直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

如何用字节的扣子(coze)实现多轮对话

回答

Coze 是字节跳动旗下的智能对话机器人服务平台,你可以使用 Coze 实现多轮对话。以下是一些步骤:

  1. 创建一个 Coze 应用并配置你的模型:首先,你需要在 Coze 平台上创建一个应用,并选择一个适合你需求的模型。你可以选择使用预训练的模型,也可以上传自己的模型进行训练。
  2. 配置对话流程:在 Coze 中,你可以配置对话流程,包括设置对话轮数、添加对话节点等。你可以根据你的需求配置不同的对话流程。
  3. 训练你的模型:在配置完对话流程后,你需要训练你的模型。你可以使用 Coze 提供的训练数据进行训练,也可以上传自己的训练数据进行训练。
  4. 部署你的模型:在训练完你的模型后,你可以将其部署到 Coze 平台上,并开始使用它进行多轮对话。

需要注意的是,Coze 是一个智能对话机器人服务平台,它提供了一些工具和功能来帮助你实现多轮对话。但是,你需要根据你的需求和场景进行配置和调整,以确保它能够满足你的需求。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

安仔:我用 Coze 免费手搓了一个 24 小时英语陪练,根治了我多年的哑巴英语!

基于AI Bot的功能需求,还是一个主要以聊天为主的AI Bot,而且一般英语陪练都建议多一些对话轮数的记录,这样当然训练一些口语考试时,上下文才不会被突然忘记,改为20轮:

安仔:我用 Coze 免费手搓了一个 24 小时英语陪练,根治了我多年的哑巴英语!

基于AI Bot的功能需求,还是一个主要以聊天为主的AI Bot,而且一般英语陪练都建议多一些对话轮数的记录,这样当然训练一些口语考试时,上下文才不会被突然忘记,改为20轮:

【图像流】用Coze的工作流创建随便虐的室内设计师

因为设置了图片上传、风格选择、需求描述三个环节,所以至少要携带3个轮次的对话。

其他人在问
如何用Coze智能体自动提前飞书知识库内容
要使用 Coze 智能体自动提取飞书知识库内容,您可以参考以下步骤: 1. 创建智能体: 手动清洗数据:上节课程是自动清洗数据,自动清洗可能出现数据不准的情况,本节尝试手动清洗以提高准确性。例如创建画小二课程的 FAQ 知识库,飞书在线文档中每个问题和答案以分割,可点击编辑修改和删除,然后添加 Bot 并在调试区测试效果。 本地文档:对于本地 word 文件,注意拆分内容以提高训练数据准确度,例如将画小二课程按章节进行人工标注和处理,然后创建自定义清洗数据的知识库。 发布应用:点击发布,确保在 Bot 商店中能搜到。 2. 创建机器人: 访问 Coze 官网(网址:Coze.cn)创建。 人设与回复逻辑设置。 创建知识库: 飞书知识库:在飞书中选择对应文件夹,一次最多选择 20 个文件(文件多可多建几个知识库),可选择自动进行数据清洗,图片资料会保留,测试对话,目前 Coze 存在不稳定版本,需调试完善。 Excel 知识库:可增加其他形式的知识库,上传表格的知识库不要过于复杂,不要有合并表格情况,系统不认不同的 Sheet,数据处理完成会显示 100%进度,加工出来的数据点击添加 Bot 增加到知识库中,然后测试发布和返回。 网页知识库:有自动采集和手动采集两种方式,手动采集需安装插件,可选择批量添加,写入网址,将全站数据解析并保存到知识库,按照默认自动清洗数据。 此外,在前期准备中,梳理 AI 智能体的功能需求时,要注意在稍后读的知识管理场景中,简化“收集”环节,自动化“整理”环节,根据待阅读内容列表的主题和当前阅读兴趣智能“选择”相关内容、推荐个人阅读计划。
2024-11-05
