Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如何用字节的扣子(coze)实现多轮对话

Answer

Coze 是字节跳动旗下的智能对话机器人服务平台,你可以使用 Coze 实现多轮对话。以下是一些步骤:

  1. 创建一个 Coze 应用并配置你的模型:首先,你需要在 Coze 平台上创建一个应用,并选择一个适合你需求的模型。你可以选择使用预训练的模型,也可以上传自己的模型进行训练。
  2. 配置对话流程:在 Coze 中,你可以配置对话流程,包括设置对话轮数、添加对话节点等。你可以根据你的需求配置不同的对话流程。
  3. 训练你的模型:在配置完对话流程后,你需要训练你的模型。你可以使用 Coze 提供的训练数据进行训练,也可以上传自己的训练数据进行训练。
  4. 部署你的模型:在训练完你的模型后,你可以将其部署到 Coze 平台上,并开始使用它进行多轮对话。

需要注意的是,Coze 是一个智能对话机器人服务平台,它提供了一些工具和功能来帮助你实现多轮对话。但是,你需要根据你的需求和场景进行配置和调整,以确保它能够满足你的需求。

Content generated by AI large model, please carefully verify (powered by aily)

References

安仔:我用 Coze 免费手搓了一个 24 小时英语陪练,根治了我多年的哑巴英语!

基于AI Bot的功能需求,还是一个主要以聊天为主的AI Bot,而且一般英语陪练都建议多一些对话轮数的记录,这样当然训练一些口语考试时,上下文才不会被突然忘记,改为20轮:

安仔:我用 Coze 免费手搓了一个 24 小时英语陪练,根治了我多年的哑巴英语!

基于AI Bot的功能需求,还是一个主要以聊天为主的AI Bot,而且一般英语陪练都建议多一些对话轮数的记录,这样当然训练一些口语考试时,上下文才不会被突然忘记,改为20轮:

【图像流】用Coze的工作流创建随便虐的室内设计师

因为设置了图片上传、风格选择、需求描述三个环节,所以至少要携带3个轮次的对话。

Others are asking
coze教程
以下是关于 Coze 教程的相关内容: 可能是全网最好的 Coze 教程之一,能一次性带您入门 Coze 工作流。即使是非技术出身的爱好者也能上手跟学,一站式学会 AI Agent 从设计到落地的全流程方法论。 阅读指南: 长文预警,请视情况收藏保存。 核心看点: 通过实际案例逐步演示,用 Coze 工作流构建能够稳定按照模板要求生成结构化内容的 AI Agent。 开源 AI Agent 的设计到落地的全过程思路。 10+项常用的 Coze 工作流的配置细节、常见问题与解决方法。 适合人群: 任何玩过 AI 对话产品的一般用户(如果没用过,可以先找个国内大模型耍耍)。 希望深入学习 AI 应用开发平台(如 Coze、Dify),对 AI Agent 工作流配置感兴趣的爱好者。 注:本文不单独讲解案例所涉及 Prompt 的撰写方法。文末「拓展阅读」中,附有相关 Prompt 通用入门教程、Coze 其他使用技巧等内容,以供前置或拓展学习。 Coze 概述: 字节的官方解释:Coze 是新一代一站式 AI Bot 开发平台。无论是否有编程基础,都可在 Coze 平台上快速搭建基于 AI 模型的各类问答 Bot,从解决简单的问答到处理复杂逻辑的对话。并且,可以将搭建的 Bot 发布到各类社交平台和通讯软件上,与这些平台/软件上的用户互动。 个人认为:Coze 是字节针对 AI Agent 这一领域的初代产品,在 Coze 中将 AI Agent 称之为 Bot。 字节针对 Coze 这个产品部署了两个站点,分别是国内版和海外版。 国内版: 网址:https://www.coze.cn 官方文档教程:https://www.coze.cn/docs/guides/welcome 大模型:使用的是字节自研的云雀大模型,国内网络即可正常访问。 海外版: 网址:https://www.coze.com 官方文档教程:https://www.coze.com/docs/guides/welcome 大模型:GPT4、GPT3.5 等大模型(可以在这里白嫖 ChatGPT4,具体参考文档:),访问需要突破网络限制的工具。 参考文档:https://www.coze.com/docs/zh_cn/welcome.html AI Agent 的开发流程: Bot 的开发和调试页面布局主要分为如下几个区块: 提示词和人设的区块。 Bot 的技能组件。 插件。 工作流。 Bot 的记忆组件。 知识库。 变量。 数据库。 长记忆。 文件盒子。 一些先进的配置,如触发器(例如定时发送早报)、开场白(用户和 Bot 初次对话时,Bot 的招呼话语)、自动建议(每当和 Bot 一轮对话完成后,Bot 给出的问题建议)、声音(和 Bot 对话时,Bot 读对话内容的音色)。下面会逐一讲解每个组件的能力以及使用方式。
2025-01-28
Coze + 飞书 + 飞书多维表格:通过飞书机器人与 Coze 搭建的智能体进行对话,在聊天窗口中完成链接输入和阅读计划输出。由 Coze 调用大模型、插件完成内容的整理、推荐,利用飞书多维表格存储和管理稍后读数据,无需开发任何插件、APP,能实现跨平台的稍后读收集与智能阅读计划的推荐。其设计思路包括简化“收集”,实现跨平台收集和通过输入 URL 完成收集;自动化“整理入库”,自动整理关键信息并支持跨平台查看;智能“选择”推荐,根据收藏记录和用户兴趣生成阅读计划——这个方法具体如何操作?
