Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

央视的AI我中华教程文档有吗?

Answer

链接里有相关的教程,以下是相关的文章信息:

  • 2024 年 3 月 20 日,黄社长用 AIGC 生成了一条全国文旅宣传片《AI 我中华》,也被央视转载了,全流程使用 AI 制作,利用 AI 生视频及 AI 配音技术,让 34 个省级行政区的名字和当地特色巧妙结合,展现大美中华。
  • 《思维模型地图》这份文档是混沌大学上海分社提供的思维模型和商业策略汇编,涵盖了创新、组织心智、沟通视窗、RPV 框架、心理学模型、用户体验、创新评估、购买决策、组织文化、学习方法和商业模式等多个方面。它旨在帮助读者通过不同的框架和模型来提升思维能力、决策质量和组织效能。
Content generated by AI large model, please carefully verify (powered by aily)

References

4.5 历史更新

《[央视:AI我中华工作流程分享](https://waytoagi.feishu.cn/wiki/IQvqwJZ7jiv3OLkI6cccI3GYn64)》黄社长用AIGC生成了一条全国文旅宣传片《AI我中华》,也被央视转载了,全流程使用AI制作,利用AI生视频及AI配音技术,让34个省级行政区的名字和当地特色巧妙结合,展现大美中华。公开整个工作流及拉片分析:今日春分,附上SD稳定关键词和参数,作者三思,欢迎大家动手尝试。[教程:04_春分](https://waytoagi.feishu.cn/wiki/BYIJw7yWLiSGe4kODXRcGKNUnte)《[思维模型地图](https://waytoagi.feishu.cn/record/NfxIrs7rieKjV3cBS3ZcHQhknFd)》这份文档是混沌大学上海分社提供的思维模型和商业策略汇编,涵盖了创新、组织心智、沟通视窗、RPV框架、心理学模型、用户体验、创新评估、购买决策、组织文化、学习方法和商业模式等多个方面。它旨在帮助读者通过不同的框架和模型来提升思维能力、决策质量和组织效能。

AI离谱社黄师傅:AI 我中华工作流程分享

画面52:宁夏文字(Runway+SD光影文字)画面53~~54:新疆人文:人+水果(Runway+MJ)画面56:西藏风景:布达拉宫(Runway+MJ)画面57:西藏文字(Runway+SD光影文字)画面58:内蒙古风景:草原放牧(Runway+MJ)画面59:内蒙古文字(Runway+SD光影文字)画面60:河北人文:京剧(Runway+MJ)画面61:河北文字(Runway+SD光影文字)画面62:河南人文:少林寺(Runway+MJ)画面63:河南文字(Runway+SD光影文字)画面64~~65:福建风景:土楼+泉州(Runway+MJ)画面66:福建文字(Runway+SD光影文字)画面67:山东文字:海鲜(Runway+SD光影文字)画面70~~73:历史人文:门+马踏飞燕+鼎+三星堆(Deforum+MJ)画面74:甘肃人文:敦煌壁画+石窟(Runway+MJ)画面76~~79:陕西人文:永乐门+赛博西安+赛博兵马俑+车马(Deforum+MJ)画面81:山西人文:塔+剪纸(Runway+MJ)画面82:山西文字(Runway+SD光影文字)画面83:青海人文:青海湖(Runway+MJ)画面84:青海文字(Runway+SD光影文字)画面85:辽宁人文:重工业(Runway+MJ)画面86:辽宁文字(Runway+SD光影文字)

AI离谱社黄师傅:AI 我中华工作流程分享

画面7~~9:北京风景:永定河+门头沟+天坛(Deforum+MJ)画面10:北京文字(Runway+SD光影文字)画面15:四川文字(Runway+SD光影文字)画面20:重庆美食:火锅(Runway+MJ)画面21:重庆文字(Runway+SD光影文字)画面24~~25:广东人文:舞狮(Runway+MJ)画面26:广东文字(Runway+SD光影文字)画面30~~31:黑龙江文字(Runway+SD光影文字)画面32~~33:黑龙江人文:圣·索菲亚教堂+冰糖葫芦(Deforum+MJ)画面34:吉林文字:雾凇(Runway+SD光影文字)画面35:吉林风景:冷面(Runway+MJ)画面36:湖北文字:热干面(Runway+SD光影文字)画面38:湖南文字(Runway+SD光影文字)画面39:贵州风景:黄果树瀑布(Runway+MJ)画面40:贵州文字(Runway+SD光影文字)画面41~42:广西风景:梯田+螺狮粉(Runway+MJ)画面43:广西文字(Runway+SD光影文字)画面46:云南文字(Runway+SD光影文字)画面47:海南风景:椰树海边(Runway+MJ)画面48:海南文字(Runway+SD光影文字)画面49:江苏风景:拙政园(Runway+MJ)画面50:江苏文字:刺绣(Runway+SD光影文字)画面51:宁夏风景:葡萄园(Runway+MJ)

Others are asking
可以写仿制药申报资料的ai有吗
目前尚未有专门用于撰写仿制药申报资料的 AI 工具。但在 AI 领域不断发展的情况下,未来可能会出现相关的应用。
2025-02-03
去除视频马赛克的AI工具有吗?
