直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

如何对比不同大语言模型的性能

回答

对比不同大型语言模型的性能需要考虑多个维度,包括但不限于以下几个方面:

  1. 理解能力:评估模型对语言的理解程度,包括对语法、语义、上下文和隐含意义的理解。
  2. 生成质量:检查模型生成的文本的质量,包括文本的流畅性、相关性和准确性。
  3. 知识广度和深度:评估模型对广泛主题的知识掌握程度,以及它对特定领域或话题的理解深度。
  4. 泛化能力:测试模型在处理未见过的任务或数据时的表现,这反映了模型的泛化能力。
  5. 鲁棒性:检查模型对错误输入、对抗性输入或模糊不清的指令的应对能力。
  6. 偏见和伦理:评估模型生成文本时是否存在偏见,以及模型是否遵循伦理标准。
  7. 交互性和适应性:评估模型在交互环境中的表现,包括对用户反馈的适应性和持续对话的能力。
  8. 计算效率和资源消耗:考虑模型的大小、训练和运行所需的计算资源。
  9. 易用性和集成性:评估模型是否易于集成到不同的应用和服务中,以及提供的API和工具的易用性。

为了进行有效的比较,可以采用以下方法:

  • 标准基准测试:使用标准的语言模型评估基准,如GLUE、SuperGLUE、SQuAD等,这些基准提供了统一的测试环境和评分标准。
  • 自定义任务:根据特定需求设计任务,以评估模型在特定领域的表现。
  • 人类评估:结合人类评估者的主观评价,特别是在评估文本质量和伦理问题时。
  • A/B测试:在实际应用场景中,通过A/B测试比较不同模型的表现。
  • 性能指标:使用包括准确率、召回率、F1分数、BLEU分数等在内的性能指标来量化比较。

通过这些方法,可以全面地评估和对比不同大型语言模型的性能,从而选择最适合特定需求的模型。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

其他人在问
学习大模型的路径
学习大模型的路径主要包括以下几个步骤: 1. 收集海量数据:就像教孩子成为博学多才的人需要让其阅读大量书籍、观看纪录片、与人交谈一样,对于大模型,要收集互联网上的文章、书籍、维基百科条目、社交媒体帖子等各种文本数据。 2. 预处理数据:如同为孩子整理学习资料,AI 研究人员需要清理和组织收集到的数据,包括删除垃圾信息、纠正拼写错误、将文本分割成易于处理的片段。 3. 设计模型架构:如同为孩子设计学习计划,研究人员要设计大模型的“大脑”结构,通常是一个复杂的神经网络,例如 Transformer 架构,这种架构擅长处理序列数据如文本。 4. 训练模型:如同孩子开始阅读和学习,大模型开始“阅读”提供的数据,通过反复尝试预测句子中的下一个词,不断重复这个过程,逐渐学会理解和生成人类语言。 此外,关于大模型的底层原理,计算机科学家/工程师以大脑神经元细胞结构为灵感,在计算机上利用概览模型实现对人脑结构的模仿,不过计算机的神经元节点更为简单,本质上只是进行一些加法和乘法运算而后输出。大模型内部如同人类大脑是一个混沌系统,即使是 OpenAI 的科学家也无法解释其微观细节。
2024-11-22
现在哪几家的大模型支持通过手机视频多模态实时交流?
以下几家的大模型支持通过手机视频多模态实时交流: 1. PandaGPT:能够理解不同模式的指令并根据指令采取行动,包括文本、图像/视频、音频、热、深度和惯性测量单位。 2. VideoLLaMA:引入了多分支跨模式 PT 框架,使语言模型能够在与人类对话的同时处理给定视频的视觉和音频内容。 3. 视频聊天 GPT:专门为视频对话设计,能够通过集成时空视觉表示来生成有关视频的讨论。 4. NExTGPT:端到端、通用的 anytoany 多模态语言模型,支持图像、视频、音频、文本的自由输入输出。
2024-11-22
siri是不是使用大模型技术
Siri 目前并非使用大模型技术。苹果公司的 Siri 概念虽好,但由于技术限制,其表现未达到人工智能的水平,常被称为“人工智障”。不过,随着技术发展,未来可能会用大模型重新改造 Siri,将手机上的所有功能控制起来,使其成为真正的智能助理。例如,苹果公司在手机算力的芯片发展到能够支撑大模型上手机的情况下,可能会推出大模型的小数据量、专业的版本来替代 Siri。同时,苹果公司若 All in 手机,其大模型可能会是本地化的,以重视个人数据保护和隐私。
2024-11-21
sairi是不是使用大模型技术