以下是关于通过飞书机器人与 Coze 搭建的智能体进行对话,并利用飞书多维表格存储和管理稍后读数据,实现跨平台的稍后读收集与智能阅读计划推荐的具体操作方法: 前期准备: 1. 简化“收集”: 实现跨平台收集功能,支持电脑(web 端)、安卓、iOS 多端操作。 输入一个 URL 即可完成收集,借鉴微信文件传输助手的方式,通过聊天窗口完成收集输入。 2. 自动化“整理入库”: 系统在入库时自动整理每条内容的关键信息,包括标题、摘要、作者、发布平台、发布日期、收集时间和阅读状态。 阅读清单支持跨平台查看。 3. 智能“选择”推荐: 根据当前收藏记录和用户阅读兴趣进行相关性匹配,生成阅读计划。 使用飞书·稍后读助手: 1. 设置稍后读存储地址: 首次使用,访问。 点击「更多创建副本」,复制新表格的分享链接。 将新链接发送到智能体对话中。 还可以发送“查询存储位置”、“修改存储位置”来更换飞书多维表格链接,调整稍后读存储位置。 2. 收藏待阅读的页面链接: 在对话中输入需要收藏的页面链接,第一次使用会要求授权共享数据,授权通过后再次输入即可完成收藏。但目前部分页面链接可能小概率保存失败。 3. 智能推荐想看的内容: 在对话中发送“我想看 xx”、“xx 内容”,即可按个人兴趣推荐阅读计划。 至此,专属 AI 稍后读智能体大功告成,您可以尽情享受相关服务。
2025-01-27
COZE 是基于什么框架
Coze 基于以下框架构成: 1. 提示词:使用了结构化提示词的框架,通过提示要求大模型根据不同的行为调用不同的工作流。 2. 数据库:能够记录不同用户历史记账记录,工作流里会用到。 3. 工作流:增加记账调用 add_accounting_record 工作流;查询账户余额调用 query_accounting_balance 工作流;删除所有记账记录调用 init_accounting_records 。 此外,还有关于 Coze 的其他信息: Coze 是由字节跳动推出的 AI 聊天机器人和应用程序编辑开发平台,专为开发下一代 AI 聊天机器人而设计。 具有多语言模型支持、插件系统、知识库功能、数据库和记忆能力、工作流设计、多代理模式等特点。 目前对用户完全免费,且易于发布和分享。
2025-01-26
0基础怎么使用coze
对于 0 基础使用 Coze,您可以按照以下步骤进行: 1. 了解前端页面的相关知识,包括布局与组件。前端分为能看到的部分(如产品设计、采集用户输入和展示服务输出)和服务及对应逻辑(处理用户输入的数据并生成输出响应到前端页面)。前端组件类型有布局组件(如容器 div)、展示组件(如文本和图片)、输入组件(如文本输入、下拉选项、数字输入和文件上传)、AI 组件(如 chatbot)。 2. 掌握模板与结构,参考官方布局和排版,了解页面组件层级,页面首页通常只有一个容器,子容器受父容器属性影响。 3. 熟悉组件属性事件,点击容器右边会显示其名字及属性和事件,属性包括位置、尺寸、布局、容器样式、状态和可见性等。 4. 运用页面布局技巧,先创建固定宽高的底层容器覆盖页面,常见布局有左右和上下,左右布局可通过设置子容器为横向和固定或百分比宽度实现,上下布局可设置子容器高度,父容器内边距和间距会影响排版,溢出有可见、隐藏和滚动三种处理方式。 5. 处理换行与元素分布,当容器内图片需换行时,可设置自动换行,元素分布在父容器设置对子容器生效,可选择不同的分布方式使排版更美观。 另外,创建 Coze Bot 的步骤如下: 1. 目标是创建一个 Coze Bot,帮您查阅 Hacker News,并中文返回。 2. 打开 coze.cn/home,点击创建 Bot,信息随便输,如“尝试联网”。 3. 尝试询问:今天的 hacker news 上有什么新闻?可能会答不出。 4. 了解穿插知识,AI 如同书呆子,聪明但不出门,所以不知外面的事也不会交流。有一种叫做“插件”的东西,类似给 AI 用的手机,AI 可以拿它上网、点外卖。例如有一个插件 WebPilot,是首批 ChatGPT Plugin,首个提供“大模型上网”。 5. 引入联网插件,插件>+>选择 WebPilot,重新尝试联网,再次询问:今天的 hacker news 上有什么新闻?即可成功。
2025-01-26
coze
以下是关于 Coze 的相关信息: 重磅更新:Coze 可以接入抖音评论区,帮您自动回复用户的评论。若想快速上手,可参考视频。若不了解 Coze 是什么,可参考文章。 记账管家:COZE 是字节跳动旗下子公司推出的 AI Agent 构建工具,允许用户在无编程知识的基础上,使用自然语言和拖拽等方式构建 Agent,目前可白嫖海量大模型免费使用,有丰富的插件生态。记账管家是基于 COZE 平台的能力搭建的记账应用,您可以直接和 coze 说收入或支出情况,coze 会自动记账并计算账户余额,每一笔记账记录都不会丢失。 技术操作: 获取 accessToken: 在 coze 界面右侧扣子 API 授权,或打开链接 https://www.coze.cn/open/oauth/pats 。 添加令牌,设置 token 的名称和过期时间(最多 1 个月),选择权限,完成后点击“确定”按钮。 最后一定要点击按钮复制下拉,此令牌只会出现一次。 获取 botid: 通过工作空间获取,从“工作空间”打开一个 bot,点击商店按钮,查看地址栏中的数字即为 botid。 若在前端使用 bot,必须发布成为 API,点击发布,选择 API,等审核通过后按上述方法拿到 botid。 获取空间 id:进入 coze 后,左边打开工作空间,找到 url 中的 id 并复制。