目前市面上有一些可以去除视频马赛克的 AI 工具,以下为您推荐: 1. AVAide Watermark Remover:这是一个在线工具,使用 AI 技术从图片中去除水印。它支持多种图片格式,如 JPG、JPEG、PNG、GIF 等。操作简单,只需上传图片,选择水印区域,然后保存并下载处理后的图片即可。这个工具还提供了其他功能,如去除文本、对象、人物、日期和贴纸等。 2. Vmake:这个工具同样提供 AI 去除图片水印的功能。用户可以上传最多 10 张图片,AI 会自动检测并移除图片上的水印。处理完成后,用户可以选择保存生成的文件。这个工具适合需要快速去除水印的用户,尤其是那些需要在社交媒体上分享图片的用户。 3. AI 改图神器:这个工具提供 AI 智能图片修复去水印的功能,可以一键去除图片中的多余物体、人物或水印,不留任何痕迹。支持直接粘贴图像或上传手机图像,操作简单方便。 需要注意的是,这些工具各有特点,可以根据您的具体需求选择最适合您的去水印工具。内容由 AI 大模型生成,请仔细甄别。
2025-01-15
静态图生成动态图的工具有吗
以下是一些可以将静态图生成动态图的工具: 1. Comfyui LivePortrait: 可以精确控制眼睛和嘴唇的动作,无缝拼接多个肖像,将不同人物特征合并成一个视频,确保过渡自然流畅。 使用了不同于主流扩散方法的隐式关键点框架,在计算效率和可控性之间取得有效平衡。 生成的动画质量优于现有的非扩散和扩散模型方法,在 RTX 4090 GPU 上,生成速度为每帧 12.8 毫秒。 支持各种风格的图片,常见的动物面部迁移,并可以微调面部运动幅度。 工作流与模型地址: https://pan.baidu.com/s/1FkGTXLmM0Ofynz04NfCaQ?pwd=cycy https://pan.quark.cn/s/8dfd7ace4f05 内容依技术发展更新,请以文档为准 https://xiaobot.net/post/74238a84d2734b2ca195ed2858b24ffe 2. 视频工具 VIGGLE: Mix(让视频的动作映射到图片人物身上):先上传一个视频和一张角色图像,Viggle 会自动将视频的动态赋予给这个角色,形成一段新视频。能模拟出角色的 3D 状态,准确还原处理原视频中身体旋转、四肢交叠等动作。(也可以利用现有的模版视频作为动作获取来源) Multi(多人模式):通过视频的动作,将上传的多个角色进行识别并赋予给这个角色,形成一段新视频。 Move(将视频的动作直接映射在图片人物身上):不同于 Mix 的图片元素替换原视频内容,Move 主要是通过将动作映射在图像里面的人物身上,实现“让静态图动起来”。 案例: 评价: :https://x.com/imxiaohu/status/1771173928591093940 兄弟们,又出来个牛 P 玩意阿里那个被截胡了,这个直接能用可以直接通过文字描述让任何静态图动起来,而且能做各种动作,跳舞什么的都是小 case...最牛 P 的是,他们的模型能能理解真实世界的物理运动原理,所以出来的视频很真实。不仅如此,它还能直接文字生成视频,进行各种角色混合和动作替换...其核心技术基于 JST1 模型。JST1 是首个具有实际物理理解能力的视频3D 基础模型,能够根据用户的需求,让任何角色按照指定的方式进行运动。核心功能: 可控制的视频生成:用户可以通过文字描述指定角色的动作和场景的细节,Viggle 将根据这些指示生成视频。 基于物理的动画:JST1 模型的一个显著特点是其对物理原理的理解,这意味着生成的视频不仅看起来真实,而且角色的动作和互动符合实际物理规律。这提高了视频的质量和真实感。 3D 角色和场景创建:Viggle 不仅限于传统的 2D 视频制作,它还能够创建 3D 角色和场景。
2025-01-11
rag教程有吗
以下为您提供关于 RAG 的教程: 首先,有一篇题为“胎教级教程:万字长文带你理解 RAG 全流程”的文章。作者大圣指出这是面向普通人的 RAG 科普,而非技术向文章。文章强调 RAG 技术在当前 AI 发展中的重要性,其衍生产品能为企业和个人带来效率提升,但也存在局限性。作者希望通过阐述 RAG 完整流程,让读者全面认知该技术,管理好预期,在使用相关产品时能充分发挥其潜力。适合包括 AI 爱好者、企业老板、AI 产品经理等人群。 其次,“【AI+知识库】商业化问答场景,让 AI 回复更准确,一篇专为所有‘小白’讲透 RAG 的实例教程(上篇)”中提到,通过一个简单的问答示例展示了有时回答不准确的情况,从而引出 RAG 这一优化回答的专业术语。接着介绍了基础概念,RAG 即检索增强生成,由检索器和生成器组成,适合处理需要广泛知识的任务。 最后,在“胎教级教程:万字长文带你理解 RAG 全流程”中还提到了 RAG 全貌概览。RAG 流程分为离线数据处理和在线检索两个过程,离线数据处理构建知识库,在线检索则是利用知识库和大模型进行查询。以构建智能问答客服为例来了解 RAG 流程中的 What 与 Why 。
2024-12-30
小红书视频生成工具有吗
以下是为您找到的小红书视频生成工具相关信息: 生成式 AI 视频挑战赛中,视频工具建议使用 Dreamina、HeyGen 等 Talking Photo/LipSync 工具。 小红书加微引导图生成器,针对小红书的封锁问题,生成乱码微信号图片绕过平台屏蔽,是解决小红书导流难题的实用工具。传送门:
2024-11-29
我想要能够爬取我想要的视频的工作流有吗