Sora 是使用大模型技术的。周鸿祎认为 Open AI 训练这个模型会阅读大量视频,大模型加上 Diffusion 技术需要对世界进一步了解,学习样本以视频和摄像头捕捉到的画面为主。Sora 在训练数据上采用在原始尺寸上进行训练的策略,避免了传统 AI 对人为抽象的依赖。此外,Sora 还采用了一些数据预处理技术,如将视觉图块压缩成低维潜在表示,并将其排列成序列,注入噪声后输入扩散变换器的输入层,同时采用时空分块化来降低后续对时间信息建模的复杂性。这种对原始视频和图像特征的细腻处理标志着生成模型领域的重大进步。
2024-11-21
模型微调怎么解决多轮对话容易受到上轮对话的影响问题
在解决模型微调中多轮对话容易受到上轮对话影响的问题时: 对于多轮对话,现实中常伴随指代问题,如使用“它”“他们”“我们”等代词。若仅依据原始提问检索知识片段,可能导致结果不精确或无法检索到信息。同时,对模型回复内容的限制可能影响多轮对话流畅性甚至中断。 为提升对话系统性能和用户体验,需开发提示词解决多轮对话中的指代消解问题,确保模型能在连续交流中提供准确连贯回答。但由于“指代消解”需多轮对话完成,单次交互无法达成,所以要转换测试形式,先解决“指代消解”问题再进行下一轮答复。 首先准备指代消解所需提示词,这里使用的“指代消解”提示词是用 CoT 写出的思维链,列举不同推理情景,让模型适应并推理出需消解的代词,再根据结果重新组织问题。 接着复现指代消解步骤,如进行第一轮对话,提出问题“尼罗河是什么?”,系统召回相关知识片段并回复,然后开始指代消解。 另外,聊天模型通过一串聊天对话输入并返回生成消息输出。聊天格式虽为多轮对话设计,但对单轮任务也有用。会话通过 messages 参数输入,包含不同角色和内容的消息对象数组。通常会话先有系统消息设定助手行为,再交替使用用户和助手消息。当指令涉及之前消息时,包含聊天历史记录有帮助,若超出模型限制需缩减会话。
2024-11-21
企业做自己的小模型,需要用到的工具及工具背后的公司都有哪些?
企业做自己的小模型,可能会用到以下工具及背后的公司: 1. 在编排(Orchestration)方面,涉及的公司如 DUST、FIAVIE、LangChain 等,其提供的工具可帮助管理和协调各部分及任务,确保系统流畅运行。 2. 部署、可扩展性和预训练(Deployment, Scalability, & PreTraining)类别中,像 UWA mosaicm、NMAREL、anyscale 等公司提供的工具,有助于部署模型、保证可扩展性及进行预训练。 3. 处理上下文和嵌入(Context & Embeddings)的工具,相关公司有 TRUDO、Llamalndex、BerriAI 等,能帮助模型处理和理解语言上下文,并将词语和句子转化为计算机可理解的形式。 4. 质量保证和可观察性(QA & Observability)方面,例如 Pinecone、drant、Vald 等公司提供的工具,可确保模型表现并监控其性能和状态。 此外,还有以下工具和相关公司: 1. 图片生成 3D 建模工具,如 Tripo AI(由 VAST 发布)、Meshy、CSM AI(Common Sense Machines)、Sudo AI、VoxCraft(由生数科技推出)等。 企业还可能涉及具身智能、3D 眼镜、AI 绘本、AI 图书、学习机、飞书的多维表格、蚂蚁的智能体、Coze 的智能体、Zeabur 等云平台、0 编码平台、大模型(通义、智谱、kimi、deepseek 等)、编程辅助、文生图(可灵、即梦等)等方面,可能需要相应资质。
2024-11-20
文生图模型性能排行
以下是一些文生图模型的性能排行相关信息: Kolors 是最近开源的文生图模型中表现出色的一个。它具有更强的中文文本编码器、高质量的文本描述、人标的高质量图片、强大的中文渲染能力以及巧妙解决高分辨率图加噪问题的 noise schedule,实测效果不错。 PIKA1.0 是一个全新的模型,文生视频和文生图的质量都有大幅度提升。在文生图方面稳定得令人惊讶,3D 和 2D 的动画效果出色。 为全面比较 Kolors 与其他模型的生成能力,构建了包含人工评估、机器评估的全面评测内容。在 KolorsPrompts 评估集中,Kolors 在整体满意度方面处于最优水平,其中画面质量显著领先其他模型。具体的平均分数如下: AdobeFirefly:整体满意度平均分 3.03,画面质量平均分 3.46,图文相关性平均分 3.84。 Stable Diffusion 3:整体满意度平均分 3.26,画面质量平均分 3.5,图文相关性平均分 4.2。 DALLE 3:整体满意度平均分 3.32,画面质量平均分 3.54,图文相关性平均分 4.22。 Midjourneyv5:整体满意度平均分 3.32,画面质量平均分 3.68,图文相关性平均分 4.02。 Playgroundv2.5:整体满意度平均分 3.37,画面质量平均分 3.73,图文相关性平均分 4.04。 Midjourneyv6:整体满意度平均分 3.58,画面质量平均分 3.92,图文相关性平均分 4.18。 Kolors:整体满意度平均分 3.59,画面质量平均分 3.99,图文相关性平均分 4.17。所有模型结果取自 2024.04 的产品版本。