2025-01-25
豆包和coze有什么区别
Dify 和 Coze 都是大模型中间层产品,有以下主要异同点: 开源性: Dify 是开源的,允许开发者自由访问和修改代码以定制,由专业团队和社区共同打造。 Coze 由字节跳动推出,目前未明确是否开源,可能更侧重商业化服务和产品。 功能和定制能力: Dify 提供直观界面,结合多种功能,支持基于任何 LLM 部署 API 和服务。 Coze 有丰富插件能力和高效搭建效率,支持发布到多个平台作为 Bot 能力使用。 社区和支持: Dify 作为开源项目有活跃社区,开发者可参与共创共建。 Coze 可能更多依赖官方更新和支持,社区参与和开源协作程度可能不如 Dify。 豆包和 Coze 的区别在于: 豆包主要是大模型交互,功能相对默认。 Coze 不用魔法,上手简单,更新快,插件多。在模型选择方面,GLM 模型和 MoonShot 模型对结构化提示词理解良好,适合处理精确输入输出任务;豆包系列模型在角色扮演和工具调用方面有优势,能识别用户意图并选择合适工具或服务。将这三种模型结合在工作流或多 Agent 中可实现优势互补。
2025-01-25
如何利用多轮对话做Agent问答
利用多轮对话做 Agent 问答可以从以下几个方面考虑: 1. 从产品角度: 思考用户为何想使用,例如通过探索历史新闻让用户更好地了解自身背景、成长环境,从中学习成长并获得有趣互动体验。 明确 Agent 是谁及其性格,比如设定为知识渊博、温暖亲切、富有同情心的历史新闻探索向导,负责新闻解析和历史背景分析。 确定提供新闻的时间,如用户出生那天及那一周的重要新闻事件。 规划除新闻外的能力,如提供历史背景分析、相关画作、生活方式分析,甚至加入神秘主义者和心理学家角色回应用户。 设计多 Agent 出场顺序和使用方式,通过多角色互动设计,让用户体验多层次对话,从基本问答到深度讨论,逐步引导用户探索。 2. 基于 LLM 的大脑模块: 自然语言交互方面:LLM 应具备多轮对话能力,能理解自然语言并生成连贯、上下文相关的回复,还应具备出色的生成能力和意图理解能力,但要注意模糊指令可能带来的挑战。 知识方面:包括语言知识(词法、句法、语义学和语用学)、常识知识(如药和伞的用途)、专业领域知识(如编程、医学),但要注意知识可能过时或错误,需通过重新训练或编辑 LLM 解决。 记忆方面:具备记忆机制,存储过去的观察、思考和行动,通过提高输入长度限制、记忆总结、用向量或数据结构压缩记忆等策略提升记忆,Agent 能检索记忆以访问相关信息,包括自动检索和交互式记忆对象。 推理和规划方面:基于证据和逻辑进行推理,这对解决问题和决策至关重要。
2025-01-08
多轮对话怎么做
多轮对话的实现方式如下: 1. 核心思路是让 AI 和您对目标的理解达成共识,保持一致,然后再开始创作,这样能增加创作的可控性。比如通过对生成图像的理解诱导和迭代来实现。 2. 有效的部分包括: 约束的弹性,在探索阶段给 AI 一定自由空间,而 prompt 一般是强约束的,更适合确定性的目标或者用于总结阶段。 情绪,情绪化能局部提升 AI 效能。 共识,您的理解和 AI 的理解要高度一致,在高共识性的背景下,调整和控制会更有效。 3. 注意事项: 如果经历很多轮的对话,可能会导致此次对话超过模型的 token 限制,ChatGPT 会遗忘之前的内容。建议当经历多轮对话后,可以新建一个聊天窗口,把完整的代码和需求背景输入给 ChatGPT,重新开启新的提问。 在自然的人类语言交流中,多轮对话常常伴随着指代问题的产生。为了提升对话系统的性能和用户体验,需要开发提示词来解决多轮对话中的指代消解问题,并确保模型能够在连续的交流中提供准确、连贯的回答。由于“指代消解”需要多轮对话来完成,单次交互无法达成,所以需要将测试形式进行转换,先解决“指代消解”的问题,然后再进行下一轮答复。
2025-01-07
单轮对话与多轮对话调用
单轮对话与多轮对话调用: 聊天模型通过一串聊天对话作为输入,并返回一个模型生成的消息作为输出。尽管聊天格式的设计是为了多轮对话更简单,但它对于没有任何对话的单轮任务同样有用(例如以前由 textdavinci003 等指令遵循模型提供的任务)。 API 调用的例子中,messages 参数是主要的输入,必须是一个消息对象的数组,每个对象拥有一个 role(“system”“user”或“assistant”)和 content(消息的内容)。会话可以少至 1 条消息或者有许多条。通常,会话首先使用系统消息格式化,然后交替使用用户消息和助手消息。系统消息有助于设定助手的行为,用户消息帮助指示助手,助手消息用于存储之前的响应。当用户的指令是关于之前的消息时,包含聊天历史记录将有所帮助。如果会话包含的 token 超出了模型的限制,则需要用一些方法去缩减会话。 百炼相关 Q&A: 如何调用工作流?在提示词写了让大模型调用 xxx 工作流,但实际总是不调用。文档里也没有写调用方式。 如何把开始节点的输入参数直接接入到代码节点中进行处理? 千问模型基本不能处理标点符号,在提示词中各种要求句尾不要有句号,可仍旧有。甚至在工作流中用代码去掉后,回到应用中又给加上了标点符号。同样的提示词,放在扣子中就可以去掉标点符号。 记得第一天提到,规定模型不能用搜索和投喂输出文本。比赛是不是只限在提示词调试的范围内呢? 为什么同样的问题,给出的答案区别这么大?接的就是同一个应用,这个问题很早就预测过了,同一个模型。 无论 prompt 怎么变,模型生成完内容后,自动被“不生成任何的标点符号”所替换。这个情况在 max。 COW 调用百炼应用如何支持多轮对话么?