以下为您提供两种关于视频爬取工作流的信息: 1. Stable Video Diffusion 模型的 ComfyUI 部署实战: 完成准备工作后运行 ComfyUI。 安装 ComfyUI Manager 插件。 下载工作流,使用 ComfyUI 菜单的 load 功能加载。 点击菜单栏「Queue Prompt」开始视频生成,可通过工作流上的绿色框查看运行进度。 生成的视频可在 ComfyUI 目录下的 output 文件夹查看。若出现显存溢出问题,请另行处理。工作流可关注公众号「魔方 AI 空间」,回复【SVD】获取。 2. 来来的 AI 视频短片工作流: 完整文档: 工作流概述: 概念设定:MJ 剧本+分镜:ChatGPT AI 出图:MJ,SD,D3 AI 视频:Runway,pika,PixVerse,Morph Studio 对白+旁白:11labs,睿声 音效+音乐:SUNO,UDIO,AUDIOGEN 视频高清化:Topaz Video 字幕+剪辑:CapCut,剪映 直播回放:
2024-11-21
AI绘图教学
以下是为您提供的 AI 绘图教学内容: 一、SD 新手视频教程 1. 强烈推荐的学完变大神系列章节教学视频: 2. 课程内容: 第一节课:AI 绘画原理与基础界面 第二节课:20 分钟搞懂 Prompt 与参数设置,你的 AI 绘画“咒语”学明白了吗? 第三节课:打破次元壁!用 AI“重绘”照片和 CG 第四节课:AI 绘画模型,“画风”自由切换 第五节课:提高 AI 绘画分辨率的方式 第六节课:LoRa|Hypernetwork 概念简析 第七节课:定向修手修脸,手把手教你玩转局部重绘! 第八节课:提示词补全翻译反推,“终极”放大脚本与细节优化插件 第九节课:LoRA 从原理到实践 第十节课:零基础掌握 ControlNet! 二、AI 线上绘画教程 1. 背景:如果工作中需要大量图片,AI 生图是高效的解决办法。主流工具如 midjourney(MJ)付费成本高,stable diffusion(SD)硬件门槛不低,但有免费在线 SD 工具网站如。 2. 目标:让入门玩家在半个小时内自由上手创作绘图。 3. 注意事项: 本教程适用于入门玩家,让读者看完就能自己作图玩或者应用到职场。 如果有疑问或文章不清晰,可以评论区联系作者或加微信 designurlife1st(记得备注来意:ai 绘图交流)。 教程内容会持续更新,欢迎关注和催更。 三、支线剧本提交页 1. 剧本共创指引中的 AI 出图教学及资料: MJ 官方手册:https://docs.midjourney.com/ Prompt 魔法书:https://aituts.ck.page/promptsbook eSheep: 如何在 MJ 中保持角色一致性: 2. 剧本共创指引中的 AI 视频教学及资料: 什么是相似形转场:
2025-02-05
个人如何通过AI获取收入
个人通过 AI 获取收入的方式主要有以下几种: 1. 学习 AI 技术,从事相关高薪工作,如成为数据科学家、机器学习工程师等,在金融、医疗、制造业等行业找到工作机会,获得不错的收入。但能否赚钱取决于个人的学习能力、实际应用能力、对市场和商业的理解等,需要持续学习和实践。 2. 在公司给自己贴“AI 大神”标签,提升个人影响力。 3. 在社交网络分享相关成果,扩大影响力。 4. 承接项目开发,例如通过增加画板节点,结合公司 Logo 生成一系列公司主题的产品邮票,或者承接类似需求,扩充工作流以适应更复杂的业务。 5. 对于内容创作,利用生成式 AI 进行艺术创作,从消费者“仅为了娱乐”地创造内容,到创作者或个体创业者通过内容实现盈利。
2025-02-05
ai编程
以下是关于 AI 编程的相关内容: 1. 借助 AI 学习编程的关键: 打通学习与反馈循环,从“理解→实践→问题解决→加深理解”。 以 Hello World 为起点,验证环境、建立信心、理解基本概念。 建议使用流行语言和框架(如 React、Next.js、TailwindCSS)。 先运行再优化,小步迭代,一次解决一个小功能。 借助 AI 生成代码后请求注释或解释,帮助理解代码。 遇到问题三步走:复现、精确描述、回滚。AI 是强大的工具,但仍需人工主导,掌握每次可运行的小成果才能实现持续提升。原文: 2. 写提示词与直接写代码的价值探讨: 分享了 AI 编程工具 Composer 的使用方法与效率优势。 对比自然语言 Prompt 和直接写代码的场景,分析两者的适用性和优劣势。 提出适合 AI Composer 的场景,例如重构代码、写测试、跨端开发等。 3. 软件 2.0 编程: 在可以低成本反复评估、并且算法难以显式设计的领域,软件 2.0 日益流行。 考虑整个开发生态以及如何适配这种新的编程范式时,有很多令人兴奋的机会。 长远来看,这种编程范式拥有光明的未来,因为开发通用人工智能(AGI)时,很可能会使用软件 2.0。
2025-02-04
不懂编码,如何成为一名ai培训师
要成为一名 AI 培训师,即使不懂编码,也可以从以下几个方面努力: 1. 深入理解 AI 理论和概念:掌握 AI 的基本原理、算法、应用场景等知识。 2. 熟悉 AI 工具和平台:了解并能熟练使用常见的 AI 工具和平台,如一些无需编码的 AI 应用开发工具。 3. 培养教学能力:包括课程设计、讲解技巧、与学员互动等方面的能力。 4. 注重案例分析:通过实际的 AI 应用案例,深入理解其实现过程和效果。 5. 持续学习和更新知识:AI 领域发展迅速,要不断跟进最新的技术和趋势。 对于编码相关的培训,如果您要教授编码课程,可能需要先让学生通过手动编码学习,掌握语言后再将 AI 生成的代码作为节省时间的工具。比如在健康类课程中,如果学生开发应用,您可能不太在意他们是否使用生成式 AI 来编写代码,而更关注学生基于健康习惯设计健康活动。但在编码课程中,可能需要对学生使用生成式 AI 编写代码进行严格要求。
2025-02-04
当我想要解决一个问题,面对如此多的AI站点和AI智能体,我该如何选择?