2024-11-18
现在有哪些大模型效果与性能的对齐工具
目前对比不同大语言模型的性能需要考虑多个维度,包括但不限于以下方面: 1. 理解能力:评估对语言的理解程度,涵盖语法、语义、上下文和隐含意义。 2. 生成质量:检查生成文本的流畅性、相关性和准确性。 3. 知识广度和深度:衡量对广泛主题的知识掌握及特定领域的理解深度。 4. 泛化能力:测试处理未见过任务或数据时的表现。 5. 鲁棒性:应对错误输入、对抗性输入或模糊指令的能力。 6. 偏见和伦理:评估生成文本是否存在偏见,是否遵循伦理标准。 7. 交互性和适应性:在交互环境中的表现,对用户反馈的适应和持续对话能力。 8. 计算效率和资源消耗:考虑模型大小、训练和运行所需的计算资源。 9. 易用性和集成性:是否易于集成到不同应用和服务,提供的 API 和工具的易用性。 为进行有效比较,可采用以下方法: 1. 标准基准测试:使用如 GLUE、SuperGLUE、SQuAD 等标准评估基准。 2. 自定义任务:根据特定需求设计任务评估特定领域表现。 3. 人类评估:结合人类评估者的主观评价,尤其在评估文本质量和伦理问题时。 4. A/B 测试:在实际应用场景中比较不同模型表现。 5. 性能指标:使用准确率、召回率、F1 分数、BLEU 分数等量化比较。 对于大模型的安全对齐,通过对齐(指令调优)能使语言模型更好理解人类意图并增加安全保障,避免输出有害内容。对齐任务可拆解为监督微调及获取 reward model 与进行强化学习调整输出分布两部分。LLAMA2 专门使用安全有监督微调确保安全。强化学习能根据人类反馈调整分布,使模型面对训练分布外数据时能拒绝不当回答。但 Alignment 并非能防护所有安全问题,存在越狱情况使模型对齐失效。 Qwen 2 开源后模型性能超越目前所有开源模型和国内闭源模型。玉宝搞过的 LLM 在线评估中可看到国内闭源大模型的 HUMANEVAL 测评得分,可与 Qwen 2 对比,参考网址:https://www.llmrank.cn/ 。2023 年 8 月起,通义千问推出 Qwen 系列,Qwen 系列的 72B、110B 模型多次登顶 HuggingFace 的 Open LLM Leaderboard 开源模型榜单。Qwen 2 系列已上线魔搭社区 ModelScope 和阿里云百炼平台,也已上线中国大语言模型评测竞技场 Compass Arena,测评地址:https://opencompass.org.cn/arena 。Compass Arena 集齐了国内主流的 20 多款大模型,用户可选择两两“对战”。
2024-11-14
截止今日国内ai性能排名
以下是截至今日国内部分 AI 产品的性能排名情况: |排行|产品名|分类|4 月访问量(万 Visit)|相对 3 月变化| |||||| |60|文心一格|图像生成|41.5|0.086| |61|DupDub|文字转音频|41.4|0.107| |62|阿里堆友 AI 反应堆|图像生成|40.7|0.169| |63|识典古籍|AI 学习|39.2|0.164| |64|标智客 Ai Logo|图像生成|37.8|1| |65|笔灵 AI|通用写作|37.4|0.087| |66|Learn Prompting|Prompts|36.1|0.284| |67|搜韵网|通用写作|36|0.155| |68|腾讯智影|其他视频生成|35.4|0.131| |69|新片场素材|其他视频生成|35.2|0.128| |70||图像编辑|35|0.301| |71|彩云小译|翻译|34.3|0.107| |36|虎课网免费在线视频教程|AI 学习|62.9|0.005| |37|Glasp|会议总结|60.7|0.325| |38|aippt|PPT|59.6|0.142| |39|帆软战略|电商|59.5|0.145| |40|帆软数据|数据分析|59.5|0.145| |41|讯飞听见|转录|56.2|0.065| |42|Pixso AI|设计工具|54.9|0.017| |43|ToonMe(卡通头像)|图像生成|53.6|0.993| |44|edrawsoft|思维导图|53.5|0.14| |45|Dify.ai|AI ChatBots|51.7|0.452| |46|彩云|通用写作|51.5|0.117| |47|360 苏打办公|生产力|50.6|1.269|
2024-09-02
现在性能最强的模型是?
