当前版本为 2.1 稳定版(2022.12.7),源代码库为 github.com/StabilityAI/stablediffusion。
2025-01-10
AIGC是什么
AIGC 即 AI generated content,又称为生成式 AI,是一种利用人工智能技术生成各种类型内容的应用方式。 这种技术能够通过机器学习和深度学习算法,根据输入的数据和指令生成符合特定要求的内容。AIGC 的应用非常广泛,例如 AI 文本续写、文字转图像的 AI 图、AI 主持人等。 在内容生成方面,AIGC 包括文字生成(如使用大型语言模型 GPT 系列模型生成文章、故事、对话等)、图像生成(如使用 Stable Diffusion、DALLE 等模型生成艺术作品、照片等)、视频生成(如使用 Runway、KLING 等模型生成动画、短视频等)。 AIGC 与 UGC(普通用户生产)、PGC(专业用户生产)都是内容生成的不同方式。UGC 由用户生成内容,优势在于内容丰富多样,能反映用户真实想法和创意,适用于社交媒体、社区论坛等互动性强的平台。PGC 由专业人士或机构生成内容,优势在于内容质量高、专业性强,适用于新闻媒体、专业网站等需要高质量内容的平台。 能进行 AIGC 的产品项目众多,能进行 AIGC 的媒介也很多,包括且不限于: 语言文字类:OpenAI 的 GPT,Google 的 Bard,百度的文心一言,还有一种国内大佬下场要做的的 LLM 都是语言类的。 语音声音类:Google 的 WaveNet,微软的 Deep Nerual Network,百度的 DeepSpeech 等,还有合成 AI 孙燕姿大火的开源模型 Sovits。 图片美术类:早期有 GEN 等图片识别/生成技术,去年大热的扩散模型又带火了我们比较熟悉的、生成质量无敌的 Midjourney,先驱者谷歌的 Disco Diffusion,一直在排队测试的 OpenAI 的 Dalle·2,以及 stability ai 和 runaway 共同推出的 Stable Diffusion。
2025-01-08
请搜索生成式对话crm软件
以下是关于生成式对话 CRM 软件的相关信息: 生成式 AI Studio 方面: 创建聊天提示:可与模型进行自由形式聊天,跟踪之前内容并根据上下文响应。返回语言页面,单击 + CREATE CHAT PROMPT 按钮创建新聊天提示,添加上下文到上下文字段,将相关文本复制到 Responses 下的聊天框,按 Enter 键或单击发送消息,模型会根据提供的额外上下文在约束范围内回答问题。 探索提示库:Prompt Gallery 可让您探索生成式 AI 模型在各种用例中的应用。在 Generative AI Studio 菜单中,单击 Language 可在 Get Started 页面上找到 Prompt Gallery,可从总结、分类、提取、写作和构思等用例中选择并探索。 课程字幕:介绍了生成式 AI Studio 中的一些模型参数,如调整温度(选择概率低、比较不寻常的词)、top K(从可能性最高的 K 个词中随机返回一个词)、top P(从 top P 个词中随机返回一个词的概率)等。 AIGC 在 CRM 中的应用: 个性化营销内容创作:根据客户数据生成个性化营销文案、视觉内容等,提高营销效率和转化率。 客户服务对话系统:开发智能客服系统,通过自然语言交互解答客户咨询、投诉等。 产品推荐引擎:生成产品描述、视觉展示等内容结合推荐算法为客户推荐产品,提升销售业绩。 CRM 数据分析报告生成:自动生成数据分析报告,包括多种形式,加快生产流程。 智能翻译和本地化:提供高质量多语种翻译及本地化服务,打造全球化营销内容。 虚拟数字人和营销视频内容生成:快速生成虚拟数字人形象、场景背景和营销视频内容,降低制作成本。 客户反馈分析:高效分析客户反馈文本和多媒体信息,挖掘需求和潜在痛点。 需要注意的是,AIGC 在应用过程中仍需解决算法偏差、版权和知识产权等伦理法律问题。
2024-10-15
crm产品设计类的大模型助手有哪些
以下是一些与 CRM 产品设计相关的大模型助手类型: 1. LangGraph 中的多专家协作模型助手,如航班预订助手、酒店预订助手、汽车租赁助手、旅行助手以及主要助手,主要助手可在这些助手之间进行切换。 2. 大圣教程中提到的 Agent 类型助手,像主驾驶一样具有更强的独立性和执行复杂任务的能力,能够根据任务目标进行自主思考和行动,自主规划整个处理流程,并根据外部反馈进行自我迭代和调整。 3. ChatGPT 可作为业务助手,以助手方式进行工作辅助,不在主业务流程内,负责优化、检索、启发、提供思路等,帮助人提高效率、多维度思考;也可以以业务环方式,经过调整和 prompt 工程后,作为接口服务,进入到主业务流程中,自动处理内容并生成结果。
2024-08-21
如果会议中有粤语,普通话和英语,通义听悟能区分到 吗?