制作Coze智能体
以下是制作 Coze 智能体的步骤: 1. 打开 Coze 官网(https://www.coze.cn/home)。 2. 创建图像工作流,图像流分为智能生成、智能编辑、基础编辑三类,其很像 ComfyUI,但更普世化且简单易上手。 3. 空间风格化插件有相关参数,如 image_url 是毛坯房的图片地址;Strength 是提示词强度,影响效果图;Style 是生成效果的风格,如新中式、日式、美式、欧式、法式等;user_prompt 是用户输入的 Promot 提示词。 4. 按照构架配置工作流,包括调试效果和测试毛坯房等。 5. 开始节点对应配置三项内容,进行提示词优化。 6. 设定人设和回复逻辑,技能 1 中 3 项中的编译数字来源,然后点击右上角发布。 另外,分步构建和测试 Agent 功能时: 首先进入 Coze,点击「个人空间工作流创建工作流」,打开创建工作流的弹窗。根据弹窗要求自定义工作流信息,点击确认完成新建。编辑视图与功能中,左侧「选择节点」模块根据子任务需要,实际用到插件(提供能力工具)、大模型(生成文本内容)、代码(处理数据)。编辑面板中的开始节点和结束节点分别对应原文输入和结果输出环节。按照流程图在编辑面板中拖入对应的 LLM 大模型、插件、代码节点,完成工作流框架搭建。
2024-11-05
coze是用python实现的码
Coze 可以使用 Python 实现。在 Coze 中,搭建工作流框架时,左侧的“选择节点”模块中有支持编写简单 Python 脚本的“代码”节点,可对数据进行处理。例如,在“大圣:我用 Coze 搓了一个乞丐版的秘塔搜索”中,代码节点的逻辑是将输入的内容处理成两个字段,即 contexts 字段(所有 snippet+title+link 的平铺,用来丢给大模型进行处理)和 references 字段(所有的引用)。代码块对于非程序员来说运用有一定难度,但在 AI 时代,学习一些基础语法就足够,具体逻辑可让 AI 帮忙编写。
2024-11-04
coze 工作流里的循环怎么使用
在 Coze 工作流中,循环的使用方法如下: 1. 左侧工具栏选择“循环”节点。这个节点主要由两部分组成:循环节点和循环体。整体逻辑是从循环节点设置循环次数和循环项,如果输入的是数组,循环次数就是数组的长度,类似于 for 语句,每次循环项就是数组中的值。说人话就是会根据您输入的内容自动判断循环几次,来使用循环体里的逻辑处理每一项。 2. 我们这里希望循环处理的逻辑是,对上一步中的每一篇内容在数据库中进行查询,如果查到了,证明之前推送过,本次工作流就不处理了,避免重复推送。如果没有查到,证明是一篇新的文章,继续工作流后边的内容。 3. 循环体内部——数据库节点:用来在数据库中查询是否已经推送过该篇文章,输入项为上一步中的 url 和开始节点的 key(也就是 server 酱的 sendkey,这里我们重命名为 suid 了)。因为这个 Bot 最开始设计的时候,就考虑到可能有多个用户会同时使用这个 Bot 设置公众号推送内容,每个用户设置的公众号内容可能不一样,每个用户的要推送的微信号肯定也不一样,所以这里使用 server 酱的 sendkey 作为了用户的唯一标识,重命名为了 suid。所以这里查询数据库需要两个值,文章 url 和用户的 suid,来判断这名用户的这篇文章是否推送过。SQL 语句是 AI 写的,直接复制就成。记得设置一下输出项“combined_output”。这步是必须项:Coze 平台的逻辑是数据库是与 bot 绑定的,所有如果要使用数据库功能,需要在 bot 中设置一个相同名称和数据结构的数据库进行绑定,具体设置方法参见“相关资源”。 4. 