目前性能较强的模型包括: Databricks 发布的 DBRX 是新的可能是现在最强的开源模型。它是拥有 132B 参数的 MoE 模型,一共拥有 16 个专家,每个 Token 激活 4 个专家,意味着有 36B 的活跃参数,Mixtral 只有 13B 的活跃参数(少了近 3 倍)。在语言理解、编程、数学和逻辑方面轻松击败了开源模型,如 LLaMA270B、Mixtral 和 Grok1,在大多数基准测试中超过了 GPT3.5。该模型以 12 万亿 Token 的文本和代码进行预训练,支持的最大上下文长度为 32k Tokens。 Llama 3 也是性能较强的开源模型,被认为是目前最强的开源大模型之一。 OpenAI 的 GPT4 是最先进和广泛使用的大型语言模型之一,在多种任务上展示了卓越的性能,包括文本生成、理解、翻译以及各种专业和创意写作任务。 此外,还有其他一些重要的大型语言模型,如 Anthropic 公司的 Claude 3、谷歌的 Gemini、百度的文心一言、阿里巴巴的通义大模型等,它们在特定领域和任务上也表现出了卓越的能力。
2024-08-13
我在学习VASP运算,想用它来计算材料的热电性能,第一步需要结构优化,最重要的是INCAR文件,能帮我写一个INCAR文件吗
VASP(Vienna Ab initio Simulation Package)是一款基于密度泛函理论(DFT)的第一性原理计算软件,广泛应用于材料科学中的电子结构计算和分子动力学模拟。使用VASP进行材料的热电性能计算时,确实需要对晶体结构进行优化,并且正确设置`INCAR`文件是至关重要的。 `INCAR`文件包含了VASP运行时的所有输入参数。一个基本的结构优化`INCAR`文件可能包含如下参数: ```plaintext 基本参数 PREC = Accurate 计算精度 ENCUT = 450 截断能,根据具体元素调整 ISMEAR = 1 采用Gaussian smearing方法 SIGMA = 0.2 用于ISMEAR的高斯宽度 NBANDS = 40 带数 EDIFF = 1e6 能量的收敛标准 EDIFFG = 0.02 离子的收敛标准 IBRION = 2 使用快速离子弛豫算法 EDIFF = 1e5 控制总能量的收敛 NSW = 50 最大离子步数 动力学计算参数(如果需要) LEPSILON = .TRUE. 计算宏观介电常数 KPOINTS = 自定义 K点设置,根据实际体系大小和对称性调整 其他可能需要的参数 LPEAD = .TRUE. 计算极化电荷 DIPOL = 自定义 电偶极子设置,用于分子动力学 NWRITE = 0 控制输出信息量 LCHARG = .TRUE. 计算并输出电荷密度 ``` 请注意,这只是一个示例文件,实际的`INCAR`文件需要根据你的具体体系和计算目标进行调整。例如,`ENCUT`需要根据你体系中元素的电子数来设定,`ISMEAR`和`SIGMA`的值可能需要根据费米能级的位置进行调整,`NBANDS`和`EDIFF`也需要根据计算的精度要求来设定。 对于热电性能的计算,你可能还需要考虑额外的参数,比如`LEPSILON`来计算介电常数,或者`DIPOL`来计算电偶极矩等。 在开始计算之前,强烈建议阅读VASP手册和相关文献,以确保正确设置所有参数,并理解每个参数的物理意义。此外,对于热电性能的计算,可能还需要进行额外的热力学和动力学分析,这通常涉及到更复杂的`INCAR`文件设置和后处理步骤。
2024-05-25
免费的语言ai学习工具
以下为您推荐一些免费的语言 AI 学习工具: LingoDeer:https://www.lingodeer.com/ 这是一款使用游戏和互动活动来教孩子英语的应用程序。它提供各种课程,涵盖从字母和数字到更高级的语法和词汇。还具有家长仪表板,方便跟踪孩子的进度并设置学习目标。 Busuu:https://www.busuu.com/ 是另一个流行的语言学习应用程序,提供英语和其他多种语言的课程。使用各种教学方法,包括音频课程、视频课程和互动练习,还有社区功能,可让孩子与来自世界各地的其他孩子练习英语口语。 Memrise:https://www.memrise.com/ 一款使用抽认卡和游戏来教孩子英语的应用程序。提供各种课程,涵盖从基本词汇到更高级的会话技巧,具有社交功能,可与朋友和家人一起学习。 Rosetta Stone:https://www.rosettastone.com/ 语言学习程序,使用沉浸式方法教孩子英语,让孩子在自然环境中使用英语,具有语音识别功能,帮助练习发音。 Duolingo:https://www.duolingo.com/ 免费的语言学习应用程序,提供英语和其他多种语言的课程,使用游戏化方法让学习有趣。 