目前通义听悟对于在会议中同时存在粤语、普通话和英语的情况,其区分能力可能会受到多种因素的影响,例如语音的清晰度、口音的差异、语言的复杂程度等。但具体能否准确区分,还需要根据实际使用情况来判断。
2025-01-26
知识库中有关于Agent的金融应用
智能体(Agent)在各种应用中扮演重要角色,以下是一些典型的应用领域: 1. 自动驾驶:自动驾驶汽车中的智能体感知周围环境,做出驾驶决策。 2. 家居自动化:智能家居设备(如智能恒温器、智能照明)根据环境和用户行为自动调节。 3. 游戏 AI:游戏中的对手角色(NPC)和智能行为系统。 4. 金融交易:金融市场中的智能交易算法,根据市场数据做出交易决策。 5. 客服聊天机器人:通过自然语言处理与用户互动,提供自动化的客户支持。 6. 机器人:各类机器人(如工业机器人、服务机器人)中集成的智能控制系统。 智能体可以根据其复杂性和功能分为几种类型: 1. 简单反应型智能体(Reactive Agents):根据当前的感知输入直接采取行动,不维护内部状态,也不考虑历史信息。示例:温控器,它根据温度传感器的输入直接打开或关闭加热器。 2. 基于模型的智能体(Modelbased Agents):维护内部状态,对当前和历史感知输入进行建模,能够推理未来的状态变化,并根据推理结果采取行动。示例:自动驾驶汽车,它不仅感知当前环境,还维护和更新周围环境的模型。 3. 目标导向型智能体(Goalbased Agents):除了感知和行动外,还具有明确的目标,能够根据目标评估不同的行动方案,并选择最优的行动。示例:机器人导航系统,它有明确的目的地,并计划路线以避免障碍。 4. 效用型智能体(Utilitybased Agents):不仅有目标,还能量化不同状态的效用值,选择效用最大化的行动,评估行动的优劣,权衡利弊。示例:金融交易智能体,根据不同市场条件选择最优的交易策略。 5. 学习型智能体(Learning Agents):能够通过与环境的交互不断改进其性能,学习模型、行为策略以及目标函数。示例:强化学习智能体,通过与环境互动不断学习最优策略。 从历史角度来看,随着大航海时代及全球贸易的兴起,“Agent”的角色在商业领域变得日益重要。16 至 17 世纪间,贸易代理和公司代理商开始在全球范围内进行商品交易,如荷兰东印度公司的代理人。18 至 19 世纪工业革命期间,“Agent”的职能进一步拓展到保险、房地产等新兴行业。此外,在 19 世纪,政府及情报领域也开始广泛使用“Agent”,比如情报特工和便衣警察,在维护国家安全与社会秩序方面发挥了不可或缺的作用。 在 20 世纪至 21 世纪的现代社会中,“Agent”一词涵盖了多种职业角色,尤其在娱乐和体育行业中,它指的是艺人经纪人和运动员经理等职位。这些专业经理人负责安排试镜、进行合同谈判以及规划职业生涯,确保客户能在竞争激烈的行业中获得成功。此外,“Agent”还包括劳务代理和招聘代理(猎头)。劳务代理提供劳动力匹配服务,帮助求职者找到合适的工作,并为雇主提供所需的人才,如劳务派遣公司将临时员工派遣到需要额外支持的企业单位。而猎头则专门为公司招募高技能或高级管理职位的专业人士,通过筛选简历、安排面试并评估候选人来帮助企业找到最合适的员工。凭借深厚的行业知识与广泛的联系网络,这些猎头为企业与顶尖人才之间搭建了重要桥梁。 从词源和词的历史变迁中,大家就能看到,“Agent”这个词本身就具有行动的含义,到了后期又附加了“替身”的意思。且无论哪个领域,“Agent”都多数情况下都在指:“拥有行动的替身,都是替代他人做某事“。 设计和实现一个智能体通常涉及以下几个步骤: 1. 定义目标:明确智能体需要实现的目标或任务。 2. 感知系统:设计传感器系统,采集环境数据。 3. 决策机制:定义智能体的决策算法,根据感知数据和目标做出决策。 4. 行动系统:设计执行器或输出设备,执行智能体的决策。 5. 学习与优化:如果是学习型智能体,设计学习算法,使智能体能够从经验中改进。 智能体在现代计算机科学和人工智能领域是一个基础且重要的概念。它们通过自主感知和行动,在广泛的应用领域中发挥重要作用。从简单的反应型系统到复杂的学习型系统,智能体技术的不断发展和应用正在改变我们的生活方式和工作模式。