2025-01-06
单轮对话与多轮对话调用
聊天模型通过一串聊天对话作为输入,并返回一个模型生成的消息作为输出。尽管聊天格式的设计是为了多轮对话更简单,但它对于没有任何对话的单轮任务同样有用(例如以前由 textdavinci003 等指令遵循模型提供的任务)。 API 调用的例子中,messages 参数是主要的输入,必须是一个消息对象的数组,每个对象拥有一个 role(“system”“user”或“assistant”)和 content(消息的内容)。会话可以少至 1 条消息或者有许多条。通常,会话首先使用系统消息(“system”)格式化,然后交替使用用户消息(“user”)和助手消息(“assistant”)。系统消息有助于设定助手的行为,用户消息帮助指示助手,助手消息用于存储之前的响应。当用户的指令是关于之前的消息时,包含聊天历史记录将有所帮助。如果会话包含的 token 超出了模型的限制,则需要用一些方法去缩减会话。 此外,还存在一些与百炼相关的 Q&A: 如何调用工作流?在提示词写了让大模型调用 xxx 工作流,但实际总是不调用。文档里也没有写调用方式。 如何把开始节点的输入参数直接接入到代码节点中进行处理? 千问模型基本不能处理标点符号,在提示词中各种要求句尾不要有句号,可仍旧有。甚至在工作流中用代码去掉后,回到应用中又给加上了标点符号。同样的提示词,放在扣子中就可以去掉标点符号。 为什么同样的问题,给出的答案区别这么大?接的就是同一个应用,这个问题很早就预测过了,同一个模型。 无论 prompt 怎么变,模型生成完内容后,自动被“不生成任何的标点符号”所替换。这个情况在 max。 COW 调用百炼应用如何支持多轮对话么?
2025-01-06
如何优化ai对话脚本和逻辑(多轮对话测试提升ai上下文理解)
以下是优化 AI 对话脚本和逻辑(多轮对话测试提升 AI 上下文理解)的方法: 1. 样例驱动的渐进式引导法 评估样例,尝试提炼模板:独自产出高质量样例较难,可借助擅长扮演专家角色的 AI 改进初始正向样例,如使用 Claude 3.5 进行对话,输入初始指令,通过其回复侧面印证对样例的理解与建议。 多轮反馈,直至达到预期:AI 可能犯错输出要求外内容,需多轮对话引导,使其不断修正理解,直至达成共识。 用例测试,看看 AI 是否真正理解:找 13 个用例,让 AI 根据模板生成知识卡片,根据结果验证是否符合预期,不符合则继续探讨调整。用例测试和多轮反馈步骤灵活,可根据需要自由反馈调整。 2. Coze 全方位入门剖析 标准流程创建 AI Bot(进阶推荐) 为 Bot 添加技能:国内版暂时只支持使用“云雀大模型”作为对话引擎,可根据业务需求决定上下文轮数。在 Bot 编排页面的“技能”区域配置所需技能,可选择自动优化插件或自定义添加插件。还可根据需求配置知识库、数据库、工作流等操作,参考相关介绍和实战操作或官方文档学习。 测试 Bot:在“预览与调试”区域测试 Bot 是否按预期工作,可清除对话记录开始新测试,确保能理解用户输入并给出正确回应。
2024-12-29
模型微调怎么解决多轮对话容易受到上轮对话的影响问题
在解决模型微调中多轮对话容易受到上轮对话影响的问题时: 对于多轮对话,现实中常伴随指代问题,如使用“它”“他们”“我们”等代词。若仅依据原始提问检索知识片段,可能导致结果不精确或无法检索到信息。同时,对模型回复内容的限制可能影响多轮对话流畅性甚至中断。 为提升对话系统性能和用户体验,需开发提示词解决多轮对话中的指代消解问题,确保模型能在连续交流中提供准确连贯回答。但由于“指代消解”需多轮对话完成,单次交互无法达成,所以要转换测试形式,先解决“指代消解”问题再进行下一轮答复。 首先准备指代消解所需提示词,这里使用的“指代消解”提示词是用 CoT 写出的思维链,列举不同推理情景,让模型适应并推理出需消解的代词,再根据结果重新组织问题。 接着复现指代消解步骤,如进行第一轮对话,提出问题“尼罗河是什么?”,系统召回相关知识片段并回复,然后开始指代消解。 另外,聊天模型通过一串聊天对话输入并返回生成消息输出。聊天格式虽为多轮对话设计,但对单轮任务也有用。会话通过 messages 参数输入,包含不同角色和内容的消息对象数组。通常会话先有系统消息设定助手行为,再交替使用用户和助手消息。当指令涉及之前消息时,包含聊天历史记录有帮助,若超出模型限制需缩减会话。
2024-11-21
目前字节有哪些可以运用到安全审核业务的大模型?
