Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

有哪些高质量 sft 多轮对话数据集

Answer

高质量的SFT(Supervised Fine-Tuning)多轮对话数据集在训练对话系统时至关重要。以下是一些公认的高质量多轮对话数据集:

1. ConvAI2 Dataset

ConvAI2数据集是基于Persona-Chat数据集构建的,用于ConvAI2挑战赛。它包含了多轮对话,且每个对话都有明确的角色和背景信息,有助于训练更具个性化的对话系统。

2. DSTC系列数据集

DSTC(Dialogue State Tracking Challenge)系列数据集是多轮对话系统研究中的经典数据集,涵盖了多种任务和领域,如任务导向对话、对话状态跟踪等。

  • DSTC2: 专注于餐馆预订任务。
  • DSTC3: 扩展了DSTC2,增加了更多的任务和对话状态。
  • DSTC6: 涉及对话行为理解和对话状态跟踪。
  • 链接: DSTC Challenge

3. MultiWOZ Dataset

MultiWOZ(Multi-Domain Wizard of Oz)是一个大规模、多领域任务导向对话数据集,涵盖了多个对话场景,如餐馆预订、酒店预订、出租车预订等。数据集中的对话是由实际用户和客服人员通过Wizard-of-Oz方法生成的,质量较高。

4. Ubuntu Dialogue Corpus

Ubuntu Dialogue Corpus是一个大规模、多轮对话数据集,基于Ubuntu的IRC日志。数据集包含技术支持对话,适用于训练技术支持和问答系统。

5. CoQA Dataset

CoQA(Conversational Question Answering)数据集用于对话式问答系统的训练。数据集中每个对话包含一个给定的文本和相关的问题-回答对。

6. Topical-Chat Dataset

Topical-Chat数据集是微软创建的,用于开发和评估开放领域对话系统。数据集包括不同主题的多轮对话,涉及科技、娱乐、体育等多个领域。

7. Persona-Chat Dataset

Persona-Chat数据集包含多轮对话,每个对话参与者都有预定义的个人信息或“persona”,旨在开发更具个性化和情感的对话系统。

总结

这些数据集覆盖了多种对话场景和任务类型,是开发高质量对话系统的重要资源。在使用这些数据集进行训练时,可以结合具体的应用场景和需求,选择合适的数据集进行SFT。

Content generated by AI large model, please carefully verify (powered by aily)

References

LLM开源中文大语言模型及数据集集合

项目介绍:清洗/构造/翻译中文的ChatGPT数据,推进国内AI的发展,人人可炼优质中文Chat模型。本数据集为ChatGPT约九万个对话数据,由ShareGPT API获得(英文68000,中文11000条,其他各国语言)。项目所有数据最终将以CC0协议并入Multilingual Share GPT语料库。Guanaco地址:[https://huggingface.co/datasets/JosephusCheung/GuanacoDataset](https://huggingface.co/datasets/JosephusCheung/GuanacoDataset)数据集说明:一个使用Self-Instruct的主要包含中日英德的多语言指令微调数据集。chatgpt-corpus地址:[https://github.com/PlexPt/chatgpt-corpus](https://github.com/PlexPt/chatgpt-corpus)数据集说明:开源了由ChatGPT3.5生成的300万自问自答数据,包括多个领域,可用于用于训练大模型。SmileConv地址:[https://github.com/qiuhuachuan/smile](https://github.com/qiuhuachuan/smile)数据集说明:数据集通过ChatGPT改写真实的心理互助QA为多轮的心理健康支持多轮对话(single-turn to multi-turn inclusive language expansion via ChatGPT),该数据集含有56k个多轮对话,其对话主题、词汇和篇章语义更加丰富多样,更加符合在长程多轮对话的应用场景。

(3)ChatBot是怎么炼成的?

MOSS中文名为小苔藓,是上海复旦大学计算机系的类ChatGPT开源模型,也完整经过了SFT和PM阶段,但是PPO阶段使用了另外一种更加简单的方式。数据搜集如前文所说,对话数据的质量是调教ChatBot非常重要的因素,这里MOSS充分借助了ChatGPT的能力,协助生成instruction和conversation,如下所示用户提问instruction。人工写好符合HHH(helpfulness,harmlessness,and honesty)原则的种子问题,然后使用self-instrcution让ChatGPT进行扩展,得到更多的符合HHH的instruction多伦对话conversation。写一个prompt模板,输入由下面3部分组成,喂入ChatGPT,搜集输出结果,和输入拼接在一起,形成完整的多轮对话第一部分:介绍背景,描述是一个Human和AI的对话,让ChatGPT模拟这个对话第二部分:约束Human和AI的对话符合HHH原则第三部分:把上面经过self-instrcution生成的大量instruction作为对话初始状态经过上面的过程,就可以得到若干多伦对话conversation训练数据,将其切分为SFT和PM两部分,分别在对应的阶段使用。SFT&PM阶段训练方法跟InstructGPT和Anthropic差不多PPO阶段MOSS里首先列举了一下当得到了SFT和RM之后,如何进一步提高ChatBot表现的几种方法