在为孩子选择 AI 工具时,要考虑他们的年龄、兴趣和学习风格,还需考虑应用程序的功能和成本。 另外,使用 AI 学习一门外语还可以通过以下方式和工具: 语言学习平台: FluentU:使用真实世界的视频,通过 AI 生成个性化的词汇和听力练习。选择学习语言,观看视频并完成相关练习,积累词汇和提升听力理解能力。 Memrise:结合 AI 技术,根据学习者的记忆曲线提供复习和练习,增强记忆效果。选择学习语言,使用应用提供的词汇卡和练习进行学习。 发音和语法检查: Speechling:提供口语练习和发音反馈,帮助学习者改进口音和发音准确性。录制语音,提交给 AI 系统或人类教练,获取反馈和改进建议。 Grammarly:可以帮助提高写作的语法和词汇准确性,支持多种语言。将写作内容粘贴到 Grammarly 编辑器中,获取语法和词汇改进建议。 实时翻译和词典工具: Google Translate:提供实时翻译、语音输入和图像翻译功能,适合快速查找和学习新词汇。输入或语音输入需要翻译的内容,查看翻译结果和示例句子。 Reverso Context:提供单词和短语的翻译及上下文例句,帮助理解和学习用法。输入单词或短语,查看翻译和例句,学习实际使用场景。 语言学习应用: Duolingo:使用 AI 个性化学习体验,根据进度和错误调整练习内容。通过游戏化方式提供词汇、语法、听力和口语练习。下载应用,选择要学习的语言,按课程指引学习。 Babbel:结合 AI 技术,提供个性化课程和练习,重点在于实际交流所需的语言技能。注册账户,选择语言课程,按学习计划学习。 Rosetta Stone:使用动态沉浸法,通过 AI 分析学习进度,提供适合的练习和反馈。注册并选择学习语言,使用多种练习模式(听力、口语、阅读和写作)学习。 AI 对话助手: ChatGPT:可用来模拟对话练习,提高语言交流能力。在聊天界面选择目标语言,与 AI 进行对话练习。可询问语法、词汇等问题,甚至模拟实际交流场景。 Google Assistant:支持多种语言,可用来进行日常对话练习和词汇学习。设置目标语言,通过语音命令或文本输入与助手进行互动,练习日常用语。
2024-11-16
语言学习
以下是关于使用 AI 学习语言的相关内容: Claude3 在语言学习方面的表现: Claude3 在语言学习方面展现出了出色的能力。对于复杂的语言任务,如翻译和分析不寻常的句子、处理复杂的文学段落、新闻文章以及不同语法和书写系统的文本,Claude3 都表现出了对语言结构的深刻理解,能够智能推断未知词汇、恰当使用借词、给出可信的词源分析,并保持原文风格进行翻译。在与 GPT4 的对比测试中,Claude3 表现出色,而 GPT4 则完全失败。 使用 AI 学习一门外语的方法和工具: 1. 语言学习平台: FluentU:使用真实世界的视频,通过 AI 生成个性化的词汇和听力练习。选择学习语言,观看视频并完成相关练习,积累词汇和提升听力理解能力。 Memrise:结合 AI 技术,根据学习者的记忆曲线提供复习和练习,增强记忆效果。选择学习语言,使用应用提供的词汇卡和练习进行学习。 2. 发音和语法检查: Speechling:提供口语练习和发音反馈,帮助学习者改进口音和发音准确性。录制语音,提交给 AI 系统或人类教练,获取反馈和改进建议。 Grammarly:可以帮助提高写作的语法和词汇准确性,支持多种语言。将写作内容粘贴到 Grammarly 编辑器中,获取语法和词汇改进建议。 3. 实时翻译和词典工具: Google Translate:提供实时翻译、语音输入和图像翻译功能,适合快速查找和学习新词汇。输入或语音输入需要翻译的内容,查看翻译结果和示例句子。 Reverso Context:提供单词和短语的翻译及上下文例句,帮助理解和学习用法。输入单词或短语,查看翻译和例句,学习实际使用场景。 4. 语言学习应用: Duolingo:使用 AI 个性化学习体验,根据进度和错误调整练习内容,通过游戏化方式提供词汇、语法、听力和口语练习。下载应用,选择要学习的语言,并按照课程指引进行学习。 Babbel:结合 AI 技术,提供个性化的课程和练习,重点在于实际交流所需的语言技能。注册账户,选择语言课程,按照学习计划进行学习。 Rosetta Stone:使用动态沉浸法,通过 AI 分析学习进度,提供适合的练习和反馈。注册并选择学习语言,使用多种练习模式(听力、口语、阅读和写作)进行学习。 5. AI 对话助手: ChatGPT:可用来模拟对话练习,帮助提高语言交流能力。在聊天界面选择目标语言,与 AI 进行对话练习。可以询问语法、词汇等问题,甚至模拟实际交流场景。 Google Assistant:支持多种语言,可用来进行日常对话练习和词汇学习。设置目标语言,通过语音命令或文本输入与助手进行互动,练习日常用语。