2025-01-09
你的知识库中有关于AI编程的部分吗
我的知识库中有关于 AI 编程的部分,主要包括以下内容: 1. 从工程视角出发,提到用一个提示词就能写游戏,现在的 AI 编程(如 CURSOR)能做出开源小游戏,可拿来使用、交流并研究内容、优化改造。还提到李继刚老师“read in prompt out”的名言,写 prompt 是基础,后面会讲如何用 agent 串联起来玩。 2. 产品经理虽不会写代码,但用 GPT 能快速做出小插件,不到一分钟就做出统计网页字数的插件。AIPO 项目不限制项目大小,只要动手操作,有想法写个小方案就可做线下路演。还提到 GP4O 等大语言模型可多模态识别,能用于识面相且准确率高。 3. 之前社区测试中有关夫妻相的有趣提示词测试,还指出有 midjourney 提示词、股市卡片、解压缩等众多内容。此外有最佳实践、方法论、论文精读,提到刘海写伪提示词等技巧,吴文达老师讲 prompt 较好,还有 open i 官方提示,博主列出的 6 大策略吃透有助于写提示词。 4. 在一份教程中提到,在 AI 的帮助下,可以完成很多基础的编程工作。若希望再深入,至少要熟悉 Python 基础(包括基本语法、数据类型、控制流、函数、模块和包、面向对象编程、异常处理、文件操作)。 5. 介绍了工程平台,在 cos 主页有新手教程文档,可据此构建智能体。工作流偏向节点调用,可通过 prompt 构建提示词并优化。还能调用多种插件,可添加图像流、触发器和知识库,知识库可上传多种格式内容及在线链接以沉淀知识。 6. 介绍了 Nimbus 智能交互相关内容,包括有趣的智能体、插件商城、扣子案例、模型社区并答疑。 7. 说明了 AI 编程课前准备及相关工具、账号注册,如注册阿里云账号、安装无影、注册 GitHub 账号等。
2024-12-29
现在系统中有一些案例,这些案例包括一些PDF\PPT\WORD等文件,如何引入AI对这些案例进行解析,方便用户智能搜索、对文本中的内容进行全文提问
要引入 AI 对包括 PDF、PPT、WORD 等文件的案例进行解析,以方便用户智能搜索和对文本内容进行全文提问,可以参考以下方法: 1. 对于法律文本阅读场景: 操作动作:选择某一份或者若干份文档上传,AI 完成解析,然后根据需要了解的内容进行提问。 Prompt 指令词示例:“图纸是谁设计的?”“谁负责承担本项目的设计、建设?”“贷款期限是多少?”“谁承担律师费?”“请概括原告的诉讼请求和事实理由?”“根据民事答辩状,被告张三一方还有更好的答辩建议吗?” 拼接模板:根据以下材料内容回答我的问题【每个材料内容都以数字序号+文件名开头】。你需要尽可能的参考材料内容:【文档 1 内容】+【文档 2 内容】+...+【文档 n 内容】+ 我的问题是:参考上述 Prompt 指令词。 2. 对于 AI 产品案例和投稿中的自媒体场景: 例如“创作:社群的每日资讯”“创作:写科普内容”“分发:内容分发”“沟通:小团队与甲方沟通”等案例,涵盖了品牌推广、科普创作、内容分发、团队沟通等方面。 3. 对于 AI 产品案例和投稿中的工作场景: 包括企业运营、教育、游戏/媒体、零售/电商、金融/保险等七大行业的商业化应用,如企业日常办公文档撰写、教育资源平等获取、游戏剧情生成、电商舆情监测、金融理财顾问等方面。
2024-12-10
AI在教育和生活领域的应用中有哪些新增就业机会?