LLM开源中文大语言模型及数据集集合

XrayGLM,首个会看胸部X光片的中文多模态医学大模型:地址:[https://github.com/WangRongsheng/XrayGLM](https://github.com/WangRongsheng/XrayGLM)简介:该项目为促进中文领域医学多模态大模型的研究发展,发布了XrayGLM数据集及模型,其在医学影像诊断和多轮交互对话上显示出了非凡的潜力。MeChat,中文心理健康支持对话大模型:地址:[https://github.com/qiuhuachuan/smile](https://github.com/qiuhuachuan/smile)简介:该项目开源的中文心理健康支持通用模型由ChatGLM-6B LoRA 16-bit指令微调得到。数据集通过调用gpt-3.5-turbo API扩展真实的心理互助QA为多轮的心理健康支持多轮对话,提高了通用语言大模型在心理健康支持领域的表现,更加符合在长程多轮对话的应用场景。MedicalGPT地址:[https://github.com/shibing624/MedicalGPT](https://github.com/shibing624/MedicalGPT)简介:训练医疗大模型,实现包括二次预训练、有监督微调、奖励建模、强化学习训练。发布中文医疗LoRA模型shibing624/ziya-llama-13b-medical-lora,基于Ziya-LLaMA-13B-v1模型,SFT微调了一版医疗模型,医疗问答效果有提升,发布微调后的LoRA权重。

