Navigate to WaytoAGI Wiki →
Home/question.detail.breadcrumb.questionList/question.detail.breadcrumb.questionDetail

Google搜索 多步推理

Answer

谷歌在 I/O 发布会上宣布了一系列搜索产品的更新,包括 AI Overviews、多步骤推理能力、视频提问、提前计划、AI 组织的搜索结果等功能。此外,谷歌还在 Workspace(Gmail)、谷歌文档、谷歌表格、Google Photos 和 Circle to Search 等应用中集成了生成式人工智能技术,以提高用户的使用体验。

Content generated by AI large model, please carefully verify (powered by aily)

References

AIGC Weekly #72

谷歌搜索的更新:1.AI Overviews:今天将开始向美国所有人推出,很将能够通过选项调整AI概述,以简化语言或更详细地解释。2.引入多步骤推理能力,这一功能能够将复杂的问题拆解成多个小部分,明确解决问题的顺序和方法。3.很快就能在搜索中使用视频提问了。4.提前计划:在搜索中直接具有规划功能,可以为需要的任何事物制定计划,从餐饮到度假。5.AI组织的搜索结果:搜索将使用生成式人工智能与您进行头脑风暴,并创建一个由人工智能组织的结果页面(跟Arc那个Demo类似)。Workspace(Gmail):内置了Gemini Pro 1.5,可以帮助总结查找邮件内容和编写邮件回复。谷歌文档:侧边栏的Gemini Pro 1.5集成,文档的改写总结等。谷歌表格:使用Gemini和Data Q&A功能请求帮助,创建表格和数据分析等功能在今年晚些时候推出。Google Photos:Ask Photos可以帮助用自然语言搜索图片和视频,可以理解并回答复杂问题。Circle to Search:现在成为了极佳的学习小帮手,可以在手机或平板上圈选复杂的物理问题,获得分步骤的指导帮助你学会解题。

Others are asking
Google Learn about有哪些功能?
Google 的实验性产品 Learn About 具有以下功能: 1. 专注于知识学习,能帮助用户全面深入学习任意领域的信息,如历史、艺术、自然、生物、物理、科学、经济、个人成长等。 2. 设计保证信息真实性,可自动扩展相关知识。 3. 呈现方式直观,具有丰富的交互内容和交互形式。 输入提示词(英文)后进入对话页面。 右侧是当前话题的信息流,左侧是拓展查询列表。 右侧页面有样式丰富的内容板块,左侧页面点击问题或输入追问可进一步下钻话题。 4. 拥有多种样式丰富的交互卡片,包括图文并茂、视频推荐、关键词释义、相关概念链接、话题要点总结、澄清常见误区、互动示例(多轮追问)、测验考题(多轮追问)。 5. 使用了 LearnLM 模型,这是 Google 今年 5 月份推出的 Gemini 系列模型之一,专门面向学习场景进行了微调。以教育研究为基础,核心目标是构建个性化的学习体验。目前,除了 Learn About 这款产品外,LearnLM 还被用于 Google Search AI Overview、Youtube 学术视频问答等产品中,也可以在 Google AI Studio 里直接与模型对话。 目前该产品处于测试阶段,仅限美国访问,可通过 VPN 体验。访问链接:
2024-12-05
我记得你有发布过google人工智能落地的案例
以下是为您整合的相关内容: Google 最近发布了 185 个全球企业生成式 AI 应用案例,涵盖客户服务、员工管理、代码开发、数据分析、安全管理和创意领域。案例展示了 AI 如何优化客户体验、提升员工效率、加速代码处理、改善数据分析、增强安全性及简化创意生产。详情可参考:《》 Coze 汽车售后服务知识库 Bot 旨在提升服务顾问和维修技师的专业水平和维修效率。该 Bot 通过提供标准化解决方案,辅助车辆故障分析和检查,弥补专业知识不足和技术支持文档标准化问题。主要目标是提升服务质量,减少对技师经验的依赖,为汽车售后服务提供智能化支持。详情可参考:《》
2024-11-06
google ai studio