以下是 AI 在教育和生活领域应用中可能带来的新增就业机会: 教育领域: 个性化 AI 辅导的开发与维护人员,以更好地满足学生和教师的需求,如实时反馈和作业批改。 教育科技(EdTech)产品的研发和运营人员,随着市场对教育科技的需求持续增长,相关岗位需求增加。 生活领域: 专注于视频字幕生成和长视频切片等 AI 工具的开发、优化和运营人员,例如像 Submagic 这样的工具。 探索 AI 在各种生活场景新应用的创新人员,随着 AI 变得更强大和更多新的使用方式被发掘,会有更多相关应用出现,从而创造新的就业岗位。 总体而言,AI 虽然可能导致一些岗位消失,但也会在其发展过程中创造出众多新的高技能就业机会。
2024-12-03
你是一名医疗器械销售,就职于一家跨国医疗企业。公司目前就“我们是否应该立刻全面拥抱人工智能技术”组织了一场辩论赛,你持反方论点,即“我们不应该立刻全面拥抱人工智能技术”。 请你结合社会时事热点,设计5个以上刁钻问题给对方,要求举出实例。 此次辩论赛的听众中有公司高层和全体同事,请注意避免不友好及不利于公司形象的言论。
以下是为您设计的一些刁钻问题: 1. 目前人工智能在医疗领域的误诊案例时有发生,比如某些智能诊断系统对复杂病症的判断失误,导致患者延误治疗,这难道还能让我们立刻全面拥抱它吗? 2. 人工智能技术在医疗数据安全方面存在诸多隐患,像近期发生的多起医疗数据泄露事件,给患者带来极大困扰,在这种情况下,怎么能立刻全面拥抱? 3. 人工智能在医疗器械的研发中,由于算法偏见,可能会导致某些特定人群无法受益,例如某些心脏起搏器的智能调控系统对特定体质患者效果不佳,这能说明应该立刻全面拥抱吗? 4. 当下人工智能技术的高昂成本使得许多医疗机构望而却步,比如一些小型医院根本无力承担智能医疗设备的购置和维护费用,这难道不影响全面拥抱的可行性吗? 5. 人工智能在医疗领域的法规和监管还不完善,比如某些智能手术机器人的操作规范尚未明确,一旦出现问题,责任难以界定,这样能立刻全面拥抱吗? 6. 虽然人工智能在某些方面提高了医疗效率,但也导致了部分医疗人员的失业,引发社会就业问题,这难道不是我们需要谨慎对待、不能立刻全面拥抱的原因吗?
2024-12-01
coze的主要应用
Coze 是由字节跳动推出的 AI 聊天机器人和应用程序编辑开发平台,主要应用包括: 1. 简化 AI 机器人的开发过程,使开发者和非技术用户都能快速搭建基于 AI 模型的各类问答 Bot,处理从简单问答到复杂逻辑对话的任务。 2. 支持多语言模型,如 GPT48K 和 GPT4128K,并提供云雀语言模型等,以支持不同场景下的对话和交互。 3. 集成超过 60 款插件,涵盖资讯阅读、旅游出行、效率办公、图片理解等功能,同时支持用户创建自定义插件,扩展 Bot 的能力。 4. 允许用户上传和管理数据,支持 Bot 与用户数据交互,可上传多种格式的文档,或基于 URL 获取在线内容和 API JSON 数据。 5. 提供数据库功能,允许 Bot 访问会话内存和上下文,持久记住用户对话中的重要参数或内容。 6. 用户可以通过拖拉拽的方式快速搭建工作流,处理逻辑复杂的任务流,提供大量灵活可组合的节点。 7. 支持多代理模式,在一个机器人中运行多个任务,允许添加多个代理,每个代理都能独立执行特定任务。 8. 对用户完全免费。 9. 易于发布和分享,用户可将搭建的 Bot 发布到各类社交平台和通讯软件上。 此外,Coze 在移动端的排名表现出色,如在 TikTok 母公司字节跳动的相关产品中,Coze 首次出现在榜单上,排名第 45 位。
2025-02-04
智能体编排应用 定义