2024-11-16
我是一名资讯人员,早会分享脑机接口,时间只有10分钟,希望使用通俗易懂的语言分享,重点说说脑机的应用实例。
以下是为您整理的关于脑机接口的分享内容: 脑机接口的应用实例: 1. 斯坦福大学开发的 NOIR 脑机接口系统,能够通过脑电波操作机器人执行任务,并在 20 项家务活动中成功应用。这一项目意义重大,未来有望帮助残疾人提升生活质量。 脑机接口的工作原理: 1. 分为输入端和输出端。输入端是填充和消费不同模态的内容,如音频、文本、视频,AI 能加速消化过程,提高学习主动性,且双向可提问。 2. 输出端是利用知识解决手头工作或完成目标,极端情况下自己借助知识干活,或者让 AI 助理基于收藏或保存的知识点完成任务,如写文章、输出代码。 关于脑机接口适合的应用场景,目前如对长视频进行快速获取信息的总结等。
2024-11-16
什么是知识库,以及他的运作原理是什么,请用小白也能理解的语言进行说明
知识库可以用比较通俗的方式来理解: 想象一个大语言模型就像一个非常聪明、读过无数书的人,但对于一些特定的工作场景中的细节,比如见到老板娘过来吃饭要打三折,张梦飞过去吃饭要打骨折,它可能并不清楚。这时候,知识库就像是给这个聪明的人发的一本工作手册。 从更专业的角度来说,知识库的运作原理通常包括以下几个步骤: 1. 文档加载:从各种不同的来源,比如 PDF、SQL 数据、代码等加载相关的文档。 2. 文本分割:把加载的文档分割成指定大小的块,称为“文档块”或“文档片”。 3. 存储:这包括两个环节,一是将分割好的文档块进行嵌入,转换成向量的形式;二是将这些向量数据存储到向量数据库中。 4. 检索:当需要使用数据时,通过某种检索算法从向量数据库中找到与输入问题相似的嵌入片。 5. 输出:把问题以及检索出来的嵌入片一起提交给大语言模型,大语言模型会根据问题和检索出来的提示一起生成更合理的答案。 以车型数据为例,每个知识库的分段中保存了一种车型的基础数据。当用户问宝马 X3 的售价是多少时,就能匹配到对应车型的分段,然后从其中获取到售价信息。 海外官方文档:https://www.coze.com/docs/zh_cn/knowledge.html 国内官方文档:https://www.coze.cn/docs/guides/use_knowledge
2024-11-13
现在国内语言生成式AI有多少个在做的,比如说百度的文心一言和阿里的通义
目前国内在做语言生成式 AI 的有不少,例如百度的文心一言、阿里的通义千问、讯飞的讯飞星火、智谱华章的智谱清言、字节跳动的豆包、腾讯的元宝、昆仑万维的天工 AI 等。 此外,还有一些在特定时间上线的大模型,如 8 月正式上线的包括北京的百度(文心一言)、抖音(云雀大模型)、智谱 AI(GLM 大模型)、中科院(紫东太初大模型)、百川智能(百川大模型),上海的商汤(日日新大模型)、MiniMax(ABAB 大模型)、上海人工智能实验室(书生通用大模型)。 需要注意的是,不同的大模型具有各自的特点和功能,在使用和应用场景上可能存在差异。
2024-11-06
大语言模型综述论文有哪些
以下是一些大语言模型的综述论文: 参考文献: B.Wang, W.Chen, H.Pei, C.Xie, M.Kang, C.Zhang, C.Xu, Z.Xiong, R.Dutta, R.Schaeffer 等,“Decodingtrust:GPT 模型中信任度的全面评估”,arXiv 预印本 arXiv:2306.11698,2023。 Z.Zhang, L.Lei, L.Wu, R.Sun, Y.Huang, C.Long, X.Liu, X.Lei, J.Tang, 和 M.Huang, “Safetybench:使用多项选择题评估大型语言模型的安全性”,2023。 X.Shen, Z.Chen, M.Backes, Y.Shen, 和 Y.Zhang, “现在就做任何事:在大型语言模型上表征和评估野外越狱提示”,arXiv 预印本 arXiv:2308.03825,2023。 X.Liu, N.Xu, M.Chen, 和 C.Xiao, “Autodan:在对齐的大型语言模型上生成隐蔽的越狱提示”,arXiv 预印本 arXiv:2310.04451,2023。 S.Zhu, R.Zhang, B.An, G.Wu, J.Barrow, Z.Wang, F.Huang, A.Nenkova, 和 T.Sun, “Autodan:对大型语言模型的可解释梯度基对抗攻击”,2023。 A.Zhou, B.Li, 和 H.Wang, “针对越狱攻击保护语言模型的强健提示优化”,arXiv 预印本 arXiv:2401.17263,2024。 