Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

人才在人工智能发展中的作用

Answer

人才在人工智能发展中的作用至关重要。从数据收集到模型部署,人们参与了 AI 开发的各个方面。他们的决策基于他们自己的价值观,因此每个决策点都需要考虑和评估,以确保所有选择从概念到部署和维护都是负责任的。

在企业中建构人工智能,需要不同类型的人才,包括软件工程师、机械学习工程师、机械学习研究员、应用机械学习科学家、数据科学家、数据工程师和 AI 产品经理。这些人才需要相互合作,共同完成人工智能项目的开发和实施。

人工智能的发展也对技术专业人士提出了新的要求。在 AI 时代,技术专业人士需要发展那些 AI 难以替代的技能,包括团队建设、跨文化交流、创新解决方案的设计等。同时,对于那些从事可能面临被 AI 取代风险的工作的技术工作者来说,他们需要重新思考自己的职业生涯规划,学习新技能,或者转向那些更需要人类特质的工作领域。

此外,人工智能的发展还需要解决一些问题,例如偏见和透明度。为了避免复制危险的偏见,需要让专家 AI 接触到顶级从业人员的多样化视角。同时,通过构建系统以深入探索专家 AI 的内部工作机制,我们将创造一个学习的飞轮,最终专家 AI 可能超越领域专家的角色,成为下一代专家——无论是人类还是 AI——的教师。

总之,人才在人工智能发展中扮演着至关重要的角色。他们需要具备不同的技能和知识,相互合作,共同推动人工智能的发展。同时,人工智能的发展也对技术专业人士提出了新的要求,需要他们不断学习和适应,以应对人工智能时代的挑战。

Content generated by AI large model, please carefully verify (powered by aily)

References

3. 负责任的AI简介

人们参与了AI开发的各个方面,从数据收集到模型部署。他们的决策是基于他们自己的价值观,这意味着每个决策点都需要考虑和评估,以确保所有选择从概念到部署和维护都是负责任的。

学习笔记:AI for everyone吴恩达

不要以为AI可以做任何事,考虑技术,数据,和工程资源有许多AI并不能做到的事情。不要以为只雇佣2-3个机械学习工程师就可以提供公司的使用场景。机械学习人才很重要,也应该让工程师与业务人才交流,寻找可行,有价值的项目。不要以为AI项目一次就可以成功,AI开发通常需要多次尝试才能成功。期待直接使用传统的计划流程而不用改变。实际需要和AI团队测算时间节点,里程碑与KPI不需要极其优秀的AI人才后,才能启动项目。持续构建团队,但实际普通工程师也可以提供有价值和可行的项目。

生成式人工智能:技术就业市场的新篇章

在AI时代,技术专业人士需要发展那些AI难以替代的技能。这包括团队建设、跨文化交流、创新解决方案的设计等。AI虽然可以输出代码,但它无法建立团队、跨越文化界限进行交流,或者激发团队的创造力。技术就业市场将始终为那些能够融合技术智慧和人际交往能力的人提供机会。同时,对于那些从事现在可能面临被AI取代风险的工作的技术工作者来说,他们需要重新思考自己的职业生涯规划。这可能意味着学习新技能,或者转向那些更需要人类特质的工作领域。

为了在医疗保健中产生真正的改变,AI 需要像我们一样学习

成为某个领域顶尖人才通常以多年的密集信息输入开始,通常是通过正规的学校教育,然后是某种形式的学徒实践;数年时间都致力于从该领域最出色的实践者那里学习,大多数情况下是面对面地学习。这是一个几乎不可替代的过程:例如,医学住院医生通过聆听和观察高水平的外科医生所获取的大部分信息,是任何教科书中都没有明确写出来的。通过学校教育和经验,获得有助于在复杂情况下确定最佳答案的直觉特别具有挑战性。这一点对于人工智能和人类都是如此,但对于AI来说,这个问题因其当前的学习方式以及技术人员当前对待这个机会和挑战的方式而变得更加严重。通过研究成千上万个标记过的数据点(“正确”和“错误”的例子)——当前的先进神经网络架构能够弄清楚什么使一个选择比另一个选择更好。我们应该通过使用彼此堆叠的模型来训练AI,而不是仅仅依靠大量的数据,并期望一个生成模型解决所有问题。例如,我们首先应该训练生物学的模型,然后是化学的模型,在这些基础上添加特定于医疗保健或药物设计的数据点。