Others are asking
AI SFT 是什么
AI SFT 即监督微调(Supervised Finetuning)。它是一种在人工智能领域中的技术。例如在自然语言处理中,通过使用有监督的数据对预训练的模型进行微调,以使其更好地适应特定的任务和领域。在一些研究和应用中,如会话式医疗诊断人工智能应用 AMIE 中,SFT 被用于弥补真实世界数据样本的充分性、全面性、深刻性和洞察性。同时,在 Transformer 等模型的发展和应用中,SFT 也发挥着重要作用。
2025-02-05
sft是什么意思
“SFT”可能有多种含义。在音乐领域,它可能指某种特定的音乐风格,如“Swift”指快速和敏捷的音乐风格,常用于表现快速和敏捷的情感,如 Taylor Swift 的《Shake It Off》;“Swirling”指旋转和流动的音乐风格;“Swooning”指陶醉和倾倒的音乐风格;“Syllabic”指音节和节奏的音乐风格;“Symbiotic”指共生和互助的音乐风格。 在语音处理方面,“SFT”可能指短时傅里叶变换(Shorttime Fourier Transform,STFT)。语音通常是短时平稳信号,在进行傅里叶变换前一般要进行分帧,取音频的小片段进行短时傅里叶变换。其结果是一个复数,包括幅度和相位信息。能量频谱是振幅频谱的平方,通过对频域信号进行逆傅里叶变换可恢复时域信号。离散傅里叶变换计算复杂度高,可采用快速傅里叶变换简化。在实际应用中,对语音信号分帧加窗处理,视为短时傅里叶变换。
2024-11-17
如何利用多轮对话做Agent问答
利用多轮对话做 Agent 问答可以从以下几个方面考虑: 1. 从产品角度: 思考用户为何想使用,例如通过探索历史新闻让用户更好地了解自身背景、成长环境,从中学习成长并获得有趣互动体验。 明确 Agent 是谁及其性格,比如设定为知识渊博、温暖亲切、富有同情心的历史新闻探索向导,负责新闻解析和历史背景分析。 确定提供新闻的时间,如用户出生那天及那一周的重要新闻事件。 规划除新闻外的能力,如提供历史背景分析、相关画作、生活方式分析,甚至加入神秘主义者和心理学家角色回应用户。 设计多 Agent 出场顺序和使用方式,通过多角色互动设计,让用户体验多层次对话,从基本问答到深度讨论,逐步引导用户探索。 2. 基于 LLM 的大脑模块: 自然语言交互方面:LLM 应具备多轮对话能力,能理解自然语言并生成连贯、上下文相关的回复,还应具备出色的生成能力和意图理解能力,但要注意模糊指令可能带来的挑战。 知识方面:包括语言知识(词法、句法、语义学和语用学)、常识知识(如药和伞的用途)、专业领域知识(如编程、医学),但要注意知识可能过时或错误,需通过重新训练或编辑 LLM 解决。 记忆方面:具备记忆机制,存储过去的观察、思考和行动,通过提高输入长度限制、记忆总结、用向量或数据结构压缩记忆等策略提升记忆,Agent 能检索记忆以访问相关信息,包括自动检索和交互式记忆对象。 推理和规划方面:基于证据和逻辑进行推理,这对解决问题和决策至关重要。
2025-01-08
多轮对话怎么做
多轮对话的实现方式如下: 1. 核心思路是让 AI 和您对目标的理解达成共识,保持一致,然后再开始创作,这样能增加创作的可控性。比如通过对生成图像的理解诱导和迭代来实现。 2. 有效的部分包括: 约束的弹性,在探索阶段给 AI 一定自由空间,而 prompt 一般是强约束的,更适合确定性的目标或者用于总结阶段。 情绪,情绪化能局部提升 AI 效能。 共识,您的理解和 AI 的理解要高度一致,在高共识性的背景下,调整和控制会更有效。 3. 注意事项: 如果经历很多轮的对话,可能会导致此次对话超过模型的 token 限制,ChatGPT 会遗忘之前的内容。建议当经历多轮对话后,可以新建一个聊天窗口,把完整的代码和需求背景输入给 ChatGPT,重新开启新的提问。 在自然的人类语言交流中,多轮对话常常伴随着指代问题的产生。为了提升对话系统的性能和用户体验,需要开发提示词来解决多轮对话中的指代消解问题,并确保模型能够在连续的交流中提供准确、连贯的回答。由于“指代消解”需要多轮对话来完成,单次交互无法达成,所以需要将测试形式进行转换,先解决“指代消解”的问题,然后再进行下一轮答复。
2025-01-07
单轮对话与多轮对话调用