循环体内容——选择器:判断数据库查询的内容是否为空,如果是空,证明数据库中没有查到,这篇文章没有给这名用户推送过,使用“文本处理”节点,拼接这篇文章的完整信息,保证信息一致性。string1:开始节点的 key,也就是 server 酱的 sendkey,用来识别用户;string2:循环节点 item 值中的 url;string3:循环节点 item 值中的 title;string4:循环节点 item 值中的 author。拼接为如下格式,方便输出,并让后边节点使用。右下方的“文本处理”节点没有实际作用,输入项随便写,主要是为了处理数据库查询到已经给这名用户推送过这篇文章情况下的占位项,否则工作流会报错。设置循环节点输出项,选择循环体中“输出新文章内容”拼接后的字符串。 此外,在大模型组件中,批处理,也就是迭代处理,允许我们对集合或数组中的每个元素进行批量处理。这种处理方式通过依次遍历集合或数组,使得每个元素都能经过相同的处理流程。批处理的关键在于其能够通过有限循环实现高效的数据处理。批处理中,我们可以设置循环次数,也就是迭代的次数。例如,在 Coze 的大模型组件中,最多可以支持 200 次的循环,这相当于一个 200 次的 for 循环,允许我们对 200 个元素进行连续的处理。此外,批处理还涉及到并发量的问题。这里的并发量指的是在单次迭代中同时处理的元素数量。通过调整并发量,我们可以在一次循环中同时处理多个元素,从而提高处理效率。例如,如果集合中有 200 个元素,我们可以设置每次同时处理 5 个元素,这样只需要 40 次循环就可以完成整个集合的处理。
2024-11-03
给我一些与coze 知识库搭建应用相关的文章
以下是一些与 Coze 知识库搭建应用相关的文章: 1. 目的是帮助非编程人士理解 AI 时代的知识库,读完可收获: AI 时代知识库的概念、实现原理及能力边界。 通往 AGI 之路大群中通过对话获取知识库中资料的原理。 更好地使用 Coze 等 AI Agent 平台中的知识库组件打造智能体。 另外还预告了关于 AI 时代应具备的编程基础系列大纲,包括数据库、知识库、变量、JSON、API、操作系统与服务器、Docker 等内容。 2. 包含多篇相关文章,如 3. 实战环节:以 Coze 为例帮助举一反三,未来接触其他 AI Agent 工具能快速上手知识库组件。 创建知识库: 来到个人空间,找到知识库导航栏,点击创建知识库。 选择知识库格式(目前支持文档、表格、图片)并填写信息。 选择本地文档或问答对可选择表格,进行自定义的文档切割,数据处理完成后一个问答对被切割成一个文档片。 使用知识库:可参考
2024-11-02
coze怎么设置中文界面
要将 Coze 设置为中文界面,您可以按照以下步骤进行操作: 1. 打开 coze.cn/home ,点击创建 Bot 。 2. 输入相关信息,例如“尝试联网”。 3. 尝试询问:今天的 hacker news 上有什么新闻?如果答不出,引入联网插件 WebPilot ,操作方式为:插件> + >选择 WebPilot ,重新尝试联网。 4. 点击右侧设置进入设置界面,下滑找到语言选项选择中文即可。 另外,关于页面汉化中文版的相关信息: 地址:https://github.com/AIGODLIKE/AIGODLIKECOMFYUITRANSLATION 安装目录:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 安装方法:三种安装方法具体步骤请跳转 使用说明:点击右侧设置进入设置界面,下滑找到语言选项选择您想要切换的语言。
2024-10-29
多轮对话改写