交汇点上的人工智能:a16z对生物和健康领域人工智能投资论点

随着时间的推移,人类工作的比例会减少,最终在即使需要人类专家的领域,也逐渐接近完全自动化。在这些领域中,小错误可能会产生灾难性影响,但可能不会完全摒弃人类的参与,特别是在对错误特别容忍度低的领域,例如诊断、药物处方或医疗程序。开发能够在这些专业任务上成功而不受关键错误影响的人工智能,是人工智能发展道路中未来的重要领域,也是未来人工智能进步最终对生命科学和医疗产生最大影响的自然领域。

学习笔记:AI for everyone吴恩达

数据科学家与人工智能,在销售,农场主,网站优化等各个方面均有强大作用,前者通过数据做决策,后者通过数据完成训练,并形成输入输出的程序。

学习笔记:AI for everyone吴恩达

软件工程师,如智能音箱中的,软件编程工作,团队中50%以上的占比机械学习工程师,创建A-B的映射,或创建其他机械学习算法。搜集汽车图片,位置的数据,训练神经网络或深度学习算法,不断迭代,确保准确的输出。机械学习研究员,负责开发机械学习的前沿技术。可能需要发表论文,或专注于研究应用机械学习科学家,负责学术文献或研究文献中研究前沿技术,并想办法找到技术解决面临的问题数据科学家,检测数据并分析数据背后的意义,向团队成员与负责人展示数据分析得出的结论数据工程师,整理数据,确保数据是安全,易被保存,读取。因为人工智能需要处理的数据极大,自动驾驶汽车每分钟都会制造好几个GB的数据。AI产品经理,帮助决定用AI做什么,什么是可行且有价值的。

为了在医疗保健中产生真正的改变,AI 需要像我们一样学习

必须让这些专家AI接触到顶级从业人员的多样化视角,以避免复制危险的偏见。但AI的黑盒性远不如大众想象中的那么强;我们今天依赖的人类决策,正如我以前[指出的](https://www.nytimes.com/2018/01/25/opinion/artificial-intelligence-black-box.html),可以说更加不透明。我们不能因为对传播人类偏见的恐惧而限制我们探索AI如何帮助我们民主化我们的人类专家知识的意愿,而这些专家是不幸地无法扩展的。鉴于人工智能依赖的神经网络基础,这些专家AI可能通过元学习(或学会学习)比我们预期的更快地获得知识,并带着我们人类一同进步。AI的性质让我们可以做一些我们无法对人做的事情;即将他们一部分一部分地拆解,并研究每一个小部分。通过构建系统以深入探索专家AI的内部工作机制,我们将创造一个学习的飞轮。最终,专家AI可能超越领域专家的角色,成为下一代专家——无论是人类还是AI——的教师。