在面对众多的 AI 站点和 AI 智能体时,您可以从以下几个方面进行选择: 1. 明确自身需求:确定您希望解决的具体问题和期望达到的目标,以便找到与之匹配的 AI 工具。 2. 了解功能特点:不同的 AI 智能体具有不同的功能和优势。例如,有些擅长自然语言处理和回答各种问题,有些则在特定领域如编程、设计等有出色表现。 3. 考虑技术能力:包括模型的性能、上下文窗口长度、响应速度和并发支持等。响应速度快、并发支持高的工具能在多人使用时保持良好性能。 4. 成本因素:关注免费或低价的选项,以降低使用成本。 5. 个性化需求满足:选择能够根据您的业务场景和个性化需求进行定制的 AI 智能体。 例如,字节的扣子(Coze)是新一代一站式 AI Bot 开发平台,无论有无编程基础都能构建各类问答 Bot,并可发布到多种社交平台和通讯软件上。而在开发 AI 插件时,像 AI Share Card 插件会根据需求选择合适的模型,如选用了具有较长上下文窗口、免费且并发支持高的 GLM4flash 模型。 总之,要综合考虑自身需求、功能特点、技术能力、成本和个性化等因素,选择最适合您的 AI 站点和智能体。
2025-02-04
在写文章方面AI给我们的帮助有哪些
在写文章方面,AI 能为我们提供多方面的帮助: 1. 文献管理和搜索: Zotero:结合 AI 技术,可自动提取文献信息,助力管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,能提供相关文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于进行数据分析和可视化。 Knitro:用于数学建模和优化的软件,帮助进行复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,提供丰富模板库和协作功能,简化论文编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 利用 AI 不到 30 分钟打造爆款公众号文章的关键在于提供清晰且具指导性的提示词(prompt): 已有基本提示词时,AI 能生成基础文章。 若想提升质量,可提供更详细、具创意的提示词,让 AI 更好捕捉文章语气、风格和重点。 例如:“请根据我们收集的关于 OpenAI 回应马斯克言论的资讯,创作一篇既深入又易于理解的科技资讯文章。文章应该有一个吸引人的标题,开头部分要概述事件的背景和重要性,主体部分详细分析 OpenAI 的回应内容及其可能产生的影响,结尾处提出一些引人深思的问题或观点。”这样的提示词不仅提供明确指导,还设定文章基本结构和内容要求,AI 会据此生成结构完整、内容丰富、观点鲜明的文章。但最终产出的内容可能需微调,以符合预期和公众号风格。
2025-02-04
飞书文档如何作为知识库输入到coze平台
要将飞书文档作为知识库输入到 Coze 平台,主要有以下步骤: 1. 在线知识库: 点击创建知识库,创建一个画小二课程的 FAQ 知识库。 选择飞书文档,选择自定义的自定义,输入。 飞书的文档内容会以区分开来,可以点击编辑修改和删除。 点击添加 Bot,添加好可以在调试区测试效果。 2. 本地文档: 注意如何拆分内容,提高训练数据准确度,将海报的内容训练的知识库里面。 画小二这个课程 80 节课程,分为了 11 个章节,不能一股脑全部放进去训练。 正确的方法是首先将 11 章的大的章节名称内容放进来,章节内详细内容按固定方式进行人工标注和处理。 然后选择创建知识库自定义清洗数据。 3. 发布应用: 点击发布,确保在 Bot 商店中能够搜到。 此外,创建知识库并上传文本内容有以下方式: 1. 在线数据: 自动采集方式:适用于内容量大,需要批量快速导入的场景。 在文本格式页签下,选择在线数据,然后单击下一步。 单击自动采集。 单击新增 URL。在弹出的页面完成输入要上传的网站地址、选择是否需要定期同步网站内容及周期等操作。 当上传完成后单击下一步,系统会自动根据网站的内容进行内容分片。 手动采集方式:适用于需要精准采集网页上指定内容的场景。 安装扩展程序,详情请参考。 在文本格式页签下,选择在线数据,然后单击下一步。 点击手动采集,然后在弹出的页面点击权限授予完成授权。 在弹出的页面输入要采集内容的网址,然后单击确认。 在弹出的页面上,点击页面下方文本标注按钮,开始标注要提取的内容,然后单击文本框上方的文本或链接按钮。 单击查看数据查看已采集的内容,确认无误后再点击完成并采集。 Coze 的知识库功能不仅支持上传和存储外部知识内容,还提供了多样化的检索能力,主要包括两大核心能力:一是能够存储和管理外部数据;二是增强检索能力。Coze 支持从多种数据源,如本地文档、在线数据、Notion、飞书文档等渠道上传文本和表格数据。上传后,系统会自动将知识内容切分成多个片段进行存储,并允许用户自定义内容分片规则。Coze 还提供了多种检索方式来对存储的内容片段进行高效检索,例如全文检索可以通过关键词快速找到相关的内容片段并召回。基于这些召回的内容片段,大模型将生成最终的回复内容。Coze 支持上传文本内容及结构化表格数据,以适应各种使用场景。
2025-02-04
文档翻译
以下是将英文 PDF 完整翻译成中文的方法: 1. DeepL(网站): 点击页面「翻译文件」按钮,上传 PDF、Word 或 PowerPoint 文件即可。 2. 沉浸式翻译(浏览器插件): 安装插件后,点击插件底部「更多」按钮,选择「制作双语 BPUB 电子书」、「翻译本地 PDF 文件」、「翻译 THML/TXT 文件」、「翻译本地字幕文件」。 3. Calibre(电子书管理应用): 下载并安装 calibre,并安装翻译插件「Ebook Translator」。 4. 谷歌翻译(网页): 使用工具把 PDF 转成 Word,再点击谷歌翻译「Document」按钮,上传 Word 文档。 5. 百度翻译(网页): 点击导航栏「文件翻译」,上传 PDF、Word、Excel、PPT、TXT 等格式的文件,支持选择领域和导出格式(不过进阶功能基本都需要付费)。 6. 彩云小译(App):下载后点击「文档翻译」,可以直接导入 PDF、DOC、DOCX、PPT、PPTX、TXT、epub、srt 等格式的文档并开始翻译(不过有免费次数限制且进阶功能需要付费)。 7. 微信读书(App):下载 App 后将 PDF 文档添加到书架,打开并点击页面上方「切换成电子书」,轻触屏幕唤出翻译按钮。 8. 浏览器自带的翻译功能:如果一些 PDF 太大,翻译工具不支持,除了将 PDF 压缩或者切分外,还可以转成 HTML 格式,然后使用浏览器自带的网页翻译功能。 此外,在文档翻译工程侧方案中: 文件解析:从用户上传的 PDF 等格式的文档中解析出文字,智谱开放平台提供了限时免费的文件解析服务 API。 预处理:提取出的文本可能会包含一些不必要的空格、特殊字符或者格式信息,需要对这些文本进行预处理,清除格式,标准化空格,以便于进行翻译。 片段切分:当页面内容较长时,可以通过切分片段,并通过高并发请求大模型来减少整体耗时。 模型调用:将预处理后的文本拼到 Prompt 模板中请求智谱模型 API。 结果整合:翻译完成后,将翻译后的译文按照期望的样式展示在用户交互界面中。 同一词语在不同行业、场景的含义不同,推荐您以 KV 对的形式进行专有名词的翻译。未来,随着大模型的不断迭代,GLM 等大语言模型将成为多语言翻译的主流核心底层技术,为全球用户带来更加精准、流畅的翻译体验。
2025-01-30
能够翻译长篇英文文档最好的AI是谁?
