以下是从零到一学习 LLM 的教程:
此外,为您推荐以下 LLM 开源中文大语言模型及数据集集合的学习资源:
关于 LLM 的预测原理: LLM 接触了包括教科书、文章、网站等在内的庞大数据集。在训练阶段,它们学会了理解语言的上下文和流动性,掌握了包括语法、风格,甚至是文本的语调等方面。当您用一个句子或问题来指导 LLM 时,它便利用自己所学的知识,预测接下来最可能的一个或几个词。这不仅是基于它在训练期间观察到的模式和规则的推测。
在提示工程方面,鉴于 LLM 的概率本质,提示工程师面临的挑战是如何引导 LLM 向着高度可预测和准确的结果方向发展。在相关课程中,您将学习许多技巧,这些技巧将帮助您掌握高度可预测的 LLM 输出结果的艺术和科学。但在深入学习之前,可以先从一些简单的练习开始,激活思维。
学习大型语言模型(LLM)的开发是一个系统性的过程,需要涵盖多个方面的知识和技能。以下是一些建议的学习路径和资源:1.掌握深度学习和自然语言处理基础-机器学习、深度学习、神经网络等基础理论-自然语言处理基础,如词向量、序列模型、注意力机制等-相关课程:吴恩达的深度学习课程、斯坦福cs224n等2.理解Transformer和BERT等模型原理-Transformer模型架构及自注意力机制原理-BERT的预训练和微调方法-掌握相关论文,如Attention is All You Need、BERT论文等3.学习LLM模型训练和微调-大规模文本语料预处理-LLM预训练框架,如PyTorch、TensorFlow等-微调LLM模型进行特定任务迁移-相关资源:HuggingFace课程、论文及开源仓库等4.LLM模型优化和部署-模型压缩、蒸馏、并行等优化技术-模型评估和可解释性-模型服务化、在线推理、多语言支持等-相关资源:ONNX、TVM、BentoML等开源工具5.LLM工程实践和案例学习-结合行业场景,进行个性化的LLM训练-分析和优化具体LLM工程案例-研究LLM新模型、新方法的最新进展6.持续跟踪前沿发展动态-关注顶会最新论文、技术博客等资源
面向开发者的LLM入门课程:地址:[https://github.com/datawhalechina/prompt-engineering-for-developers](https://github.com/datawhalechina/prompt-engineering-for-developers)简介:一个中文版的大模型入门教程,围绕吴恩达老师的大模型系列课程展开,主要包括:吴恩达《ChatGPT Prompt Engineering for Developers》课程中文版,吴恩达《Building Systems with the ChatGPT API》课程中文版,吴恩达《LangChain for LLM Application Development》课程中文版等。提示工程指南:地址:[https://www.promptingguide.ai/zh](https://www.promptingguide.ai/zh)简介:该项目基于对大语言模型的浓厚兴趣,编写了这份全新的提示工程指南,介绍了大语言模型相关的论文研究、学习指南、模型、讲座、参考资料、大语言模型能力以及与其他与提示工程相关的工具。LangChain🦜️🔗中文网,跟着LangChain一起学LLM/GPT开发:地址:[https://www.langchain.asia](https://www.langchain.asia/)简介:Langchain的中文文档,由是两个在LLM创业者维护,希望帮助到从刚进入AI应用开发的朋友们。LLMs九层妖塔:地址:[https://github.com/km1994/LLMsNineStoryDemonTower](https://github.com/km1994/LLMsNineStoryDemonTower)简介:ChatGLM、Chinese-LLaMA-Alpaca、MiniGPT-4、FastChat、LLaMA、gpt4all等实战与经验。
你可能会好奇,LLMs是如何进行这些预测的。答案其实在于训练。LLMs接触了包括教科书、文章、网站等在内的庞大数据集。在这个训练阶段,它们学会了理解语言的上下文和流动性。它们掌握了包括语法、风格,甚至是文本的语调等方面。当你用一个句子或问题来指导LLM时,它便利用自己所学的知识,预测接下来最可能的一个或几个词。这不仅是基于它在训练期间观察到的模式和规则的推测。[heading2]尝试一些提示工程(Prompt Engineering)[content]鉴于LLMs的概率本质,提示工程师(Prompt Engineers)面临的挑战是如何引导LLMs向着高度可预测和准确的结果方向发展。在这门课程中,你将学习许多技巧,这些技巧将帮助你掌握高度可预测的LLM输出结果的艺术和科学。但在我们深入学习之前,让我们先从一些简单的练习开始,激活我们的思维。