生成式 AI Studio 是 Google Cloud 上的一个工具,允许应用程序开发人员或数据科学家快速制作原型和自定义生成式 AI 模型,无需代码或代码量少。 生成式人工智能是一种能够生成新的、未曾存在内容的人工智能技术,生成的内容可以是多模态的,包括文本(如文章、报告、诗歌等)、图像(如绘画、设计图、合成照片等)、音频(如音乐、语音、环境声音等)、视频(如电影剪辑、教程、仿真等)。 其应用场景广泛,例如文档摘要、信息提取、代码生成、营销活动创建、虚拟协助、呼叫中心机器人等。 生成式人工智能的工作原理包括训练阶段和应用阶段。在训练阶段,通过从大量现有内容(文本、音频、视频等)中学习,得到一个“基础模型”。在应用阶段,基础模型可用于生成内容并解决一般性问题,还可以使用特定领域的新数据集进一步训练以解决特定问题。 Google Cloud 提供了多种相关工具,如 Vertex AI(端到端机器学习开发平台,帮助构建、部署和管理机器学习模型)、Model Garden(平台,可发现 Google 的基础和第三方开源模型,并提供 MLOps 工具用于自动化机器学习管道)。
2024-10-31
Google的人工智能多模态大模型叫什么
Google 的人工智能多模态大模型叫 Gemini。具体介绍如下: Gemini 是 Google DeepMind 团队开发的多模态模型,不仅支持文本、图片等提示,还支持视频、音频和代码提示。 Gemini 能够理解和处理几乎任何输入,结合不同类型的信息,并生成几乎任何输出。 Gemini 被称为 Google 迄今为止最强大、最全面的模型。 Gemini 被描述为一种"原生多模态大模型",从设计之初就支持多模态,能够处理语言、视觉、听觉等不同形式的数据。
2024-04-24
开源的开源的 LLM 微调推理,agent开发平台
以下是为您整理的关于开源的 LLM 微调推理、agent 开发平台的相关内容: LLM 作为 Agent 的“大脑”的特点: 1. 知识获取能力:通过预训练学习大量语言数据,掌握丰富语言信息和常识知识,能处理多种任务。 2. 指令理解:擅长解析人类语言指令,采用深度神经网络进行自然语言理解和生成,精准理解意图。 3. 泛化能力:在未见过的数据上表现良好,能利用先前知识处理新挑战,形成对语言结构的通用理解。 4. 推理和规划:能够进行逻辑推理和未来预测,分析条件制定最佳行动方案,在复杂环境中做出理性选择。 5. 交互能力:拥有强大对话能力,在多人多轮次对话中自然流畅交流,改善用户体验。 6. 自我改进:基于用户反馈和效果评估,通过调整参数、更新算法提升性能和准确性。 7. 可扩展性:可根据具体需求定制化适配,针对特定领域数据微调提高处理能力和专业化水平。 相关产品和平台: 1. ComfyUI:可在其中高效使用 LLM。 2. Vercel AI SDK 3.0:开源的工具,可将文本和图像提示转换为 React 用户界面,允许开发者创建丰富界面的聊天机器人。 3. OLMo7BInstruct:Allen AI 开源的微调模型,可通过资料了解从预训练模型到 RLHF 微调模型的所有信息并复刻微调过程。 4. Devv Agent:能提供更准确、详细的回答,底层基于 Multiagent 架构,根据需求采用不同 Agent 和语言模型。 实例探究: 1. ChemCrow:特定领域示例,通过 13 个专家设计的工具增强 LLM,完成有机合成、药物发现和材料设计等任务。 2. Boiko et al. 研究的 LLM 授权的科学发现 Agents:可处理复杂科学实验的自主设计、规划和执行,能使用多种工具。
2024-12-12
开源大模型训练推理,应用开发agent 平台
以下是一些关于开源大模型训练推理、应用开发 agent 平台的相关信息: Agent 构建平台: Coze:新一代一站式 AI Bot 开发平台,集成丰富插件工具,适用于构建各类问答 Bot。 Mircosoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,可将 Copilot 部署到多种渠道。 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者打造产品能力。 MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识等,并访问第三方数据和服务或执行工作流。 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于客服、营销、销售等场景,提供多种成熟模板。 钉钉 AI 超级助理:依托钉钉优势,在处理高频工作场景如销售、客服、行程安排等方面表现出色。 Gemini 相关:大型语言模型的推理能力在构建通用 agents 方面有潜力,如 AlphaCode 团队构建的基于 Gemini 的 agent 在解决竞争性编程问题方面表现出色。同时,Gemini Nano 提升了效率,在设备上的任务中表现出色。 成为基于 Agent 的创造者的学习路径:未来的 AI 数字员工以大语言模型为大脑串联工具。Agent 工程如同传统软件工程学有迭代范式,包括梳理流程、任务工具化、建立规划、迭代优化。数字员工的“进化论”需要在 AI 能力基础上对固化流程和自主思考作出妥协和平衡。