目前在翻译长篇英文文档方面,没有绝对的“最好”的 AI 。不同的 AI 翻译工具都有其特点和优势,例如谷歌翻译、百度翻译、有道翻译等。它们的翻译质量会受到文档的领域、语言风格、复杂程度等多种因素的影响。您可以根据具体的需求和文档特点,对不同的翻译工具进行尝试和比较,以找到最适合您的那一个。
2025-01-29
免费好用的Ai画布,可用于整理文档、思维导图
以下为您推荐一些免费好用的可用于整理文档、思维导图的 AI 画布工具: 1. Imagen 3: 功能点: 图像生成:根据用户输入的 Prompt 生成图像。 Prompt 智能拆解:能够自动拆解用户输入的 Prompt,并提供下拉框选项。 自动联想:提供自动联想功能,帮助用户选择更合适的词汇。 优势: 无需排队:用户可以直接使用,无需排队。 免费使用:目前 Imagen 3 是免费提供给用户使用的。 交互人性化:提供了人性化的交互设计,如自动联想和下拉框选项。 语义理解:具有较好的语义理解能力,能够根据 Prompt 生成符合描述的图像。 灵活性:用户可以根据自动联想的功能,灵活调整 Prompt 以生成不同的图像。 2. FunBlocks AIFlow: FunBlocks 是一个效率工具集成平台,集成了 AI Graphics(绘图)、AI Mindmap(思维导图)、AI Slides(演示文稿)、AI Youtube Summarizer(视频总结)等等多款 AI 应用。 FunBlocks AIFlow 是平台内一款自由画布类工具,近期更新后变得更加好用了!输入探索主题后,AI 会将其自动拆解成不同模块,并支持每个节点的深度编辑(包括外观设置、节点组合、内容编辑、内容可视化、生成文章等)。而且!FunBlocks AIFlow 还支持自由节点上传链接、图片、视频、笔记、任务列表等多种内容形式,对于多模态交互需求非常友好。 3. Lucidchart: 简介:Lucidchart 是一个强大的在线图表制作工具,集成了 AI 功能,可以自动化绘制流程图、思维导图、网络拓扑图等多种示意图。 功能: 拖放界面,易于使用。 支持团队协作和实时编辑。 丰富的模板库和自动布局功能。 官网:https://www.lucidchart.com/ 4. Microsoft Visio: 简介:Microsoft Visio 是专业的图表绘制工具,适用于复杂的流程图、组织结构图和网络图。其 AI 功能可以帮助自动化布局和优化图表设计。 功能: 集成 Office 365,方便与其他 Office 应用程序协同工作。 丰富的图表类型和模板。 支持自动化和数据驱动的图表更新。 官网:https://www.microsoft.com/enus/microsoft365/visio/flowchartsoftware 5. Diagrams.net: 简介:Diagrams.net 是一个免费且开源的在线图表绘制工具,适用于各种类型的示意图绘制。 功能: 支持本地和云存储(如 Google Drive、Dropbox)。 多种图形和模板,易于创建和分享图表。 可与多种第三方工具集成。 官网:https://www.diagrams.net/
2025-01-26
Ai画布,可用于整理文档、思维导图
以下是一些关于 AI 画布可用于整理文档、思维导图的相关信息: 自由画布类 AIGC 工具: Flowith 2.0:是一款出海应用,在具备 Refly 几乎所有功能的基础上,有很多独特设计。如知识库允许自行上传制作并发布,还能添加或购买他人的知识库;内容编辑器有多种模式;强化了 Agent 功能设计和对话模式;支持团队协作。 FunBlocks AIFlow:是 FunBlocks 效率工具集成平台内的一款自由画布类工具,输入探索主题后,AI 会自动拆解成不同模块,并支持每个节点的深度编辑,还支持多种内容形式的自由节点上传。 AI 画示意图的工具和步骤: 假设创建项目管理流程图,可使用 Lucidchart,步骤如下: 1. 注册并登录: 2. 选择模板:在模板库中搜索“项目管理流程图”。 3. 编辑图表:根据项目需求添加和编辑图形和流程步骤。 4. 优化布局:利用 AI 自动布局功能,优化图表外观。 5. 保存和分享:保存图表并与团队成员分享,或导出为 PDF、PNG 等格式。 绘制示意图的推荐 AI 工具和平台: Lucidchart:强大的在线图表制作工具,集成 AI 功能,可绘制多种示意图,具有拖放界面、支持团队协作和实时编辑、丰富模板库和自动布局功能等。官网: Microsoft Visio:专业的图表绘制工具,适用于复杂图表,AI 功能可帮助自动化布局和优化设计,集成 Office 365,有丰富图表类型和模板,支持自动化和数据驱动的图表更新。官网: Diagrams.net:免费开源的在线图表绘制工具,适用于各种示意图绘制,支持本地和云存储,有多种图形和模板,易于创建和分享图表,可与多种第三方工具集成。官网:
2025-01-26
大模型下文档投喂后,大模型是如何解读文档提取出答案?