单轮对话与多轮对话调用: 聊天模型通过一串聊天对话作为输入,并返回一个模型生成的消息作为输出。尽管聊天格式的设计是为了多轮对话更简单,但它对于没有任何对话的单轮任务同样有用(例如以前由 textdavinci003 等指令遵循模型提供的任务)。 API 调用的例子中,messages 参数是主要的输入,必须是一个消息对象的数组,每个对象拥有一个 role(“system”“user”或“assistant”)和 content(消息的内容)。会话可以少至 1 条消息或者有许多条。通常,会话首先使用系统消息格式化,然后交替使用用户消息和助手消息。系统消息有助于设定助手的行为,用户消息帮助指示助手,助手消息用于存储之前的响应。当用户的指令是关于之前的消息时,包含聊天历史记录将有所帮助。如果会话包含的 token 超出了模型的限制,则需要用一些方法去缩减会话。 百炼相关 Q&A: 如何调用工作流?在提示词写了让大模型调用 xxx 工作流,但实际总是不调用。文档里也没有写调用方式。 如何把开始节点的输入参数直接接入到代码节点中进行处理? 千问模型基本不能处理标点符号,在提示词中各种要求句尾不要有句号,可仍旧有。甚至在工作流中用代码去掉后,回到应用中又给加上了标点符号。同样的提示词,放在扣子中就可以去掉标点符号。 记得第一天提到,规定模型不能用搜索和投喂输出文本。比赛是不是只限在提示词调试的范围内呢? 为什么同样的问题,给出的答案区别这么大?接的就是同一个应用,这个问题很早就预测过了,同一个模型。 无论 prompt 怎么变,模型生成完内容后,自动被“不生成任何的标点符号”所替换。这个情况在 max。 COW 调用百炼应用如何支持多轮对话么?
2025-01-06
单轮对话与多轮对话调用
聊天模型通过一串聊天对话作为输入,并返回一个模型生成的消息作为输出。尽管聊天格式的设计是为了多轮对话更简单,但它对于没有任何对话的单轮任务同样有用(例如以前由 textdavinci003 等指令遵循模型提供的任务)。 API 调用的例子中,messages 参数是主要的输入,必须是一个消息对象的数组,每个对象拥有一个 role(“system”“user”或“assistant”)和 content(消息的内容)。会话可以少至 1 条消息或者有许多条。通常,会话首先使用系统消息(“system”)格式化,然后交替使用用户消息(“user”)和助手消息(“assistant”)。系统消息有助于设定助手的行为,用户消息帮助指示助手,助手消息用于存储之前的响应。当用户的指令是关于之前的消息时,包含聊天历史记录将有所帮助。如果会话包含的 token 超出了模型的限制,则需要用一些方法去缩减会话。 此外,还存在一些与百炼相关的 Q&A: 如何调用工作流?在提示词写了让大模型调用 xxx 工作流,但实际总是不调用。文档里也没有写调用方式。 如何把开始节点的输入参数直接接入到代码节点中进行处理? 千问模型基本不能处理标点符号,在提示词中各种要求句尾不要有句号,可仍旧有。甚至在工作流中用代码去掉后,回到应用中又给加上了标点符号。同样的提示词,放在扣子中就可以去掉标点符号。 为什么同样的问题,给出的答案区别这么大?接的就是同一个应用,这个问题很早就预测过了,同一个模型。 无论 prompt 怎么变,模型生成完内容后,自动被“不生成任何的标点符号”所替换。这个情况在 max。 COW 调用百炼应用如何支持多轮对话么?
2025-01-06
如何优化ai对话脚本和逻辑(多轮对话测试提升ai上下文理解)
以下是优化 AI 对话脚本和逻辑(多轮对话测试提升 AI 上下文理解)的方法: 1. 样例驱动的渐进式引导法 评估样例,尝试提炼模板:独自产出高质量样例较难,可借助擅长扮演专家角色的 AI 改进初始正向样例,如使用 Claude 3.5 进行对话,输入初始指令,通过其回复侧面印证对样例的理解与建议。 多轮反馈,直至达到预期:AI 可能犯错输出要求外内容,需多轮对话引导,使其不断修正理解,直至达成共识。 用例测试,看看 AI 是否真正理解:找 13 个用例,让 AI 根据模板生成知识卡片,根据结果验证是否符合预期,不符合则继续探讨调整。用例测试和多轮反馈步骤灵活,可根据需要自由反馈调整。 2. Coze 全方位入门剖析 标准流程创建 AI Bot(进阶推荐) 为 Bot 添加技能:国内版暂时只支持使用“云雀大模型”作为对话引擎,可根据业务需求决定上下文轮数。在 Bot 编排页面的“技能”区域配置所需技能,可选择自动优化插件或自定义添加插件。还可根据需求配置知识库、数据库、工作流等操作,参考相关介绍和实战操作或官方文档学习。 测试 Bot:在“预览与调试”区域测试 Bot 是否按预期工作,可清除对话记录开始新测试,确保能理解用户输入并给出正确回应。
2024-12-29
模型微调怎么解决多轮对话容易受到上轮对话的影响问题
在解决模型微调中多轮对话容易受到上轮对话影响的问题时: 对于多轮对话,现实中常伴随指代问题,如使用“它”“他们”“我们”等代词。若仅依据原始提问检索知识片段,可能导致结果不精确或无法检索到信息。同时,对模型回复内容的限制可能影响多轮对话流畅性甚至中断。 为提升对话系统性能和用户体验,需开发提示词解决多轮对话中的指代消解问题,确保模型能在连续交流中提供准确连贯回答。但由于“指代消解”需多轮对话完成,单次交互无法达成,所以要转换测试形式,先解决“指代消解”问题再进行下一轮答复。 首先准备指代消解所需提示词,这里使用的“指代消解”提示词是用 CoT 写出的思维链,列举不同推理情景,让模型适应并推理出需消解的代词,再根据结果重新组织问题。 接着复现指代消解步骤,如进行第一轮对话,提出问题“尼罗河是什么?”,系统召回相关知识片段并回复,然后开始指代消解。 另外,聊天模型通过一串聊天对话输入并返回生成消息输出。聊天格式虽为多轮对话设计,但对单轮任务也有用。会话通过 messages 参数输入,包含不同角色和内容的消息对象数组。通常会话先有系统消息设定助手行为,再交替使用用户和助手消息。当指令涉及之前消息时,包含聊天历史记录有帮助,若超出模型限制需缩减会话。