2024-12-12
当前国内逻辑推理能力最强的大模型是什么
目前国内逻辑推理能力较强的大模型有以下几种: 1. Baichuan213BChat(百川智能):是百川智能自主训练的开源大语言模型。在逻辑推理、知识百科、生成与创作、上下文对话等基础能力上排名 200 亿参数量级国内模型第一,其中逻辑推理能力超过 34B 参数量级的大模型,生成与创作能力超过 72B 参数量级的模型。可应用于小说/广告/公文写作等内容创作场景、智能客服/语音助手以及任务拆解规划等场景,还能部署在教育、医疗、金融等垂直行业中应用,同时可部署在低算力终端处理基础智能任务。 2. 智谱清言(清华&智谱 AI):是智谱 AI 和清华大学推出的大模型产品,基础模型为 ChatGLM 大模型。在工具使用排名国内第一,在计算、逻辑推理、传统安全能力上排名国内前三。可应用于 AI 智能体方面相关的应用,包括任务规划、工具使用及一些长文本记忆相关的场景,在较复杂推理应用上的效果也不错,广告文案、文学写作方面也是很好的选择。 3. 文心一言 4.0API(百度):在计算、逻辑推理、生成与创作、传统安全这 4 大基础能力上排名国内第一。另外在代码、知识与百科、语言理解与抽取、工具使用能力上排名国内前三。能力栈较为广泛,可应用于查询搜索知识应用、任务拆解规划 Agent、文案写作以及代码编写及纠错等方面,在科学研究、教育、工业方面的落地能力也值得关注。
2024-12-08
大模型推理 prefill 是什么?
在大模型推理中,Prefill 是一个阶段。在这个阶段,首先会把用户的输入 prompt 通过并行计算,产生每个 Token 对应 Self Attention 的 KeyValue,并将其存储在 KV Cache 中,供 Decoding 阶段产生每个 Token 时计算 Self Attention 时使用。这个阶段每个 Token 的 KeyValue 可并行计算,模型运行一次能输出多个 Token 的 KV,所以 GPU 利用率高。而 Decoding 阶段根据用户 Prompt 生成后续内容,但模型运行一次只能产生一个 Token,所以无法有效利用 GPU 的并行计算特长,资源利用率不足。资源利用率的差异导致了输出阶段成本高,这也是大模型一般输出价格是输入价格 3 到 4 倍的原因。
2024-12-05
大模型推理 preview 是什么?
大模型推理 preview 通常指的是一种新的大模型功能或特性。以 OpenAI 的 o1preview 为例: 它引入了更高级的思维链(CoT)技术,能够让模型展现更完整的推理过程,从而更好、更稳健地推理出最终结果,增强了对越狱攻击等的抵御能力。 带来了自我反思与错误修正能力,这在教学场景等方面具有重要价值。 但也存在一些问题,如 CoT 技术目前并不十分成熟,出于安全考虑,OpenAI 隐藏了模型的思考过程;复杂问题的思考过程较长,速度偏慢;新模型的使用条数少,冷却时间长。 不过,随着推理模型准确率的不断攀升,其应用前景广阔,能覆盖更多行业和高精尖业务,为 AI 领域带来新的活力和希望。
2024-12-05
如何提高提示词的推理效率
以下是一些提高提示词推理效率的方法: 1. 运用抽象 prompt:抽象可以理解为概括,从具体事物中提取共同特征,压缩信息,减少上下文,提取话题核心点,避免输入大量无效信息,尤其适用于大段信息需要嵌入和检索时。 2. 采用演绎 prompt:演绎是从已知情况推导出新情况的思维方式,在提问中效果显著,要求大模型具备文章理解和问题处理能力,能推动长对话的多轮交互。 3. 利用反应 prompt:过长的思维链会导致回复缓慢,反应 prompt 能快速和直观地回应输入,适用于需要快速反馈、测评或咨询的情况,迅速响应在表达中发挥关键决策作用。 此外,提示词工程是优化大型语言模型性能的重要任务,目前推理任务对于大语言模型具有挑战性,需要更高级的提示词工程技术。例如,在涉及数学能力的推理任务中已有一些改进,通过示例给模型说明能获得更准确结果,后续章节还会介绍更多常见应用示例及更高级的提示工程概念和技术。 另外,有研究表明提示词工程需要复杂推理来检查模型错误、明确任务等,如“PROMPT ENGINEERING A PROMPT ENGINEER”的研究,介绍并分析了关键组成部分,最终方法在多个数据集和任务中表现出色,展示了其多功能性和出色的编辑、推理能力。 将这些 prompt 融入工作流中,能更高效地训练智能体,改进大语言模型,探索新应用领域,实现低成本、高效能和模型效益最大化。