字节在安全审核业务中可能运用到的大模型包括: 1. Claude2100k 模型,其上下文上限是 100k Tokens,即 100000 个 token。 2. ChatGPT16k 模型,其上下文上限是 16k Tokens,即 16000 个 token。 3. ChatGPT432k 模型,其上下文上限是 32k Tokens,即 32000 个 token。 大模型的相关知识: 1. 大模型中的数字化便于计算机处理,为让计算机理解 Token 之间的联系,需把 Token 表示成稠密矩阵向量,这个过程称为 embedding,常见算法有基于统计的 Word2Vec、GloVe,基于深度网络的 CNN、RNN/LSTM,基于神经网络的 BERT、Doc2Vec 等。 2. 以 Transform 为代表的大模型采用自注意力机制来学习不同 token 之间的依赖关系,生成高质量 embedding。大模型的“大”指用于表达 token 之间关系的参数多,例如 GPT3 拥有 1750 亿参数。 3. 大模型的架构包括 encoderonly(适用于自然语言理解任务,如分类和情感分析,代表模型是 BERT)、encoderdecoder(同时结合 Transformer 架构的 encoder 和 decoder 来理解和生成内容,代表是 google 的 T5)、decoderonly(更擅长自然语言生成任务,典型使用包括故事写作和博客生成,众多 AI 助手基本都来自此架构)。大模型的特点包括预训练数据非常大(往往来自互联网,包括论文、代码、公开网页等,一般用 TB 级数据进行预训练)、参数非常多(如 Open 在 2020 年发布的 GPT3 已达到 170B 的参数)。
2024-12-25
目前字节有哪些可以运用到审核安全业务的ai?
字节在审核安全业务方面可以运用的 AI 包括: 1. OpenAI 的审核(Moderation)Endpoint:可用于检查内容是否符合使用策略,其模型分为 hate(表达、煽动或宣扬基于种族、性别等的仇恨内容)、hate/threatening(仇恨内容且包括对目标群体的暴力或严重伤害)、selfharm(宣扬、鼓励或描绘自残行为)、sexual(旨在引起性兴奋的内容)、sexual/minors(包含未满 18 周岁的个人的色情内容)、violence(宣扬或美化暴力或歌颂他人遭受苦难或羞辱的内容)、violence/graphic(以极端血腥细节描绘死亡、暴力或严重身体伤害的暴力内容)等类别。在监视 OpenAI API 的输入和输出时,可以免费使用审查终结点,但目前不支持监控第三方流量,且对非英语语言的支持有限。 2. 专利审查方面的 AI: 专利趋势分析和预测:AI 可以分析大量的专利数据,识别技术发展趋势和竞争情报,帮助企业和研究机构制定战略决策。示例平台如 Innography、PatSnap。 具体 AI 应用示例: Google Patents:使用 AI 技术进行专利文献的全文检索和分析,提高了专利检索的准确性和效率。 IBM Watson for IP:利用 NLP 和机器学习技术,自动化地进行专利检索、分类和分析,减少了人工工作量,提高了专利审查的效率和准确性。 其他应用: 专利检索与分类:通过自然语言处理(NLP)和机器学习算法,自动识别和分类专利文献。示例平台如 Google Patents、IBM Watson for IP。 专利分析和评估:分析专利文本,评估专利的新颖性和创造性,预测专利的授权可能性。示例平台如 TurboPatent、PatentBot。 自动化专利申请:帮助自动生成专利申请文件,减少人工编写和审查时间。示例平台如 Specifio、PatentPal。 专利图像和图表分析:分析专利申请中的图像和图表,帮助识别和分类技术内容。示例平台如 Aulive、AIpowered image recognition tools。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-12-25
扣子 字节如何创建自己的智能体
以下是在字节的扣子平台创建自己的智能体的步骤: 1. 构思智能体的名字,并为其撰写一段详细的介绍,介绍越详细越好,因为平台会根据介绍智能生成符合主题的图标。 2. 访问扣子官网(https://www.coze.cn/),点击创建 Bot,在对话框中工作空间选择“个人空间”,并为其命名。 3. 可以设置智能体的提示词、使用 AI 创建头像等。 需要注意的是,扣子是字节跳动旗下的 AI 应用开发平台,在这个平台上开发智能体的门槛较低,无论是否有编程基础都可以快速搭建基于 AI 模型的多样化问答 Bot。同时,扣子还提供了丰富的插件、工作流、知识库等功能来增强 Bot 的能力和交互性。
2024-11-23