2024-11-21
我想要学习coze等智能体 你可以给我推荐高质量的免费课程吗
以下是为您推荐的学习 Coze 智能体的高质量免费课程: 通识篇: 现有常见 AI 工具小白扫盲: AI 常见名词、缩写解释: 基础教程: 大圣:胎教级教程:万字长文带你使用 Coze 打造企业级知识库: 大聪明:保姆级教程:Coze 打工你躺平: 安仔:Coze 全方位入门剖析 免费打造自己的 AI Agent 基础教程:Coze“图像流”抢先体验: YoYo:Coze 图像流小技巧:探索视觉艺术的隐藏宝藏: 【智能体】让 Coze 智能体机器人连上微信和微信群详细配置文档: 【智能体搭建共学课】一步步教你玩转 Coze 智能体,新手 0 门槛教学特邀讲师:元子:[https://www.bilibili.com/video/BV1mXqGY1EwJ/?spm_id_from=333.999.0.0&vd_source=84aaf5d504fda49d36287bb4930a47a2)(1 小时 32 分开始)
2025-02-08
我能否借助开源社区力量构建高质量的 AI 数字人
您可以借助开源社区力量构建高质量的 AI 数字人。 构建数字人的躯壳有多种方式: 1. 2D 引擎:风格偏向二次元,亲和力强,定制化成本低,代表是 Live2D Cubism。 2. 3D 引擎:风格偏向超写实的人物建模,拟真程度高,定制化成本高,代表是 UE、Unity、虚幻引擎 MetaHuman 等,但个人学习在电脑配置和学习难度上有一定门槛。 3. AIGC:省去建模流程直接生成数字人的展示图片,但存在算法生成的数字人很难保持 ID 一致性、帧与帧连贯性差等弊端。如果对人物模型真实度要求不高,可以使用,典型项目有 wav2lip、videoretalking 等。AIGC 还有直接生成 2D/3D 引擎模型的方向,但仍在探索中。 构建数字人的灵魂需要注意以下几个工程关键点: 1. AI Agent:要让数字人像人一样思考就需要写一个像人一样的 Agent,工程实现所需的记忆模块、工作流模块、各种工具调用模块的构建都是挑战。 2. 驱动躯壳的实现:灵魂部分通过定义接口由躯壳部分通过 API 调用,调用方式可以是 HTTP、webSocket 等。但包含情绪的语音表达以及如何保证躯壳的口型、表情、动作和语音的同步及匹配,目前主流方案只能做到预设一些表情动作,再做一些逻辑判断来播放预设,语音驱动口型相对成熟但闭源。 3. 实时性:由于算法部分组成庞大,几乎不能实现单机部署,特别是大模型部分,所以算法一般会部署到额外的集群或者调用提供出来的 API,这里面就会涉及到网络耗时和模型推理耗时,如果响应太慢就会体验很差,所以低延时也是亟需解决的一个问题。 4. 多元跨模态:不仅仅是语音交互,还可以通过添加摄像头数据获取数据,再通过系列 CV 算法做图像解析等。 5. 拟人化场景:正常和人交流时不是线性对话,会有插话、转移话题等情况,这些情景需要通过工程丝滑处理。 如果都要自建代码实现各模块,开发工作量巨大,迭代难度也很高,对于个人开发者来讲不现实。因此推荐借助开源社区的力量,现在开源社区已经有了像 dify、fastgpt 等等成熟的高质量 AI 编排框架,它们有大量的开源工作者维护,集成各种主流的模型供应商、工具以及算法实现等等。我们可以通过这些框架快速编排出自己的 AI Agent,赋予数字人灵魂。在笔者的开源项目中,使用了 dify 的框架,利用其编排和可视化交互任意修改流程,构造不同的 AI Agent,并且实现相对复杂的功能,比如知识库的搭建、工具的使用等都无需任何的编码和重新部署工作。同时 Dify 的 API 暴露了 audiototext 和 texttoaudio 两个接口,基于这个两个接口就可以将数字人的语音识别和语音生成都交由 Dify 控制,从而低门槛做出来自己高度定制化的数字人。具体的部署过程参考 B 站视频:https://www.bilibili.com/video/BV1kZWvesE25 。如果有更加高度定制的模型,也可以在 Dify 中接入 XInference 等模型管理平台,然后部署自己的模型。此外,数字人 GUI 工程中仍然保留了 LLM、ASR、TTS、Agent 等多个模块,能够保持更好的扩展,比如实现更加真实性感的语音转换、或者如果有更加 Geek 的 Agent 实现也可以选择直接后端编码扩展实现。 使用 Dify 接口需要注意: 1. 必须在应用编排功能中打开文字转语音和语音转文字功能,否则接口会返回未使能的错误。 2. 只有接入了支持 TTS 和 SPEECH2TEXT 的模型供应商,才会在功能板块中展示出来,Dify 的模型供应商图标下标签有展示该供应商支持哪些功能,这里可以自行选择自己方便使用的。对于 TTS,不同的模型供应商支持的语音人物不同,可以根据个人喜好添加。