2024-12-04
图像对比与图像搜索这块,有没有哪个ai大模型做的比较好比较深入的
在图像对比与图像搜索方面,以下是一些相关的 AI 大模型特点和应用: RAG(检索增强生成):通过引用外部数据源为模型做数据补充,适用于动态知识更新需求高的任务。其原理是在基础大模型基础上引用外部数据,对搜索到的数据信息进行切片、拆分和语义理解,再根据用户提问进行检索和回答,但比基座模型更耗时。RAG 是一个检索生成框架,能够支持在本地运行。 AI 搜索:结合了多种能力,如 fine tuning、实时联网查询和查询知识源等,能够为用户整理出想要的内容。一些 AI 搜索平台专注于特定领域,如为程序员提供代码搜索。 多模态大模型:像能唱会跳、精通多种技能的机器人,能看见、听见、思考、说话,例如能识别物体、听取指令等。 生成式模型和决策式模型:决策式模型偏向逻辑判断,按预设程序固定输出;生成式模型偏随机性,能动态组合并结构化呈现,如在图像识别中,决策式模型返回关键词,生成式模型用语言表达结构化信息。
2024-12-25
ai怎样精准搜索
AI 精准搜索可以通过以下几个关键步骤来实现: 1. 意图识别:对用户提问进行分类,如导航类、信息查询类、交易类、本地信息类等,还包括多级子分类。通过分类匹配更准的信息源和更好的回复提示词,很大程度提升检索召回率。目前主流的实现方案主要是通过提示词请求大模型完成,但准确度不够高,大模型的 Function Calling 能力也可理解为一种意图识别。 2. 问题改写(Query Rewrite):在完成意图识别并确认需要联网检索后,对用户的 query 进行改写,目的是得到更高的检索召回率。主要包括三个维度的改写,即让提问有更精准/更专业的表达、补全上下文做指代消解、名词提取。改写可以通过设置提示词请求大模型完成。 3. 多信息源聚合(Multi Source):提升 AI 搜索准确度的另一个关键措施是做多信息源整合。结合意图识别和问题改写,假设用户搜索特定问题,可根据意图判断是否联网及搜索类型,提取概念名词,除常见检索外,还可检索其他信息源获取更多内容。多信息源的整合可能涉及海量数据处理和自建信息源索引等技术,传统搜索厂商和依靠 UGC 建立数据飞轮的超级 App 在这方面有优势。 4. 搜索结果重排(Reranking):AI 搜索做多信息源整合时,需要对检索结果重排。重排目的主要是过滤不相关参考信息和对相关性进行排序,便于截取权重最高的 top_k 条记录作为引用参考。重排方案有使用 zilliz 向量数据库+llamaindex 框架做相似度匹配和使用 FlashRank 开源框架,但前者效率低,后者准确度不够高。 5. 搜索内容读取(Read Content)
2024-12-22
我想用coze搭建一个智能体,关于自然语言课程的期末复习指南,要将我的教材导入扣子作为知识库,智能体支持用户提问,搜索知识点,结合知识库和互联网搜索的内容给出问答,需要使用多智能体或工作流,使用卡片功能进行显示,请给出我搭建这个智能体的步骤
以下是使用 Coze 搭建一个关于自然语言课程期末复习指南智能体的步骤: 1. 访问 Coze 官网(https://www.coze.cn),注册并登录。 2. 点击页面左上角的⊕,通过【标准创建】填入智能体的基本信息。 3. 了解 Bot 开发调试界面: 人设与回复逻辑(左侧区域):设定智能体的对话风格、专业领域定位,配置回复的逻辑规则和限制条件,调整回复的语气和专业程度。 功能模块(中间区域): 技能配置: 插件:扩展智能体的专业能力,如计算器、日历等工具。 工作流:设置固定的处理流程和业务逻辑。 图像流:处理和生成图像的相关功能。 触发器:设置自动化响应条件。 知识库管理: 文本:存储文字类知识材料。 表格:结构化数据的存储和调用。 照片:图像素材库。 记忆系统: 变量:存储对话过程中的临时信息。 数据库:管理持久化的结构化数据。 长期记忆:保存重要的历史对话信息。 文件盒子:管理各类文档资料。 交互优化(底部区域): 开场白:设置初次对话的问候语。 用户问题建议:配置智能推荐的后续问题。 