X.Guo, F.Yu, H.Zhang, L.Qin, 和 B.Hu, “Coldattack:用隐蔽性和可控性越狱 LLMs”,2024。 T.Shen, R.Jin, Y.Huang, C.Liu, W.Dong, Z.Guo, X.Wu, Y.Liu, 和 D.Xiong, “大型语言模型对齐:一项调查”,arXiv 预印本 arXiv:2309.15025,2023 年。 X.Liu, X.Lei, S.Wang, Y.Huang, Z.Feng, B.Wen, J.Cheng, P.Ke, Y.Xu, W.L.Tam, X.Zhang, L.Sun, H.Wang, J.Zhang, M.Huang, Y.Dong, 和 J.Tang, “Alignbench:大型语言模型中文对齐的基准测试”,2023 年。 P.Christiano, J.Leike, T.B.Brown, M.Martic, S.Legg, 和 D.Amodei, “基于人类偏好的深度强化学习”,2023 年。 T.Yu, Y.Yao, H.Zhang, T.He, Y.Han, G.Cui, J.Hu, Z.Liu, H.T.Zheng, M.Sun, 和 T.S.Chua, “RLHFV:通过细粒度校正人类反馈实现可信赖的 MLLMs 行为对齐”,2023 年。 M.S.Jahan 和 M.Oussalah, “使用自然语言处理进行仇恨言论自动检测的系统综述。”,《神经计算》,第 126232 页,2023 年。 OpenAI, “Sora 安全。”https://openai.com/sorasafety,2024 年。 Z.Fei, X.Shen, D.Zhu, F.Zhou, Z.Han, S.Zhang, K.Chen, Z.Shen, 和 J.Ge, “Lawbench:大型语言模型的法律知识基准测试”,arXiv 预印本 arXiv:2309.16289,2023 年。 市场分析 其他观点 相关论文: :斯坦福大学对基础模型的概述论文。 :年度回顾,涵盖 AI 领域的所有事物。 :对大型语言模型(LLMs)在劳动力市场潜在影响的早期研究。 :Eric Topol 医生揭示了人工智能如何有可能将医生从耗费大量时间的任务中解放出来,从而不会干扰到人与人之间的连接。
2024-11-02
一个 prompt 有 10 段文本内容,怎么标记不同段落的权重
当一个 prompt 有 10 段文本内容时,标记不同段落权重的方法如下: 使用双冒号“::”将提示分成不同部分,并在双冒号后面立即添加一个数字来指定该部分的相对权重。例如,“hot::2 dog”表示单词“hot”比“dog”重要度高出两倍。 在版本 1、2、3 中只接受整数作为权值,版本 4 能接受权值的小数位数。未指定权值时默认为 1。 负数权值可用于提示中以删除或排除不需要的元素,但所有权值的比必须是正数。 改变 tag 权重有多种方式: :数值从 0.1 到 100,低于 1 减弱,大于 1 加强。 括号,权重就重 1.1 倍;每加一层括号就反向减弱 1.1 倍。 小括号权重乘 1.1,如 a;中括号权重除以 1.1;小括号里面直接用冒号写权重也行;反斜杠可以让小括号的权重不生效当做一般字符串处理。 花括号写法,一个花括号权重为 1.05。 提示词其他常用语法:是画到一半的时候开始不画女孩。
2024-11-17
可以调用不同大预言模型的整合工具推荐
以下是为您推荐的可以调用不同大语言模型的整合工具: 1. Poe:由 Quora 开发,有 APP 版本,支持跨端使用。集成了 Chat GPT、GPT4、Claude+、Claude、Dragonfly 等模型,同时支持用户自建 Chatbot。不同语言模型回复效果有差异,适合需要调用多种大语言模型的用户。访问地址: 。Dragonfly 擅长给出较短的回答,并擅长在输入中给出示例时遵循指示。Claude 更擅长创造性回复,配合 Poe 中的提问引导,非常适合在查阅资料时使用,有时能够给出超越直接使用 Chat GPT 时的体验(但和 Chat GPT 一样,Claude 也时常会给出一些错误回复,一些问题可以尝试在两个模型中都问一遍提升信息准确性)。此外支持分享用户和模型的对话内容,但 GPT4、Claude+产品需要付费订阅使用。 2. 国内的一些模型,如智谱和文心,在文生图方面有一定能力。 另外,大模型工具可根据自身条件准备,推荐顺序为:1. chatGPT 4.0 2. kimichat 3. 智谱清言 4 。
2024-11-12
A:乙好赌,一日为还赌债,将妻子甲的祖传戒指偷出卖给同事丙,且谎称妻子同意出卖。丙将戒指送给女朋友丁作为定情礼物。甲得知,要求丁返还,丁不同意,发生纠纷。问:戒指归谁所有? B:乙从甲家窃得戒指一只,在路边以低价卖给了丙,丙送给了女朋友丁作为定情礼物。 甲丁碰巧为一个单位,甲看出戒指是自己丢失的,要求丁返还,丁不同意,发生纠纷。问:戒指归谁所有? 请根据民法典给出依据