2025-01-21
如何高质量的提问AI
以下是关于如何高质量提问 AI 的一些建议: 1. 针对具体任务进行环节拆分:例如在使用 AI 进行数据分析时,将数据清洗、提取、模型选择、训练和结果解释等环节分开处理,便于优化性能和发现修正问题。 2. 逐步深化和细化问题:对于复杂问题,先提出宽泛问题,再根据回答进一步细化或深化,如处理知识产权侵权案件时,先问被告是否侵权,再根据回答追问侵权类型和程度。 3. 提供参考和学习内容:包括详细操作指南、行业最佳实践、案例研究等,并编写详细流程和知识(knowhow),如自动化文档处理中编写处理不同类型文档的指南。 4. 利用专业领域术语引导:在 Prompt 中使用法律术语引导 AI 回答方向,如处理合同纠纷时提示从特定方面分析合同履行情况。 5. 验证与反馈:大模型语料有滞后性,使用 AI 回答后要交叉验证确保准确性,同时结合自身专业知识筛选判断,确保符合法律伦理等。 6. 总结核心观点和注意事项:用简洁明了语言概括,如提供法律建议时可总结出核心观点和注意事项,并使用特定连接词组织 Prompt。 7. 设定角色和任务目标:赋予 AI 明确的角色和任务目标,如专注于民商事法律领域且擅长特定方面的律师,以提升工作效率。 8. 讲清楚背景和目的:提问时梳理清楚背景信息和目的,如处理交通事故案件时说明案件事实和法规,帮助 AI 理解上下文提高准确性。 9. 学会提问:使用清晰具体语言,避免模糊表述,了解 AI 工作原理和限制,设计能提供有用答案的问题。 10. 拆解环节、切分流程:应用 AI 前细致拆解工作流程,将复杂任务分解为更小更具体环节,使 AI 执行更精确。 此外,FastGPT 是一个功能强大、易于使用的知识库问答系统,基于 LLM 技术,能理解自然语言并生成高质量答案,支持连接外部知识库获取更全面信息,有可视化工作流编排工具方便创建复杂问答场景,具备开箱即用的数据处理和模型调用功能方便快速上手,可帮助企业构建智能客服、知识库搜索、文档生成等应用。相关资源有:。但请注意内容由 AI 大模型生成,请仔细甄别。
2025-01-20
我想用AI做高质量高清图片,我应该怎么做
如果您想用 AI 做高质量高清图片,可以参考以下方法: 1. 了解默认分辨率:在 Stable Diffusion 中,AI 出图的默认分辨率为 512x512,用于商业通常不够。 2. 注意初始分辨率:初始分辨率不宜过高,例如 1600x840 的分辨率可能导致出图时间长和构图问题。 3. 运用高清修复:在文生图功能中有内置的高清修复(HiresFix)功能。将初始分辨率设置为 800x420 时,选择放大倍率为 2,可将分辨率放大至 1600x840。理论上放大倍率越高图片越清晰,但受电脑配置和显卡显存影响。放大算法如 RESRGAN 4x+Anime6B 常用于二次元绘图,写实类风格可选择 RESRGAN 4x+。 4. 固定图片种子值:先以 800x420 画一张图,获取其种子值并填入随机数种子以固定图片。 5. 底图制作:对于游戏截图升级为高质量图片,可在游戏内直接截图作为图生图的底层素材。为使底图清晰、拍摄自由,在 UE4 引擎游戏中可使用常用调整画质代码,如 r.ViewDistanceScale 10、r.ForceLOD 0、foliage.LODDistanceScale 10 等,并通过 ToggleDebugCamera 实现自由相机,使用 HighResShot 1920X1080(尺寸可调节)进行高品质截图。 通过这些技巧,您就可以得到足以商用的高清图片素材。
2024-12-25
AI提示词怎么写才能让AI的回答更高质量
以下是一些写 AI 提示词以获得更高质量回答的方法: 1. 明确具体的描述:使用更具体、细节的词语和短语,避免过于笼统。 2. 添加视觉参考:在提示词中插入相关图片参考,提高 AI 理解意图和细节要求的能力。 3. 注意语气和情感:根据需求,用合适的形容词、语气词等调整整体语气和情感色彩。 4. 优化关键词组合:尝试不同的关键词搭配和语序,找到最准确表达需求的描述方式。 5. 增加约束条件:添加限制性条件,如分辨率、比例等,避免意外输出。 6. 分步骤构建提示词:将复杂需求拆解为逐步的子提示词,引导 AI 先生成基本结构,再逐步完善。 7. 参考优秀案例:研究流行且有效的提示词范例,借鉴写作技巧和模式。 8. 反复试验、迭代优化:通过多次尝试不同写法,并根据输出效果反馈持续优化完善。 在商业化问答场景中,提示词的作用是告诉全知全能的大语言模型,它是一个什么样的角色、要专注于哪些技能,让其按照您的想法变成所需的“员工”。例如设定角色为“美嘉”,按照其人设、背景和对话风格做设定。 此外,还有一些优化提示词的技术和成果,如通过链式思维等技术自动改进提示词,提升回答质量,具有示例增强、标准化、提示重写、预填充内容等功能特点,能显著提高模型的易读性和准确性,测试显示多标签分类准确率提升 30%,摘要任务可完全遵循字数要求。若提示缺少示例,Claude 还会自动生成合成示例,简化提示构建过程。