大模型在文档投喂后解读文档并提取答案的过程通常包括以下步骤: 1. 问题解析阶段:接收并预处理问题,通过嵌入模型(如 Word2Vec、GloVe、BERT)将问题文本转化为向量,以确保问题向量能有效用于后续检索。 2. 知识库检索阶段:知识库中的文档同样向量化后,比较问题向量与文档向量,选择最相关的信息片段,并抽取相关信息传递给下一步骤。 3. 信息整合阶段:接收检索到的信息,与上下文构建形成融合、全面的信息文本。整合信息准备进入生成阶段。 4. 大模型生成回答:整合后的信息被转化为向量并输入到 LLM(大语言模型),模型逐词构建回答,最终输出给用户。 在这个过程中还包括以下信息处理步骤: 1. 信息筛选与确认:系统会对检索器提供的信息进行评估,筛选出最相关和最可信的内容,同时对信息的来源、时效性和相关性进行验证。 2. 消除冗余:识别和去除多个文档或数据源中可能存在的重复信息,以防在生成回答时出现重复或相互矛盾的信息。 3. 关系映射:分析不同信息片段之间的逻辑和事实关系,如因果、对比、顺序等,构建一个结构化的知识框架,使信息在语义上更加连贯。 4. 上下文构建:将筛选和结构化的信息组织成一个连贯的上下文环境,包括对信息进行排序、归类和整合,形成一个统一的叙述或解答框架。 5. 语义融合:在必要时,合并意义相近但表达不同的信息片段,以减少语义上的重复并增强信息的表达力。 6. 预备生成阶段:整合好的上下文信息被编码成适合生成器处理的格式,如将文本转化为适合输入到生成模型的向量形式。 最终,全新的上下文被一起传递给大语言模型。由于这个上下文包括了检索到的信息,大语言模型相当于同时拿到了问题和参考答案,通过 LLM 的全文理解,最后生成一个准确和连贯的答案。 相关概念: LLM:Large language model 的缩写,即大语言模型。 Prompt:中文译作提示词,是输入给大模型的文本内容,可以理解为和大模型说的话、下达的指令。 Token:大模型语言体系中的最小单元,不同厂商的大模型对中文文本的切分方法不同,通常 1Token≈12 个汉字,大模型的收费计算方法及对输入输出长度的限制通常以 token 为单位计量。 上下文:英文通常翻译为 context,指对话聊天内容前、后的内容信息,上下文长度和上下文窗口都会影响大模型回答的质量。
2025-01-23
deepseek教程
以下是关于 DeepSeek 的教程: 网址:https://www.deepseek.com/zh 。国内能访问,网页登录方便,目前完全免费。 获得游戏代码:只需点击开始对话,左边选择代码助手,直接向其许愿即可。 提示词使用: 效果对比:用 Coze 做了小测试,可对比查看 。 如何使用: 1. 搜索 www.deepseek.com,点击“开始对话”。 2. 将装有提示词的代码发给 DeepSeek 。 3. 认真阅读开场白之后,正式开始对话。 设计思路: 1. 将 Agent 封装成 Prompt,将 Prompt 储存在文件,保证最低成本的人人可用的同时,减轻自己的调试负担。 2. 通过提示词文件,让 DeepSeek 实现同时使用联网功能和深度思考功能。 3. 在模型默认能力的基础上优化输出质量,并通过思考减轻 AI 味,增加可读性。 4. 照猫画虎参考大模型的 temperature 设计了阈值系统,但是可能形式大于实质,之后根据反馈可能会修改。 5. 用 XML 来进行更为规范的设定,而不是用 Lisp(对作者有难度)和 Markdown(运行下来似乎不是很稳定)。 完整提示词:v 1.3 。 特别鸣谢:李继刚的【思考的七把武器】在前期提供了很多思考方向,Thinking Claude 是作者现在最喜欢使用的 Claude 提示词,也是设计 HiDeepSeek 的灵感来源,Claude 3.5 Sonnet 是最得力的助手。 使用技巧: 特点与优势: 1. 推理型大模型:核心是推理型大模型,不需要用户提供详细步骤指令,通过理解用户真实需求和场景提供答案。 2. 更懂人话:能够理解用户用“人话”表达的需求,不需要用户学习和使用特定提示词模板。 3. 深度思考:回答问题时能够进行深度思考,不是简单罗列信息。 4. 文风转换器:可以模仿不同作家的文风进行写作,适用于多种文体和场景。 正确方法: 1. 可以扔掉提示词模板:用自然语言描述,直接描述真实场景和具体需求,提示词模板的目的是清晰表达,如果使用也完全没问题。 2. 让 DeepSeek“说人话”:在提问时加上“说人话”“小学生能听懂”“菜市场大妈能听懂的话”等,可以让 DeepSeek 的回答更加通俗易懂。 3. 激发深度思考:让 DeepSeek 进行批判性思考、反面思考和复盘,以恢复其深度思考能力。 4. 文风转换:通过指定模仿的作家和文体,让 DeepSeek 生成符合特定风格的文本。
2025-02-01
零基础,如何系统性的学习和运用AI,请提供一个系统性的教程学习
对于零基础学习和运用 AI,以下是一个系统性的教程: 一、了解 AI 基本概念 首先,建议阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,这些文章通常会介绍 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 在「」中,您将找到一系列为初学者设计的课程。这些课程将引导您了解生成式 AI 等基础知识,特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。同时,建议您一定要掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 理论学习之后,实践是巩固知识的关键。尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 五、体验 AI 产品 与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。通过与这些 AI 产品的对话,您可以获得对 AI 在实际应用中表现的第一手体验,并激发您对 AI 潜力的认识。 六、深入学习 Python 编程(如果希望继续精进) 至少熟悉以下内容: 1. Python 基础 基本语法:了解 Python 的基本语法规则,比如变量命名、缩进等。 数据类型:熟悉 Python 中的基本数据类型,如字符串(String)、整数(Integer)、浮点数(Float)、列表(List)、元组(Tuple)、字典(Dictionary)等。 控制流:学习如何使用条件语句(if)、循环语句(for 和 while)来控制程序的执行流程。 2. 函数 定义和调用函数:学习如何定义自己的函数,以及如何调用现有的函数。 参数和返回值:理解函数如何接收参数和返回结果。 作用域和命名空间:了解局部变量和全局变量的概念,以及它们是如何在 Python 中工作的。 3. 模块和包 导入模块:学习如何导入 Python 标准库中的模块或者第三方库。 使用包:理解如何安装和使用 Python 包来扩展程序的功能。 4. 面向对象编程(OOP) 类和对象:了解面向对象编程的基本概念,包括类的定义和实例化。 属性和方法:学习如何为类定义属性和方法,以及如何通过对象来调用它们。 继承和多态:了解类之间的继承关系以及如何实现多态。 5. 异常处理 理解异常:了解什么是异常,以及它们在 Python 中是如何工作的。 异常处理:学习如何使用 try 和 except 语句来处理程序中可能发生的错误。 6. 文件操作 文件读写:学习如何打开文件、读取文件内容以及写入文件。 文件与路径操作:理解如何使用 Python 来处理文件路径,以及如何列举目录下的文件。
2025-01-29
cursor教程
以下是关于 Cursor 教程的相关内容: 1. 中文教程网站: 网站:,提供中文教程,帮助用户更好地掌握 AI 代码编辑器 Cursor 的使用方法,适合想深入了解和学习 Cursor 的用户。 2. 配置教程: 从穷👻套餐 2.0 开始,对 Cursor 的配置主要集中在接入更多模型,如 Qwen2.5Coder、Llama3.3、deepseek v3、gemini2.0flash 等,大部分是为了省 API 费用,但未完全挖掘出 Cursor 的潜力。接入再多的模型也无法完全填平 Cursor 免费版和 Cursor Pro 的差距,如 Agent、Yolo、Composer、Tab 代码补全等功能被限制。此次收集到 3 个插件,2 大 API 和 N 个新的提示语用法,给 Cursor 装配上 Tab 代码补全、AI Agent、全系大模型接入、开发进度管理、状态回滚等功能。 3. 0 编程基础入门极简使用指南: 下载 Cursor:https://www.cursor.com/ 注册账号,可用邮箱如 google/github/163/qq 邮箱,直接接受二维码登录。 安装中文包插件。 在设置中 Rule for AI 配置,按 ctrl/cmd+i 输入需求,如“帮我做一个贪吃蛇游戏,在网页中玩”,并清晰表达需求,包括游戏界面、蛇的移动、食物、增长、死亡条件、得分、难度递增和游戏结束等规则。
2025-01-29
coze教程
以下是关于 Coze 教程的相关内容: 可能是全网最好的 Coze 教程之一,能一次性带您入门 Coze 工作流。即使是非技术出身的爱好者也能上手跟学,一站式学会 AI Agent 从设计到落地的全流程方法论。 阅读指南: 长文预警,请视情况收藏保存。 核心看点: 通过实际案例逐步演示,用 Coze 工作流构建能够稳定按照模板要求生成结构化内容的 AI Agent。 开源 AI Agent 的设计到落地的全过程思路。 10+项常用的 Coze 工作流的配置细节、常见问题与解决方法。 适合人群: 任何玩过 AI 对话产品的一般用户(如果没用过,可以先找个国内大模型耍耍)。 希望深入学习 AI 应用开发平台(如 Coze、Dify),对 AI Agent 工作流配置感兴趣的爱好者。 注:本文不单独讲解案例所涉及 Prompt 的撰写方法。文末「拓展阅读」中,附有相关 Prompt 通用入门教程、Coze 其他使用技巧等内容,以供前置或拓展学习。 Coze 概述: 字节的官方解释:Coze 是新一代一站式 AI Bot 开发平台。无论是否有编程基础,都可在 Coze 平台上快速搭建基于 AI 模型的各类问答 Bot,从解决简单的问答到处理复杂逻辑的对话。并且,可以将搭建的 Bot 发布到各类社交平台和通讯软件上,与这些平台/软件上的用户互动。 个人认为:Coze 是字节针对 AI Agent 这一领域的初代产品,在 Coze 中将 AI Agent 称之为 Bot。 字节针对 Coze 这个产品部署了两个站点,分别是国内版和海外版。 国内版: 网址:https://www.coze.cn 官方文档教程:https://www.coze.cn/docs/guides/welcome 大模型:使用的是字节自研的云雀大模型,国内网络即可正常访问。 海外版: 网址:https://www.coze.com 官方文档教程:https://www.coze.com/docs/guides/welcome 大模型:GPT4、GPT3.5 等大模型(可以在这里白嫖 ChatGPT4,具体参考文档:),访问需要突破网络限制的工具。 参考文档:https://www.coze.com/docs/zh_cn/welcome.html AI Agent 的开发流程: Bot 的开发和调试页面布局主要分为如下几个区块: 提示词和人设的区块。 Bot 的技能组件。 插件。 工作流。 Bot 的记忆组件。 知识库。 变量。 数据库。 长记忆。 文件盒子。 一些先进的配置,如触发器(例如定时发送早报)、开场白(用户和 Bot 初次对话时,Bot 的招呼话语)、自动建议(每当和 Bot 一轮对话完成后,Bot 给出的问题建议)、声音(和 Bot 对话时,Bot 读对话内容的音色)。下面会逐一讲解每个组件的能力以及使用方式。