聊天模型的会话补全: 聊天模型以一串聊天对话作为输入,并返回模型生成的消息作为输出。聊天格式虽为多轮对话设计,但对单轮任务也有用。API 调用中,messages 参数是主要输入,须为消息对象数组,包含角色(“system”“user”“assistant”)和内容。会话通常先有系统消息设定助手行为,然后交替使用用户和助手消息。用户消息指示助手,助手消息存储之前响应。当用户指令涉前消息时,包含聊天历史有帮助,若会话 token 超模型限制需缩减。 RAG 提示工程中的多轮对话与指代消解: 先前讨论多关注单轮问答,现实中常需处理多轮对话,其中常产生指代问题,如用“它”“他们”等,仅依原始提问检索知识片段可能致结果不精确或无法检索,且对模型回复内容限制可能影响多轮对话流畅性甚至中断。因此需开发提示词解决指代消解问题,确保模型连续交流中回答准确连贯。由于指代消解需多轮对话完成,单次交互不行,需转换测试形式,先解决指代消解再进行下一轮答复。首先准备所需提示词,其是用 CoT 写出的思维链,列举不同推理情景让模型推理并消解代词,再依结果重新组织问题。然后复现指代消解步骤,包括进行第一轮对话(如提问“尼罗河是什么”并获回复)和开始指代消解。
2024-10-21
如何设计一个多轮对话的AI命题Agent
设计一个多轮对话的 AI 命题 Agent 可以从以下几个方面考虑: 1. 自然语言交互: 多轮对话能力:LLM 应能理解自然语言并生成连贯且与上下文相关的回复,以帮助 Agent 进行有效交流。 生成能力:LLM 要展示卓越的自然语言生成能力,生成高质量文本。 意图理解:LLMs 能够理解人类意图,但需注意模糊指令可能带来挑战。 2. 知识: 语言知识:包括词法、句法、语义学和语用学,使 Agent 能理解句子和进行对话。 常识知识:如药和伞的用途等世界常识,帮助 Agent 做出正确决策。 专业领域知识:特定领域如编程、医学等知识,对解决领域内问题至关重要。但要注意知识可能过时或错误,需通过重新训练或编辑 LLM 解决。 3. 记忆: 记忆机制:存储过去的观察、思考和行动,帮助 Agent 处理连续任务。 记忆提升策略:包括提高输入长度限制、记忆总结、用向量或数据结构压缩记忆。 记忆检索:Agent 检索记忆以访问相关信息,包括自动检索和交互式记忆对象。 4. 推理和规划: 推理:基于证据和逻辑,对解决问题、决策至关重要。 规划:组织思维、设定目标和确定实现目标的步骤。 计划制定:分解任务、制定计划,包括一次性全面分解和自适应策略。 以国内版 Coze 为例,在实际操作中: 1. 对话引擎:目前国内版暂时只支持使用“云雀大模型”作为对话引擎,其携带上下文轮数默认为 3 轮,可修改区间是 0 到 30,具体轮数根据业务需求决定。 2. 为 Bot 添加技能: 在 Bot 编排页面的“技能”区域,为 Bot 配置所需的技能。 若不懂插件,可选择区域右上角的“优化”按钮,让 AI Bot 根据提示词自动选择插件。 也可自定义添加所需插件,点击插件区域的“+”号选择加入具体插件。 如 Bot 需要获取 AI 新闻,可添加新闻搜索接口。 3. 测试 Bot:在 Bot 编排页面的“预览与调试”区域,测试 Bot 是否按预期工作,可清除对话记录以开始新的测试,确保 Bot 能理解用户输入并给出正确回应。
2024-10-21
你在设计大模型语音座舱功能,怎么设计上下文多轮对话的场景,比如否定、指代、延展等
在设计大模型语音座舱功能中的上下文多轮对话场景时,对于否定的情况,需要准确识别用户表达的否定意图,并据此调整后续的回应策略。例如,当用户说“不要这样做”,系统要理解并停止当前可能进行的相关操作。 指代方面,要能够解析用户话语中的各种指代关系,比如“那个东西”“这个方案”等,通过上下文和语境来明确其具体所指。 延展的场景设计则要鼓励用户进一步展开话题,例如当用户提到一个主题后,系统可以通过提问或提供相关信息来引导用户深入阐述,比如“能再多和我讲讲吗?”或者“那您对这方面还有其他的想法吗?”