2024-12-03
有没有可以根据我的需求,自动生成搜索高质量query的prompt
以下是为您整理的关于自动生成搜索高质量 query 的 prompt 的相关内容: 1. JackeyLiu (JK): 作为 ChatGPT 的深度用户,为节省每次构建 Prompt 的力气,打算写一个基于初始问题自动生成优质 Prompt 的 Prompt。其构建 Prompt 的方法论来自于。 2. 做调研: 生成调研报告的 prompt 构建过程艰难,经过多次尝试和迭代,包括试用 webpolit 和 web browsing 等,最终在群里大佬的建议下,通过在需要搜索网络信息的章节处打上标签让 GPT4 自主搜索信息来生成内容,并选择使用 webpolit 插件,放弃了 web browsing 模式,完成了调研报告的 prompt。且在解决问题前,用前几版 prompt 帮团队和同学完成了 3 篇调研报告。 3. 生成式 AI:下一个消费者平台: 这种根据特定需求生成策划过的选项列表的搜索方式在产品推荐方面有价值,例如为特定的宠物推荐狗粮或特定条件下推荐服装。在企业内部搜索应用中也有巨大潜力,如允许用户查询视频会议记录。
2024-08-09
怎么让AI识别对话,并生成结构化数据存储到我的软件系统里
要让 AI 识别对话并生成结构化数据存储到软件系统里,可以参考以下方法: 1. 基于结构化数据来 RAG:如果原始数据本身就是结构化、标签化的,不必将这部分数据做向量化。结构化数据的特点是特征和属性明确,可用有限标签集描述,能用标准查询语言检索。以餐饮生活助手为例,流程包括用户提问、LLM 提取核心信息并形成标准查询、查询结构化数据、LLM 整合回复。 2. 利用 Coze 平台设计 AI 机器人:创建好 Bot 后,从“个人空间”入口找到机器人,进行“编排”设计。Coze 平台常用的概念和功能包括提示词(设定 Bot 身份和目标)、插件(通过 API 连接集成服务)、工作流(设计多步骤任务)、触发器(创建定时任务)、记忆库(保留对话细节,支持外部知识库)、变量(保存用户个人信息)、数据库(存储和管理结构化数据)、长期记忆(总结聊天对话内容)。设计 Bot 时要先确定目的,比如“AI 前线”Bot 的目的是作为 AI 学习助手,帮助职场专业人士提升在人工智能领域的知识和技能,并提供高效站内信息检索服务。 注:Coze 官方使用指南见链接:https://www.coze.cn/docs/guides/welcome ,遇到疑问也可查阅该指南。
2025-02-18
通过飞书机器人与 Coze 搭建的智能体进行对话
通过飞书机器人与 Coze 搭建智能体进行对话,实现跨平台的稍后读收集与智能阅读计划推荐,具体步骤如下: 1. 前期准备: 设计 AI 稍后读助手的方案思路,包括简化“收集”(实现跨平台收集功能,支持电脑(web 端)、安卓、iOS 多端操作,输入 URL 完成收集,借鉴微信文件传输助手通过聊天窗口输入)、自动化“整理入库”(自动整理每条内容的关键信息,支持跨平台查看)、智能“选择”推荐(根据收藏记录和阅读兴趣生成阅读计划)。 2. 逐步搭建 AI 智能体: 经过配置得到两个可用工作流(整理入库、选择内容),将其编排为完整智能体。 配置过程包括创建 Bot、填写 Bot 介绍、切换模型为“通义千问”、把工作流添加到 Bot 中、新增变量{{app_token}}、添加外层 bot 提示词,完成后可在「预览与调试」窗口与智能体对话并使用全部功能。
2025-02-16
豆包、DeepSeek、ChatGPT分别有些什么功能用于解决用户整理对话的需求
以下是豆包、DeepSeek、ChatGPT 在解决用户整理对话需求方面的功能: ChatGPT: 1. 内容生成:可以生成文章、故事、诗歌、歌词等内容。 2. 聊天机器人:作为聊天机器人的后端,提供自然的对话体验。 3. 问答系统:为用户提供准确的答案。 4. 文本摘要:生成文本的摘要或概述。 5. 机器翻译:在这方面有不错的表现。 6. 群聊总结:能够对群聊内容进行总结。 7. 代码生成:生成代码片段,帮助开发者解决编程问题。 8. 教育:帮助学生解答问题或提供学习材料。 9. 浏览器插件:如 webpilot 。 10. PDF 对话:通过相关网站实现与 PDF 的对话。 11. PPT 生成:协助高效制作 PPT 。 12. 音视频提取总结:通过特定网站进行总结。 13. 播客总结:通过特定网站完成总结。 14. 生成脑图:通过相关网站生成。 关于豆包和 DeepSeek 在解决用户整理对话需求方面的功能,上述内容中未提及。
2025-02-13
与deepseek高效对话的五个黄金法则