智能体编排应用是一种将多个应用整合,分工协作完成复杂任务的流程式 AI 应用。它把复杂任务分成多个子任务,通过以下方式实现: 1. 操作方面:点击新应用创建智能体编排,可放入现有应用或创建新智能体,通过不同模型设置智能体组分工协作。 2. 应用组件能力:包含插件管理能力,遵循 open API 3.0.1 规范,可接入阿里云上众多 API 场景,即将上线大批官方插件,也可编辑自定义插件。 3. 应用测评与观测能力:可创建测评任务,观测应用运行情况,有众多值得探索的场景。 4. 智能体群组功能:内置对多个智能体的调度决策,可根据任务规划智能体执行顺序和依赖关系,结果全局共享。 5. 应用引用功能:1 月份将发布已发布应用可被智能体群组或工作流引用的功能,未来还将开放调用外部应用接口。 与单个智能体应用相比,智能体编排具有以下优势: 1. 协作与灵活性:由多个具有自治能力的智能体组成,可相互通信、信息共享和协作,完成复杂任务,在多方协作和多路径并行处理任务的环境中表现出色。 2. 可扩展性与健壮性:可以调整智能体的数量和角色,适应不同任务需求,提高灵活性和适应性。 3. 任务分解与并行处理:能将复杂任务分解为多个子任务,由不同智能体并行处理,提高任务执行效率和速度。 4. 自动规划能力:可根据任务需求自动规划任务执行流程,灵活调度子智能体。 5. 完整的智能体功能:智能体节点依然支持 RAG、插件和流程编排等功能,与单个智能体的功能保持一致。 简单来说,就是把之前创建好的不同角色的智能体应用进行流程化的编排,分好工各司其职。配置完后每个智能体按部就班执行自己的任务,会有前后衔接关系。也可以通过 API 的方式快速调用应用。
2025-02-04
智能体应用(Assistant) 定义
智能体应用(Assistant)是一种基于上下文对话,自主决策并调用工具来完成复杂任务的对话式 AI 应用。通过简单配置即可快速上手并实现基本功能。 其具有以下特点和应用场景: 特点:能够弥补大模型的局限性,如无法回答私有领域问题、无法及时获取最新信息、无法准确回答专业问题等。通过集成特定的外部能力,如实时信息获取、回答私有领域问题等,提升用户体验和增强业务竞争力。 应用场景: 客户服务:了解客户诉求,解决客户问题,如查询订单状态、处理退款等。 个人助理:管理日程安排、提醒事项、发送邮件等。 技术支持:了解技术问题,提供解决方案,帮助用户排除故障。 私有领域知识问答:准备好相关知识库文件,可在百炼控制台快速创建应用,应用场景包括公司制度、人员信息等。 个性化聊天机器人:百炼提供长期记忆功能,保存关键历史对话信息,集成夸克搜索和图像生成等插件,扩展功能。 智能助手:引入 RAG(检索增强生成)能力、长期记忆和自定义插件等功能,帮助提升工作效率,如处理邮件、撰写周报等。 详情参见 。
2025-02-04
AI在营销上的应用
以下是关于 AI 在营销上的应用的相关内容: 营销 AI 产品: 1. Synthesia:允许用户创建由 AI 生成的高质量视频,包括数字人视频,提供多种定价计划,可用于制作营销视频、产品演示等。 2. HeyGen:基于云的 AI 视频制作平台,用户可从 100 多个 AI 头像库中选择,并通过输入文本生成数字人视频,适合制作营销视频和虚拟主持人等。 3. Jasper AI:人工智能写作助手,可用于生成营销文案、博客内容、电子邮件等,提供多种语气和风格选择,写作质量较高。 4. Copy.ai:AI 营销文案生成工具,可快速生成广告文案、社交媒体帖子、电子邮件等营销内容,有免费和付费两种计划。 5. Writesonic:AI 写作助手,专注于营销内容创作,如博客文章、产品描述、视频脚本等,提供多种语气和行业定制选项。 更多的营销产品可以查看 WaytoAGI 网站:https://www.waytoagi.com/sites?tag=8 。总的来说,这些 AI 工具能够帮助营销人员高效创作各种营销内容,提高工作效率。用户可根据实际需求选择合适的工具。 2025 年数字营销十大趋势: 预计在 2025 年,数字营销的核心会围绕 AI 技术,用户习惯,效率提升,聚焦在五大模块,每一模块下延展出不同趋势,推动品牌在未来市场中建立深厚的竞争力。AI 将继续成为未来数字营销的基石,但它的使用需要具备战略性和明确的目的,以确保品牌的真实性不受影响,避免出现“贬值”效果。品牌在 AI 技术的应用上应追求提升用户体验,而非简单地追逐技术潮流。预计到 2025 年,全球 AI 在数字营销领域的市场规模将达到 1260 亿美元,采用 AI 技术的公司在广告点击率上提高了 35%,广告成本减少了 20%,显示出 AI 在提升效率和成本优化方面的作用。 生成式人工智能在营销中的应用案例: 1. 亨氏使用番茄酱瓶的图像和与亨氏类似的标签来论证“这就是人工智能眼中‘番茄酱’的样子。 2. 雀巢使用维米尔画作的人工智能增强版来帮助销售其酸奶品牌之一。 3. Stitch Fix 是一家服装公司,正在使用 AI 向客户推荐特定服装,并尝试使用 DALLE 2 根据客户对颜色、面料和款式的偏好创建服装可视化。 4. 美泰正在使用该技术生成用于玩具设计和营销的图像。