快捷指令:设置常用功能的快速访问。 背景图片:自定义对话界面的视觉效果。 预览与调试(右侧区域):实时测试智能体的各项功能,调试响应效果,优化交互体验。 4. 设定智能体的人设与回复逻辑后,为智能体配置对应的技能,以保证其可以按照预期完成目标任务。例如,以获取 AI 新闻的智能体为例,需要为它添加一个搜索新闻的接口来获取相关新闻。具体操作如下: 在智能体编排页面的技能区域,单击插件功能对应的+图标。 在添加插件页面,选择相关功能,然后单击新增。 修改人设与回复逻辑,指示智能体使用相应插件来搜索所需内容。 (可选)为智能体添加开场白,让用户更好地了解智能体的功能。开场白功能目前支持豆包、微信公众号(服务号)。 5. 配置好智能体后,在预览与调试区域中测试智能体是否符合预期。可单击清除图标清除对话记录。 6. 完成测试后,将智能体发布到社交渠道中使用。具体操作如下: 在智能体的编排页面右上角,单击发布。 在发布页面输入发布记录,并勾选发布渠道。 单击发布。 更多内容,请访问 Coze 官方文档: 英文版:https://www.coze.com/docs/welcome.html 中文版:https://www.coze.cn/docs/guides/welcome
2024-12-20
帮我找一个搜索企业联系方式的AI
目前暂时没有专门用于搜索企业联系方式的 AI 工具。但您可以利用一些常见的搜索引擎,并结合相关的企业信息查询网站来获取企业联系方式。例如,天眼查、企查查等网站可以提供一定的企业信息,包括联系方式。
2024-12-18
如何将网站搜索,修改成al聊天提问回答
要将网站搜索修改为 AI 聊天提问回答,您可以参考以下内容: 在 Cursor 中: Chat 聊天:允许您与看到您代码库的 AI 交谈,始终能看到当前文件和光标,可通过“⌘+Shift+L 或‘@’将特定代码块添加到上下文中,使用“⌘+Enter 与整个代码库聊天。 Codebase Answers 代码库答案:使用“@Codebase 或“⌘Enter 询问有关代码库的问题,Cursor 会搜索代码库以查找相关代码。 Reference your Code 引用您的代码:通过带有“@符号的参考代码用作 AI 的上下文,只需键入“@即可查看文件夹中所有文件和代码符号的列表。 Use Images 使用图像:点击聊天下方的图片按钮或拖入图片到输入框以包含视觉上下文。 Ask the Web 询问 Web:使用“@Web 从 Internet 获取最新信息,Cursor 会为您搜索网络并使用最新信息回答问题。 在 Customize 自定义方面: 可以在 Cursor Settings>Features>Chat 下自定义光标聊天。相关设置包括: 始终在网上搜索答案:这会使 AI 模型在每个查询中浏览网络以获取最新信息。 添加聊天淡入淡出动画:为生成的 AI 消息添加平滑动画。 默认为无上下文:使 AI 模型仅使用用户消息作为上下文,不包含其他上下文如当前文件。 自动滚动聊天:在 AI 在线程底部生成文本时自动滚动聊天。 在聊天窗格中缩小滚动条。 开始新聊天时显示聊天历史记录。
2024-12-18
如何有效的利用ai搜索网页信息
以下是有效利用 AI 搜索网页信息的方法: 1. 收集相关资料: 明确文章主题后,借助 AI 工具如 Perplexity.AI 来高效完成。访问该网站并使用其搜索功能,为获得更专业和深入的结果,可启用 Pro 功能(每天有一定次数免费使用,常使用可考虑开通会员)。在搜索框中输入具体 Prompt 来快速定位相关资讯。 通过 AI 工具获取搜索结果后,点击回答内容下方的拷贝按钮获取相关引用网站链接。同理,微软的 Bing 搜索引擎等也有类似功能,可快速搜集大量资料,提升文章专业度和说服力。 2. 整理资料: 可使用月之暗面开发的 Kimi 这个 AI 会话助手,它具备读取网页内容并生成一定内容的能力,但可能存在阅读能力限制,可分批次提供资料确保其有效读取和理解。 此外,能联网检索的 AI 有: ChatGPT Plus 用户可开启 web browsing 功能实现联网。 Perplexity 结合了 ChatGPT 式的问答和普通搜索引擎的功能,可指定希望聊天机器人在制定响应时搜索的源类型。 Bing Copilot 作为 AI 助手,可简化在线查询和浏览活动。 还有如 You.com 和 Neeva AI 等搜索引擎,提供基于人工智能的定制搜索体验,并保持用户数据的私密性。 需注意,这些内容由 AI 大模型生成,请仔细甄别。
2024-12-15