2024-08-27
有哪些高质量 sft 多轮对话数据集
高质量的SFT(Supervised FineTuning)多轮对话数据集在训练对话系统时至关重要。以下是一些公认的高质量多轮对话数据集: 1. ConvAI2 Dataset ConvAI2数据集是基于PersonaChat数据集构建的,用于ConvAI2挑战赛。它包含了多轮对话,且每个对话都有明确的角色和背景信息,有助于训练更具个性化的对话系统。 链接: 2. DSTC系列数据集 DSTC(Dialogue State Tracking Challenge)系列数据集是多轮对话系统研究中的经典数据集,涵盖了多种任务和领域,如任务导向对话、对话状态跟踪等。 DSTC2: 专注于餐馆预订任务。 DSTC3: 扩展了DSTC2,增加了更多的任务和对话状态。 DSTC6: 涉及对话行为理解和对话状态跟踪。 链接: 3. MultiWOZ Dataset MultiWOZ(MultiDomain Wizard of Oz)是一个大规模、多领域任务导向对话数据集,涵盖了多个对话场景,如餐馆预订、酒店预订、出租车预订等。数据集中的对话是由实际用户和客服人员通过WizardofOz方法生成的,质量较高。 链接: 4. Ubuntu Dialogue Corpus Ubuntu Dialogue Corpus是一个大规模、多轮对话数据集,基于Ubuntu的IRC日志。数据集包含技术支持对话,适用于训练技术支持和问答系统。 链接: 5. CoQA Dataset CoQA(Conversational Question Answering)数据集用于对话式问答系统的训练。数据集中每个对话包含一个给定的文本和相关的问题回答对。 链接: 6. TopicalChat Dataset TopicalChat数据集是微软创建的,用于开发和评估开放领域对话系统。数据集包括不同主题的多轮对话,涉及科技、娱乐、体育等多个领域。 链接: 7. PersonaChat Dataset PersonaChat数据集包含多轮对话,每个对话参与者都有预定义的个人信息或“persona”,旨在开发更具个性化和情感的对话系统。 链接: 总结 这些数据集覆盖了多种对话场景和任务类型,是开发高质量对话系统的重要资源。在使用这些数据集进行训练时,可以结合具体的应用场景和需求,选择合适的数据集进行SFT。
2024-06-13
多轮会话
多轮会话是指在一个对话中进行多次交互的过程。这种对话形式通常在聊天机器人、客服机器人等场景中使用。在多轮会话中,用户可以在一个对话中提出多个问题或请求,机器人会根据用户的输入进行相应的回答或操作。 多轮会话的实现需要依赖于自然语言处理技术和对话管理机制。在自然语言处理方面,需要对用户输入的文本进行理解和分析,包括词法分析、句法分析、语义理解等。在对话管理方面,需要对对话过程进行跟踪和管理,包括对话状态的维护、对话历史的记录、对话策略的制定等。 为了实现多轮会话,通常需要使用到一些对话管理机制,例如对话状态跟踪、对话历史记录、对话策略制定等。这些机制可以帮助机器人更好地理解用户的意图和需求,从而提供更加准确和有效的回答和操作。 此外,多轮会话还需要考虑到一些其他的因素,例如对话的轮次限制、对话的时长限制、对话的中断和恢复等。这些因素需要在对话管理机制中进行考虑和处理,以确保对话的顺利进行和用户体验的良好。 总的来说,多轮会话是一种自然、灵活的对话形式,可以为用户提供更加便捷和高效的服务。
2024-06-11
字节跳动也被曝出在其秘密研发的大模型项目中存在违规调用 OpenAI 的 API ,你如何看待
2023 年下半年,部分声称性能卓越的中国大模型被揭露为“套壳”产品。如李开复创办的“零一万物”被国外开发者质疑为“套壳”产品,其团队承认在训练过程中沿用了开源架构,但强调是为快速起步。12 月,字节跳动被曝出在其秘密研发的大模型项目中调用了 OpenAI 的 API 并使用 ChatGPT 的输出数据来训练自己的模型。OpenAI 反应迅速坚决,暂停相关账号并表示将进一步调查。字节跳动回应称在 2023 年初技术团队在大模型探索初期有部分工程师将 GPT 的 API 服务用于较小模型的实验性项目研究,且自 2023 年 4 月引入调用规范检查后已停止。此外,不仅国内存在此类现象,24 年也有更多被指“套壳”的事件。同时,提示词攻击在业内是公开的秘密,国内外各大著名的 AI 厂商几乎无一幸免,系统提示处于泄露状态,大模型应用脆弱,数据易被获取。