以下是与 Deepseek 高效对话的五个黄金法则: 1. 像教实习生:别指望它读心术,要给明确“操作手册”。 亮身份(就像相亲自我介绍):说清角色(新人/专家)、处境(紧急任务/长期规划)、特殊需求(老板的喜好/公司制度)。例如,错误示范是“帮我写个方案”,正确示范是“我是刚入职的行政专员,要给 50 人团队策划元旦团建,预算人均 200 元”。 派任务(像教小朋友做家务):明确要做什么、范围多大、重点在哪、要几个结果。例如,错误示范是“分析下市场”,正确示范是“请对比蜜雪冰城和茶百道最近 3 个月的新品策略,找出年轻人最爱的 3 个创新点”。 立规矩(像点菜提要求):包括时间限制、资源条件、雷区预警、特殊偏好。例如,请 AI 当健身教练,正确示范是“我是 996 上班族,每天最多锻炼 30 分钟,家里只有瑜伽垫,帮我制定减脂计划,不要深蹲伤膝盖”。 定格式(像下单选规格):根据需求选择文档类(PPT 页数、报告部分)、数据类(表格或图表)、创意类(小红书风格或知乎体)等格式。例如,做会议纪要,正确示范是“用表格呈现,左边列讨论主题,右边分决策事项/负责人/截止时间三栏,最后用红色标出待确认事项”。 2. 像拼乐高:复杂任务拆成小模块,逐个击破。 3. 像打乒乓球:有来有往多回合,好答案都是改出来的。 4. 下次和 AI 对话前,先花 30 秒填这个 checklist: 我说清自己身份了吗? 任务目标够具体吗? 特殊要求列全了吗? 要什么格式交代了吗? 留好修改的余地了吗? 5. 一个提示词,让 DeepSeek 的能力更上一层楼: 效果对比:用 Coze 做了个小测试,大家可以对比看看。 如何使用: 搜索 www.deepseek.com,点击“开始对话”。 将装有提示词的代码发给 Deepseek。 认真阅读开场白之后,正式开始对话。 设计思路: 将 Agent 封装成 Prompt,将 Prompt 储存在文件,保证最低成本的人人可用的同时,减轻自己的调试负担。 通过提示词文件,让 DeepSeek 实现同时使用联网功能和深度思考功能。 在模型默认能力的基础上优化输出质量,并通过思考减轻 AI 味,增加可读性。 照猫画虎参考大模型的 temperature 设计了阈值系统,但是可能形式大于实质,之后根据反馈可能会修改。 用 XML 来进行更为规范的设定,而不是用 Lisp(对我来说有难度)和 Markdown(运行下来似乎不是很稳定)。 完整提示词。 特别鸣谢:李继刚的【思考的七把武器】在前期为提供了很多思考方向;Thinking Claude 是项目最喜欢使用的 Claude 提示词,也是设计 HiDeepSeek 的灵感来源;Claude 3.5 Sonnet 是最得力的助手。 掌握这套方法,您会突然发现:原来 AI 这么听话!从此刻开始,告别无效对话,让您的每个问题都换来实实在在的干货。
2025-02-13
怎么与多个pdf进行对话
要与多个 PDF 进行对话,可以考虑使用以下方法和工具: 1. ChatDOC:这是一个 AI 文档阅读助手,能够在数秒内总结长文档、解释复杂概念和查找关键信息。它具有以下优势: 可靠性和准确性高,在所有 ChatPDF 类产品中居首。 精通表格理解,选择表格或文本可立即获取详细信息。 支持多文档对话,不受每个文档页数限制。 每个回答均可溯源至原文,有原文档中的直接引用支持。 支持多种文档类型,包括扫描件、ePub、HTML 和 docx 格式文档。 2. AskYourPDF Research Assistant:可以与多个文件聊天,生成带有引文的文章,分析和生成论文的参考文献,创建文件的知识库并与之交互等。 在进行互动式问答时,需要注意以下几点: 1. 对于更新的数据或最新出版的书籍、报告和文件,ChatGPT 的知识库可能无法提供答案。 2. 如果有现成的 PDF,建议通过 CHATDOC 网站进行互动式问答。 3. 提问时应遵循一定的模板,例如: 输入信息:向 ChatGPT 提供要查询的书籍、报告或文件的详细信息,包括书籍的书名、作者、出版日期、出版社,报告的时间、主题,文件的名称等,提供越详细越能获得准确答案。 提出问题:例如询问书籍中提到的某些方面、原则、方法,报告中行业的增长趋势,对报告或书籍的概括、主要观点等。
2025-02-11
什么工具能实现和多个pdf或word文档对话
以下工具可以实现和多个 PDF 或 Word 文档对话: 1. ChatDOC(海外官网:chatdoc.com):是一个 AI 文档阅读助手,能在数秒内总结长文档、解释复杂概念和查找关键信息。在可靠性和准确性方面,它在所有 ChatPDF 类产品中居首。其优势包括精通表格理解、多文档对话、每个回答均可溯源至原文,还支持多种文档类型,如扫描件、ePub、HTML 和 docx 格式文档。 2. IncarnaMind:是一个可以使用大型语言模型(如 GPT)与个人文档(PDF、TXT)进行聊天的工具。它通过滑动窗口分块机制和检索器,能高效查询细粒度和粗粒度信息,支持多文档查询和稳定的解析,还具有自适应分块、多文档对话问答、文件兼容性和模型兼容性等特点。
2025-02-11