字节跳动也被曝出在其秘密研发的大模型项目中存在违规调用 OpenAI 的 API ,你如何看待
2023 年下半年,部分声称性能卓越的中国大模型被揭露为“套壳”产品。如李开复创办的“零一万物”被国外开发者质疑为“套壳”产品,其团队承认在训练过程中沿用了开源架构,但强调是为快速起步。12 月,字节跳动被曝出在其秘密研发的大模型项目中调用了 OpenAI 的 API 并使用 ChatGPT 的输出数据来训练自己的模型。OpenAI 反应迅速坚决,暂停相关账号并表示将进一步调查。字节跳动回应称在 2023 年初技术团队在大模型探索初期有部分工程师将 GPT 的 API 服务用于较小模型的实验性项目研究,且自 2023 年 4 月引入调用规范检查后已停止。此外,不仅国内存在此类现象,24 年也有更多被指“套壳”的事件。同时,提示词攻击在业内是公开的秘密,国内外各大著名的 AI 厂商几乎无一幸免,系统提示处于泄露状态,大模型应用脆弱,数据易被获取。
2024-11-03
字节投资的AI公司
以下是字节投资的部分 AI 公司相关信息: 近期热门融资 AI 产品中包括:You.com(多种搜索模式且重隐私的搜索引擎)、Genspark(通过 Sparkpages 来满足用户个性化的搜索需求)、Rockset(刚被 OpenAI 收购的提供实时搜索和分析数据库服务的公司)、Butterflies AI(人类与 AI 共存的社交软件)、MeetRecord(可以对销售通话进行记录和辅导的 AI 助手)。 中国 AI 生态 2023 上半年投资地图中的部分公司有:生数科技(创始人:唐家渝,是全球领先的生成式人工智能基础设施建设者,正积极打造世界领先的可控多模态通用大模型,致力于通过生成式 AI 技术提升全人类的创造力与生产力)、西湖心辰(创始人:蓝振忠,开发的西湖大模型既具备通过跨领域的知识解决问题的超高智商,也具备通过情感感知、长期记忆形成的超高情商)、影眸科技(创始人:吴迪,孵化于上海科技大学,通过与国内顶尖人工智能、计算机视觉实验室合作,积极推动尖端实验室科研成果的民用化、商业化,探索前沿人工智能、计算机视觉技术在大众娱乐市场的推广应用)。
2024-09-06
字节跳动旗下的即梦AI的模型来源是什么?以及它的数据训练库
目前没有关于字节跳动旗下即梦 AI 的模型来源以及数据训练库的准确和详细信息。但一般来说,AI 模型的训练数据可能来自多种来源,如维基百科、书籍、期刊、网络采集的图片/标题等。同时,在训练过程中可能会使用开源架构,并进行原创性的优化和突破。但对于即梦 AI 具体的情况,还需要更多确切的官方公布内容。
2024-08-25
如何对扣子智能体做专属训练
对扣子智能体进行专属训练时,需要注意以下要点: 1. 跳转设置:扣子在节点切换提供了独立和非独立两种识别模式。独立识别模式中每个节点都有一个独立识别模型,非独立模式则直接使用当前智能体模型进行判断,实际使用中推荐独立模式。 2. 独立模式的选择:独立模式有两种选择。第一种是面对通用指令时,选择已经训练好的、专门用于节点切换的大型模型,其优点是经过特定训练,无需额外操心设计。第二种是在遇到非常复杂的情景时,使用自定义的大型模型,可根据需求定制模型和编写特定提示词以适应复杂交互场景,但实际测试效果不理想,所以推荐使用第一种。 3. 关键注意点:在使用专门训练的意图识别模型进行节点切换时,要特别注意两个关键点。一是每个智能体的用途必须清晰明确,在设计和实现时要清楚标注其功能和目的,以确保系统能准确识别和响应用户意图。二是智能体的名称非常重要,应清晰、易于识别,便于系统识别和记忆。
2025-01-27
我想用扣子完成AI数字分身的搭建,应该怎么操作
以下是使用扣子完成 AI 数字分身搭建的步骤: 1. 登录扣子官网(https://www.coze.cn/)并注册。 2. 创建个人 Bot: 点击个人空间。 点击创建 Bot。 填入 Bot 的名字和功能介绍,以及上传或生成对应的头像。如果没想好,可以先随便填,后面可更改。 3. 在搭建生产力工具的过程中,要先深入了解自己的工作内容和需求,做出有针对性的规划。 4. 通过整合知识库,并结合提示词进行情感或行为上的描述,创建一个 Bot,形成自己的数字分身。 5. 构建整个 Flow 时要尽量减少控件使用(非必要不增加),越少的控件代表越少的逻辑,越少的逻辑代表越小的运行风险。 6. 对于复杂的批处理任务,尽量平衡批处理次数和并发,同时还要考虑模型的推理速度,不然会增大推理失败的概率。 需要注意的是,Coze 目前提供的组件,包括 bot 等工具,能满足一些基本的生产力搭建需求。虽然现阶段它还不支持循环等高级功能,但未来有望支持更多工作流的设计模式。自 Coze 推出以来,它已明确面向 C 端用户,这些用户能从中获得实质性好处。
2025-01-24
扣子应用搭建示例