2024-11-03
字节投资的AI公司
以下是字节投资的部分 AI 公司相关信息: 近期热门融资 AI 产品中包括:You.com(多种搜索模式且重隐私的搜索引擎)、Genspark(通过 Sparkpages 来满足用户个性化的搜索需求)、Rockset(刚被 OpenAI 收购的提供实时搜索和分析数据库服务的公司)、Butterflies AI(人类与 AI 共存的社交软件)、MeetRecord(可以对销售通话进行记录和辅导的 AI 助手)。 中国 AI 生态 2023 上半年投资地图中的部分公司有:生数科技(创始人:唐家渝,是全球领先的生成式人工智能基础设施建设者,正积极打造世界领先的可控多模态通用大模型,致力于通过生成式 AI 技术提升全人类的创造力与生产力)、西湖心辰(创始人:蓝振忠,开发的西湖大模型既具备通过跨领域的知识解决问题的超高智商,也具备通过情感感知、长期记忆形成的超高情商)、影眸科技(创始人:吴迪,孵化于上海科技大学,通过与国内顶尖人工智能、计算机视觉实验室合作,积极推动尖端实验室科研成果的民用化、商业化,探索前沿人工智能、计算机视觉技术在大众娱乐市场的推广应用)。
2024-09-06
字节跳动旗下的即梦AI的模型来源是什么?以及它的数据训练库
目前没有关于字节跳动旗下即梦 AI 的模型来源以及数据训练库的准确和详细信息。但一般来说,AI 模型的训练数据可能来自多种来源,如维基百科、书籍、期刊、网络采集的图片/标题等。同时,在训练过程中可能会使用开源架构,并进行原创性的优化和突破。但对于即梦 AI 具体的情况,还需要更多确切的官方公布内容。
2024-08-25
WAYTOAGI是字节跳动的吗
WAYTOAGI 并不是字节跳动的产品,而是一个由一群热爱 AI 的专家和爱好者共同建设的开源知识库,打开“waytoagi.com”就可以找到社群。WAYTOAGI 诞生于 2023 年 4 月 26 日,在没有任何推广的情况下,一年的时间已经有超过百万用户和超千万次的访问量,是很多 AI 爱好者知识的源头。社群的 Solgan 是让更多的人因 AI 而强大,有很多学社和共学共建的活动。
2024-05-23
还有没有类似语聚ai,扣子,Dify.A,腾讯元器、客悦等智能体创建平台
以下是为您介绍的一些类似语聚 AI、扣子、Dify.AI、腾讯元器、客悦等的智能体创建平台: 智能体是随着 ChatGPT 与 AI 概念爆火而出现的新名词,简单理解就是 AI 机器人小助手,类似移动互联网中的 APP 应用。目前有很多公司关注智能体在 AI 应用层的产品机会,比如在 C 端有社交方向的应用,用户注册后先捏一个自己的智能体,然后让其与他人的智能体聊天,两个智能体聊到一起后再真人介入;在 B 端,有帮助商家搭建智能体的机会。 国内有不少智能体开发平台,如字节的扣子,2 月 1 日字节正式推出其国内版,主要用于开发下一代 AI 聊天机器人。此外,还有 Dify.AI 等平台。像阿里的魔搭社区也属于此类平台。 扣子(Coze)是字节跳动旗下的新一代一站式 AI Bot 开发平台,无论是否具备编程基础,都能在该平台上迅速构建基于 AI 模型的各类问答 Bot,完成后还可发布到各种社交平台和通讯软件上供用户交互聊天。创建智能体通常包括起名称、写介绍、使用 AI 创建头像等简单步骤。
2024-11-08
还有没有类似扣子、Dify.A类似的智能体创建平台?
以下为您介绍一些类似扣子、Dify.AI 的智能体创建平台: 腾讯元器:是一个智能体开发平台。 kimi:在智能体领域有所涉及。 需要注意的是,目前提示词攻击在业内是一个公开的秘密,国内外各大著名的 AI 厂商几乎无一幸免,其系统提示存在泄露的风险。
2024-11-08
类似扣子的智能体创建平台还有哪些?