很抱歉,您提供的内容中没有与您所询问的关于戒指归属问题相关的依据。民法典中对于此类财产归属问题通常会考虑财产的来源、交易的合法性以及善意取得等因素。在您描述的第一种情况中,乙未经甲同意擅自出卖甲的祖传戒指,丙并非善意取得,因为乙谎称妻子同意出卖,所以戒指应归甲所有。在第二种情况中,乙盗窃甲的戒指并卖给丙,丙的取得也是非法的,丁不能基于丙的赠与而合法拥有戒指,戒指仍归甲所有。
2024-10-30
sora模型不同于其他同类模型的优势
Sora 模型不同于其他同类模型的优势主要体现在以下几个方面: 1. 视频生成能力:能够根据文本提示生成长达 1 分钟的高质量视频,而早期模型通常只能生成短视频片段。生成的长视频具有高视觉质量和引人入胜的视觉连贯性,从第一帧到最后一帧有良好的视觉一致性。 2. 处理复杂指令:展示了准确解释和执行复杂人类指令的显著能力,能生成包含多个执行特定动作的角色以及复杂背景的详细场景。 3. 数据预处理:能够在原始尺寸上训练、理解和生成视频及图像,拥抱视觉数据的多样性,在从宽屏 1920x1080p 视频到竖屏 1080x1920p 视频以及之间的任何格式上采样,而不会损害原始尺寸。在原始尺寸上训练数据显著改善了生成视频的构图和框架,实现更自然和连贯的视觉叙事。 4. 符合规模化定律:作为大型视觉模型,符合规模化原则,揭示了文本到视频生成中的几种新兴能力,是第一个展示确认新兴能力的视觉模型,标志着计算机视觉领域的一个重要里程碑。此外,还展示了包括遵循指令、视觉提示工程和视频理解等显著能力。
2024-10-30
如何利用自动对齐技术,确保16位不同地点的人员录制的同一句口号音频同步且整齐,请推荐具有此功能的音频编辑工具、网站或AI工具,以便将这16段音频精确叠加并融合成一个协调一致的整体
以下是关于利用自动对齐技术确保 16 位不同地点人员录制的同一句口号音频同步且整齐的相关信息及工具推荐: 在音频编辑中,常见的步骤如下: 1. 选择合适的数字音频工作站(DAW),如 Studio One。上传 FLAC 无损格式的音频,只对融合部分进行 Inpaint 处理,保持其他音频信息不变,以避免音质问题。 2. 在 DAW 中对接音轨后,播放试听,并缩放波形图,检查波形是否正确对齐。若出现波形未对齐或播放时有咔哒声等问题,可能是在导出和处理过程中对音频施加了额外的效果器处理,如混响、限制器、压缩等,导致音频前后不一致,影响对接效果。因此,需要确保在不同的导出和处理步骤中,音频不受到额外的处理,或者在每次处理时保持相同的效果设置。 具有此功能的音频编辑工具和网站包括: 1. Studio One:可用于对齐拼接音轨,并进行后续的叠加额外音轨、调整音量和平衡等操作,以丰富音频的层次,注意叠加后各音轨的电平,避免过载或失衡。 2. Udio:具有混音功能,可对现有剪辑进行微妙或明显的变化。在提示框中有新的区域,通过滑块控制混音效果的强度。 此外,阿里的相关研究全面概述了大语言模型自动对齐的主要技术路径,将现有的自动对齐方法分为四大类:利用模型固有偏好实现对齐、通过模仿其他模型行为实现对齐、利用其他模型反馈实现对齐、通过环境交互获得对齐信号,并探讨了自动对齐背后的机理以及实现有效自动对齐的关键因素。但此研究主要针对大语言模型,对于音频对齐的直接应用可能有限。
2024-10-17
小七姐的提示词课程,双证班、第一期、第二期,内容有何不同,我有必要全部学习吗?
小七姐的提示词课程包括双证班的第一期和第二期,以下是课程内容的介绍: 自由学习时间包含 22 节视频课,授课形式为视频课+知识星球作业+社群答疑。 提示词基础:包括“Hello,大模型”“提示词基础方法”“开始编写你的第一条提示词”“按需求设计和迭代提示词”等课程。 元能力:涵盖“AI+学习能力”“AI+逻辑思维”“AI+表达能力”等课程。 提示词实践:包含“需求分析”“结构框架”“反馈迭代”“结构化提示词”“思维链”等课程。 提示词工具化:包括“工作流”“提示词封装”“GPTs 基础教程”“GPTs 实战案例”等课程。 2024 更新:包括“GPT 新版本指南”“GPTs 基础教程”“GPTs 设置方法”“GPTs 实战案例”“提示词学习综述”“知识库场景”“知识库工具”“知识库有效语句”“知识库方法论”“知识库思维方式”“优秀提示词拆解”“提示词编写常见误区”等内容。 社群答疑:学员有问题可在学习群随时提问,老师和助教会详尽答疑,针对复杂问题,小七姐会录制短视频帮助理解。 对于是否有必要全部学习,取决于您的具体需求和基础。如果您是初学者,建议系统学习以打下扎实基础;如果您已有一定基础,可以根据自身薄弱环节有针对性地选择学习。
2024-10-10