2025-01-28
liblib教程
以下是关于 liblib 的教程: 线稿提取教程: 1. 出两张彩色的稍连贯的图片。 2. 提取第一张的线稿图: 用 liblib 提取,进入 https://www.liblib.art/ 。 点击【在线生图】。 滑到下面找出【ControlNet】并点击右侧。 点击上传图片。 勾选【启用】、【允许预览】、【Lineart】,预处理器选择【写实线稿提取】,并点击【运行&预览】。 把右侧的黑白图拉到左侧栏,预处理器改为【invert(白底黑线反色)】,并点击【运行&预览】,线稿提取大功告成!右键图片另存即可。 文生图简明操作流程: 1. 定主题:确定要生成的图片主题、风格和表达的信息。 2. 选择 Checkpoint:根据主题选择贴近的 checkpoint,如麦橘、墨幽的系列模型。 3. 选择 lora:寻找内容重叠的 lora 以控制图片效果及质量。 4. 设置 VAE:选择 840000 那一串。 5. CLIP 跳过层:设成 2。 6. Prompt 提示词:用英文写需求,单词、短语之间用英文半角逗号隔开。 7. 负向提示词 Negative Prompt:用英文写避免产生的内容,单词、短语组合,中间用英文半角逗号隔开。 8. 采样方法:一般选 DPM++2M Karras,也可参考 checkpoint 详情页上模型作者推荐的采样器。 9. 迭代步数:选 DPM++2M Karras 时,在 30 40 之间。 10. 尺寸:根据喜好和需求选择。 11. 生成批次:默认 1 批。 此外,还有 Liblibai 简易上手教程,包含概念与功能说明、简明操作流程、prompt 简易技巧三部分。可通过进入免费在线生图。若有不明白之处,可在评论区交流或添加微信:designurlife1st 沟通。
2025-01-28
从零到一的 LLM 学习教程
以下是从零到一学习 LLM 的教程: 1. 掌握深度学习和自然语言处理基础: 学习机器学习、深度学习、神经网络等基础理论。 掌握自然语言处理基础,如词向量、序列模型、注意力机制等。 相关课程:吴恩达的深度学习课程、斯坦福 cs224n 等。 2. 理解 Transformer 和 BERT 等模型原理: 了解 Transformer 模型架构及自注意力机制原理。 掌握 BERT 的预训练和微调方法。 阅读相关论文,如 Attention is All You Need、BERT 论文等。 3. 学习 LLM 模型训练和微调: 进行大规模文本语料预处理。 运用 LLM 预训练框架,如 PyTorch、TensorFlow 等。 微调 LLM 模型进行特定任务迁移。 相关资源:HuggingFace 课程、论文及开源仓库等。 4. LLM 模型优化和部署: 掌握模型压缩、蒸馏、并行等优化技术。 进行模型评估和可解释性研究。 实现模型服务化、在线推理、多语言支持等。 相关资源:ONNX、TVM、BentoML 等开源工具。 5. LLM 工程实践和案例学习: 结合行业场景,进行个性化的 LLM 训练。 分析和优化具体 LLM 工程案例。 研究 LLM 新模型、新方法的最新进展。 6. 持续跟踪前沿发展动态: 关注顶会最新论文、技术博客等资源。 此外,为您推荐以下 LLM 开源中文大语言模型及数据集集合的学习资源: 1. 面向开发者的 LLM 入门课程: 地址: 简介:一个中文版的大模型入门教程,围绕吴恩达老师的大模型系列课程展开,主要包括:吴恩达《ChatGPT Prompt Engineering for Developers》课程中文版,吴恩达《Building Systems with the ChatGPT API》课程中文版,吴恩达《LangChain for LLM Application Development》课程中文版等。 2. 提示工程指南: 地址: 简介:该项目基于对大语言模型的浓厚兴趣,编写了这份全新的提示工程指南,介绍了大语言模型相关的论文研究、学习指南、模型、讲座、参考资料、大语言模型能力以及与其他与提示工程相关的工具。 3. LangChain🦜️🔗中文网,跟着 LangChain 一起学 LLM/GPT 开发: 地址: 简介:Langchain 的中文文档,由是两个在 LLM 创业者维护,希望帮助到从刚进入 AI 应用开发的朋友们。 4. LLMs 九层妖塔: 地址: 简介:ChatGLM、ChineseLLaMAAlpaca、MiniGPT4、FastChat、LLaMA、gpt4all 等实战与经验。 关于 LLM 的预测原理: LLM 接触了包括教科书、文章、网站等在内的庞大数据集。在训练阶段,它们学会了理解语言的上下文和流动性,掌握了包括语法、风格,甚至是文本的语调等方面。当您用一个句子或问题来指导 LLM 时,它便利用自己所学的知识,预测接下来最可能的一个或几个词。这不仅是基于它在训练期间观察到的模式和规则的推测。 在提示工程方面,鉴于 LLM 的概率本质,提示工程师面临的挑战是如何引导 LLM 向着高度可预测和准确的结果方向发展。在相关课程中,您将学习许多技巧,这些技巧将帮助您掌握高度可预测的 LLM 输出结果的艺术和科学。但在深入学习之前,可以先从一些简单的练习开始,激活思维。
2025-01-28