以下是一些类似扣子的智能体创建平台: 1. 海外版 Coze(coze.com) 2. 百度 AppBuilder 3. 阿里通义千问 4. 智谱 AI 此外,还有 Dify.AI 等平台。字节的扣子(Coze)作为新一代一站式 AI Bot 开发平台,无论用户是否具备编程基础,都能在该平台上迅速构建基于 AI 模型的各类问答 Bot。腾讯元器也是智能体开发平台之一。
2024-11-08
怎么使用扣子制作智能体
使用扣子制作智能体的步骤如下: 1. 起一个智能体的名称。 2. 写一段智能体的简单介绍。 3. 使用 AI 创建一个头像。 在编排方面: 插件:插件类似于工具箱,里面可以放置一个或多个 API。扣子平台有多种类型的插件,如看新闻、规划旅行、提高办公效率、理解图片内容的 API 等,也可以自己制作所需的插件。 工作流:工作流如同可视化的拼图游戏,可将插件、大语言模型、代码块等功能组合,创建复杂稳定的业务流程。工作流由多个小块块(节点)组成,包括开始和结束的小块块,不同小块块可能需要不同信息才能工作。 此外,扣子是字节跳动旗下的新一代一站式 AI Bot 开发平台,无论是否有编程基础,都能在该平台上迅速构建基于 AI 模型的各类问答 Bot。例如菠萝作词家智能体,是专为音乐创作设计的辅助工具,能根据用户输入生成歌词。创建扣子智能体时,先想名字,再写介绍,越详细越好,会根据介绍智能生成符合主题的图标,最后点击确认即可。 扣子官网:
2024-11-06
我想要复制扣子上的工作流到DIFY 如何操作
要将扣子上的工作流复制到 Dify,以下是一些相关信息: RPA 很早就出现在工作流编排领域,目标是使符合标准的业务流程和工作流程自动化。 ComfyUI 采用工作流化操作模式,用户在流程编辑器中配置 pipeline,通过节点和连线完成模型操作和图片生成,其 DSL 配置文件支持导出导入。 Dify.AI 的工作流设计语言与 ComfyUI 有相似之处,定义了标准化的 DSL 语言,方便导入导出进行工作流复用。 可以使用 Dify 推出的“工作流”功能将流程设计和提示词落地。延申阅读:Dify——工作流:https://docs.dify.ai/v/zhhans/guides/workflow/introduce 。首先要建立整体工作流程,但流程可能缺少知识检索环节。
2024-10-15
使用扣子AI的教程
以下是使用扣子 AI 的教程: 1. 体验预置 AI Bot 扣子预置了各种场景的 Bot,涵盖工具、生活方式、学习、娱乐等领域。您可以访问查看所有精选的预置 Bot。 选择一个 Bot 后,会被引导至该 Bot 的编排页面,此页面分为 4 个区域: 顶部区域:显示 Bot 所用的大型语言模型。 人设与回复逻辑区域:设置 Bot 的人物设定与回复逻辑。 技能区域:展示 Bot 配置的功能,例如插件、工作流、开场白等。 预览与调试区域:展示与 Bot 交互的运行结果。您可以在预览与调试区域发送消息查看 Bot 的回复效果。以旅游大师 Bot 为例,操作步骤如下: 1. 访问。 2. 在页面的搜索框中,输入旅游大师,然后单击展示的旅游大师 Bot。 2. 搭建您的第一个 AI Bot 无论是否有编程基础,都可以在扣子平台快速搭建一个 AI Bot。以创建一个可以发送 AI 新闻的 Bot 为例: 系统默认创建了一个 Personal 的个人团队,您也可以创建团队或加入其他团队,更多信息,请参考。 进入团队空间后,默认打开 Bots 页面。 在 Bots 页面,单击创建 Bot。 输入 Bot 名称和介绍,然后单击图标旁边的生成图标,自动生成一个头像,最后单击确认。 Bot 创建后,会直接进入 Bot 编排页面。您可以在左侧人设与回复逻辑面板中描述 Bot 的身份和任务,单击复制可使用模板格式添加描述。也可以在中间技能面板为 Bot 配置各种扩展能力,并在右侧预览与调试面板中实时调试 Bot。 配置 Bot 的第一步是编写提示词(Bot 的人设与回复逻辑功能)。提示词是给大型语言模型(LLM)的指令,以指导其生成输出。在 Bot 配置页面的人设与回复逻辑面板中输入内容,例如您可以单击优化,让大语言模型优化为结构化内容。更多详细信息,参考。 3. 案例:创建 24 小时英语陪练 AI Bot 打开扣子的首页,直接点击左上角的创建 AI Bot 按钮。 在弹窗输入 Bot 的相关信息即可完成创建,接下来细化功能。 设计人设与回复逻辑,根据功能需求编写提示词。 调整模型设置,例如基于聊天为主的需求,设置对话轮数为 20 轮。 选择插件,如英文名言警句等。 设置开场白和预置问题。 为 AI Bot 设置语音,选择亲切的英语音色。
2024-10-09