以下是关于扣子应用搭建的相关内容: 白嫖 Groq 平台算力的落地应用: 通过扣子工作流,用代码模块进行 HTTP 访问,实现 0 token 脱离扣子模型来使用 Groq 作为 LLM,可参考梦飞大佬教程将扣子接入微信机器人(有微信封号风险)。 由于 Groq 的 API 与 OpenAI 的 API 几乎兼容,可以适配到任何 APP 产品填 APIKEY 调用的场景,以沉浸式翻译为例。 接入手机类 APP,比如通过快捷方式接入 Siri。 接入扣子工作流:搭建细节可移步 WaytoAGI 自学。建立工作流只需一个代码节点,需配置代码节点的输入引用、输出等。可建立 Bot 调用工作流,但建议不发布,以免代理流量被他人使用。 在扣子调用已有的 API 制作插件: Body:用于传递请求主体部分,GET 方法中通常不用于传递参数。 Path:用于定义请求路径部分,GET 方法中可传递参数,常编码为 URL 一部分。 Query:用于定义请求查询部分,是 GET 方法中常用的参数传递方式。 Header:用于定义 HTTP 请求头信息部分,GET 方法中通常不用于传递参数。配置输出参数,填对后可点击自动解析,调试与校验工具是否能正常运行。 搭建邮票收藏馆应用: 业务背景与逻辑梳理:源于客户需求,功能包括生成邮票、收藏邮票、收藏列表、查看藏品详情,规划了生成和查看两个页面。 页面设计: 第一页:导航栏有应用名称、查看收藏入口、用户头像;陈列展示生成的图片;生成和收藏部分可输入关键字生成并收藏。 第二页:收藏列表会加载用户所有收藏,数量超 100 需优化加翻页;收藏详情可查看大图、关键字、收藏时间。
2025-01-21
扣子工作流设置
扣子工作流设置如下: 在故事与绘本的 AI 应用中: 开始节点输入参数包括 Theme(主题)、Plot(情节)、Characters(角色)、Setting(设定)。 文章生成 LLM 节点输出文章故事。 提取文章关键字节点输出文章关键字,需注意输入文章格式,由代码提取关键字内容,防止因格式问题导致大模型输出时间问题。 关键字优化节点输出有关故事的关键字节点信息,优化方案包括 Photography Theme/Style(摄影主题/风格)等多项内容。 图片生成节点输出内容为图片 URL,要求输出图片内容与提示词内容正相关,输出图片为动漫风格。 利用 AI 批量生成、模仿和复刻《小林漫画》时: 点击工作流后面的“➕”添加工作流,然后点击创建工作流。 给工作流起名字和描述,名字只能用字母、数字和下划线,描述清晰即可。 初始化工作流,左边有各种插件和搭建 Agent 的工具,可点击加号或拖拽使用,插件一般有参数说明。初始化后会生成开始模块和结束模块,且只有一个。 工作流录制了视频可供观看,其中使用 text2image 时需注意 prompt 参数设置。 包括金句创作、提取拆分代码、绘画提示词生成等内容。 在落地应用中: 可通过扣子工作流,用代码模块进行 HTTP 访问,实现 0 token 脱离扣子模型使用 Groq 作为 LLM,也可参考相关教程将扣子接入微信机器人,但有微信封号风险。 Groq 的 API 与 OpenAI 的 API 几乎兼容,可适配到任何 APP 产品填 APIKEY 调用的场景,如沉浸式翻译。 可接入手机类 APP,如通过快捷方式接入 Siri。 接入扣子工作流时,工作流的搭建细节可移步 WaytoAGI 自学,建立工作流只需一个代码节点,需配置输入引用和输出格式,测试工作流保证代码块有正常输出,可建立 Bot 调用工作流,但不建议发布以免代理流量被他人使用。
2025-01-20
扣子工作流教程
以下是一些关于扣子工作流的教程资源: 视频教程: 【Agent 共学第二期】艾木分享|这也许是你一生中第一个 Bot:https://www.bilibili.com/video/BV1XT421i7jH/ 一步一步带你手搓一个 Coze Bot——Dr.Know(极简版 Perplexity):https://www.bilibili.com/video/av1005221752 扣子(coze)系列教程(四):工作流中各节点常用使用方式:https://www.bilibili.com/video/BV1ux4y1J761/ Coze 工作流的手把手教程,让你的 Bot 高质量的处理复杂任务!:https://www.bilibili.com/video/BV1PZ421g7xT/ 微信文章教程: 扣子工作流实战案例教程,手把手教你搭建一个图书管理工作流:https://mp.weixin.qq.com/s/Fh3Vm3EDSzoYVxf91GcMMA 使用扣子 Coze 创建 AI 绘画工作流:https://mp.weixin.qq.com/s/d_6yST8JXKf1Tr6JgBPFg 奶奶也学得会的 AI 