2025-02-03
一个人如何开发ai应用
以下是关于一个人如何开发 AI 应用的指导: 首先,进行规划 POC 和开发路径。设计 POC 的小项目,比如“我是技术小白。我想要开发的项目功能如下。这里有哪些技术点?能否为我一一列举。请尽可能细化,帮我选择合适的技术方案,并为我设计 POC 项目。每个 POC 都应该是一个独立的项目,我好先通过完成 POC 来学会相关技术。”POC 即实验性小项目,其优点是足够小,AI 能直接生成。通过研究小项目、搞明白特定技术点的工作方式,便于后续在大项目中添加功能。这一步中,AI 可能会选取不合适的技术栈、拆分粒度不够细、开发路径设计不合理、没有循序渐进。如有可能,请老师傅把关。 接下来就是真正的实践。按照项目规划,学习一个 POC,并将其应用到大项目中;再学一个 POC,再运用。当遇到错误时,复制错误信息、相关代码,扔给 AI 让其找错误并修复。若使用可以识图的 claude 或 GPT4o,截图+错误信息+代码三件套会很好用。但可能会遇到一些问题,如开发 chrome 插件时,即便强调要用 manifest v3 的版本,AI 仍可能给出 v2 的代码及错误修复方案。此时,更有效的方式是找文档(可让 GPT 提供文档链接,或问 perplexity),或去 stackoverflow 上找答案(注意回答和评论的日期),然后把文档或找到的答案提供给 AI,让其基于这些信息修复,此时它给的指引会更正确且详细。当然,这一步如有老师傅支援更好。 另外,以证件照为例的 90 分钟从 0 开始打造第一个 Coze 应用的教学中,提到了 Code AI 应用的背景、现状以及学习过程,包括创建 AI 应用,学习操作界面、业务逻辑和用户界面,重点熟悉桌面网页版的用户界面等。
2025-02-03
如何从零到一学习LLM上层AI应用开发
从零到一学习 LLM 上层 AI 应用开发,您可以参考以下步骤: 1. 掌握深度学习和自然语言处理基础: 学习机器学习、深度学习、神经网络等基础理论。 掌握自然语言处理基础,如词向量、序列模型、注意力机制等。 相关课程:吴恩达的深度学习课程、斯坦福 cs224n 等。 2. 理解 Transformer 和 BERT 等模型原理: 熟悉 Transformer 模型架构及自注意力机制原理。 掌握 BERT 的预训练和微调方法。 阅读相关论文,如 Attention is All You Need、BERT 论文等。 3. 学习 LLM 模型训练和微调: 进行大规模文本语料预处理。 熟悉 LLM 预训练框架,如 PyTorch、TensorFlow 等。 学会微调 LLM 模型进行特定任务迁移。 相关资源:HuggingFace 课程、论文及开源仓库等。 4. LLM 模型优化和部署: 掌握模型压缩、蒸馏、并行等优化技术。 了解模型评估和可解释性。 熟悉模型服务化、在线推理、多语言支持等。 相关资源:ONNX、TVM、BentoML 等开源工具。 5. LLM 工程实践和案例学习: 结合行业场景,进行个性化的 LLM 训练。 分析和优化具体 LLM 工程案例。 研究 LLM 新模型、新方法的最新进展。 6. 持续跟踪前沿发展动态: 关注顶会最新论文、技术博客等资源。 以下是一些相关的学习资源: 面向开发者的 LLM 入门课程: 提示工程指南: LangChain🦜️🔗中文网,跟着 LangChain 一起学 LLM/GPT 开发: LLMs 九层妖塔: 在课程方面,欢迎来到针对开发者的 AIGPT 提示工程课程。该课程将分享软件开发最佳实践的提示,涵盖常见用例,包括总结、推理、转换和扩展,并指导使用 LLM 构建一个聊天机器人。在大型语言模型或 LLM 的开发中,大体上有基础 LLM 和指令调整后的 LLM 两种类型。基础 LLM 已训练出根据文本训练数据预测下一个单词,通常在大量数据上训练,以找出接下来最有可能的单词。
2025-01-28