工作流,省时省力下班早!:https://mp.weixin.qq.com/s/bXC8DHzs5_OgPh3FtKhJZA 中文 GPTS 使用秘籍,字节扣子 Coze 工作流使用全教程:https://zhuanlan.zhihu.com/p/682108709 Workflow 实践|使用 coze 复现一个 AIGC 信息检索 Bot:https://mp.weixin.qq.com/s/PFgjRq7XcTcqog1gLyFqA AI 自动获取 B 站视频摘要信息:https://mp.weixin.qq.com/s/x8lwvlomhFNLZl__qYuDww 如何用 Coze 制作一个信息检索 Bot(含 Workflow 的基础用法):https://mp.weixin.qq.com/s/Ory8iVXXjjN3zSTcupPm6Q 飞书社区教程: Stuart:教你用 coze 写起点爆款小说《夜无疆》,做到高中生文笔水平:https://waytoagi.feishu.cn/wiki/LRskwrJkli3CgkkY06xcC3HanBh?from=from_copylink Stuart:我把 Coze 比赛第一的 bot 拆了教大家:https://waytoagi.feishu.cn/wiki/Qt8Bwgl3PihQNukO7PjcmeuJnJg?from=from_copylink 画小二:用 Coze 工作流制作行业简报:实战案例画小二日报:https://waytoagi.feishu.cn/wiki/HmIhwt1IkiIAzok73rDcgG7fnQg?from=from_copylink 画小二:Coze 工作流之抖音热门视频转小红书图文详细配置:https://waytoagi.feishu.cn/wiki/MV7gw298TiBajFkSrFeceYRMnXc?from=from_copylink 扣子版虚拟女友李思思的思路:https://waytoagi.feishu.cn/wiki/O9M4w66fxiElylkBkCRcP6jLnsg?from=from_copylink 此外,还有关于白嫖 Groq 平台算力并接入扣子工作流的保姆级教程: 此时我们有了代理服务器和 APIKEY,落地使用方式举例: 1. 通过扣子工作流,用代码模块进行 HTTP 访问,实现 0 token 脱离扣子模型来使用 Groq 作为 LLM,而且可以参考梦飞大佬教程将扣子接入微信机器人(有微信封号风险) 2. 由于 Groq 的 API 与 OpenAI 的 API 几乎兼容,可以适配到任何 APP 产品可以用来填 APIKEY 调用的场景,此处用沉浸式翻译举例(如果还不知道沉浸式翻译这个超级好用的网页翻译工具的,请访问 https://immersivetranslate.com/自行安装) 3. 接入手机类 APP,比如通过快捷方式接入 Siri(此处卖个关子,留着 728 线下切磋赚积分,希望线下小伙伴来找我) 接入扣子工作流: 1. 扣子工作流的搭建细节本篇不详细叙述,请移步 WaytoAGI 自学。 2. 建立工作流,只需要一个代码节点,如下: Copy 以下代码进入代码节点,其中代码节点的输入引用请自行配置为开始节点的用户输入,输出改为“output”,格式为“string” 测试工作流,保证代码块有正常输出(可以看到此处消耗 0 Tokens,白嫖算力成功,在扣子即将收费之际,后续可能可以派上大用处,代替工作流 LLM 节点) 可以建立一个 Bot,来仅仅调用该工作流,建议不要发布,否则你的 Deno 代理流量可能被其他人用。 其他就可以自行发挥了,接入微信等。
2025-01-14
Coze扣子这个智能体搭建平台是什么?能做什么?作为一个非IT专业的普通人,怎么学习用它来创建智能体?学习的路径和步骤
Coze 扣子是一款基于自然语言处理和人工智能技术的智能助手平台,具有以下特点和功能: 1. 提供丰富的插件生态,能帮助用户快速实现个性化的智能应用,无需编写复杂代码。 2. 经过一年多的用户打磨,插件生态和分发渠道对个人用户够用,上手难度不高,信息获取插件丰富。 3. 推出专业版服务,主要特性包括企业级 SLA 保障、高级特性支持(如批量处理、私有数据等)以及更优惠的计费项。 对于非 IT 专业的普通人,学习用它来创建智能体的路径和步骤如下: 1. 体验和了解 Coze 扣子平台的基本功能和操作,熟悉其界面和常用工具。 2. 学习相关的基础知识,例如自然语言处理的基本概念、智能体的工作原理等。 3. 参考平台提供的教程和示例,逐步尝试创建简单的智能体。 4. 加入相关的学习交流群,与其他用户交流经验,共同学习进步。 需要注意的是,目前提示词攻击在业内是公开的秘密,像扣子这样的智能体编排平台,其热门智能体的核心提示词可能会被轻易获取,存在一定的安全风险。
2025-01-12