Others are asking
你好,你是基于哪个大语言模型的人工智能?
我并非基于某个特定的大语言模型。AI 领域中的语言模型众多,例如 GPT3 等。大语言模型通常是使用深度学习和神经网络创建的,基于人类训练数据来理解单词、代码语法等。像生成式 AI 可以生成文本、图片、音频、视频等内容形式,其中包括大语言模型。2017 年 6 月,谷歌团队发表的论文《Attention is All You Need》首次提出了 Transformer 模型,它基于自注意力机制处理序列数据,不依赖于循环神经网络或卷积神经网络。
2025-04-08
生成超过15000字的人工智能技术在智能化零售行业中的应用与商业模式创新论文,学科方向是计算机科学与技术专业
很抱歉,目前无法直接为您生成超过 15000 字的论文。但我可以为您提供一个论文大纲,以帮助您组织思路和开展研究: 标题:人工智能技术在智能化零售行业中的应用与商业模式创新 摘要:简述人工智能技术在智能化零售中的重要性、应用现状、创新商业模式以及研究的主要结论。 一、引言 (一)研究背景:介绍智能化零售行业的发展趋势和人工智能技术的兴起。 (二)研究目的与意义:阐述研究人工智能技术在该领域应用和商业模式创新的目的,以及对行业发展的重要意义。 (三)研究方法与结构:说明采用的研究方法,如文献综述、案例分析等,并概述论文的结构安排。 二、人工智能技术概述 (一)人工智能技术的定义与分类:解释人工智能的概念,分类如机器学习、深度学习、自然语言处理等。 (二)关键技术原理:详细介绍相关技术的原理,如机器学习中的监督学习、无监督学习等。 (三)技术发展历程与现状:回顾人工智能技术的发展历程,分析当前的技术水平和应用情况。 三、智能化零售行业概述 (一)智能化零售的概念与特点:定义智能化零售,阐述其特点如个性化服务、精准营销等。 (二)行业发展现状与趋势:分析智能化零售行业的现状,包括市场规模、竞争格局等,预测未来的发展趋势。 (三)面临的挑战与机遇:探讨行业发展中面临的问题,以及人工智能技术带来的机遇。 四、人工智能技术在智能化零售中的应用 (一)客户画像与精准营销:如何利用人工智能技术分析客户数据,实现精准营销。 (二)库存管理与供应链优化:通过人工智能算法优化库存水平和供应链流程。 (三)智能推荐与个性化服务:介绍基于人工智能的推荐系统,为客户提供个性化的购物体验。 (四)无人零售与智能支付:探讨无人零售店的技术实现和智能支付方式的应用。 (五)店铺布局与商品陈列优化:利用人工智能进行数据分析,优化店铺布局和商品陈列。 五、人工智能技术驱动的商业模式创新 (一)新的零售模式:如线上线下融合的智能零售模式。 (二)数据驱动的商业决策:依靠人工智能分析数据,制定更科学的商业决策。 (三)合作与共享经济模式:探讨与技术供应商、其他企业的合作模式,以及共享数据和资源的可能性。 (四)增值服务与收费模式创新:基于人工智能技术提供的新服务,创新收费模式。 六、案例分析 (一)选取成功应用人工智能技术的智能化零售企业案例。 (二)详细介绍其应用场景、商业模式创新和取得的成效。 (三)总结经验教训,为其他企业提供借鉴。 七、影响与挑战 (一)对消费者行为和市场竞争的影响:分析人工智能技术如何改变消费者购物行为和市场竞争格局。 (二)技术与数据安全问题:探讨人工智能应用中的技术漏洞和数据泄露风险。 (三)法律法规与伦理道德问题:研究相关法律法规的缺失,以及可能引发的伦理道德问题。 八、结论与展望 (一)研究成果总结:概括人工智能技术在智能化零售中的应用和商业模式创新的主要发现。 (二)未来研究方向与建议:提出进一步研究的方向和对企业、政府的建议。 希望以上大纲对您有所帮助,祝您顺利完成论文!
2025-04-07
人工智能搜索与百度搜索的区别
人工智能搜索与百度搜索存在以下区别: 1. 底层技术:人工智能搜索的底层技术常包括“RAG”,即“检索增强生成”,包括检索、增强和生成三个步骤。而百度搜索的技术构成相对复杂,不断融合新的技术和功能。 2. 发展路径:在中国市场,相较欧美,百度作为搜索巨头已将文心一言大模型融入搜索,提供对话式回答和创作功能。同时,市场上还涌现出如秘塔 AI 搜索等创新型产品,主打“无广告,直接答案”,提供结构化结果和引用来源等特色功能。 3. 产品更新与竞争态势:Google 仍在战斗前线密集释放技能,与其他公司竞争激烈。而百度在新模型发布方面相对较少。此外,Google 推出新功能曾引发大量用户不满,而百度的相关新功能在页面布局和使用体验上更靠近某些特定产品,并聚合了多种创作能力和智能体快捷调用窗口。百度文库也上线了“AI 全网搜”功能,打通了特定工作流,产品功能较为完整,但受限于模型能力,生成内容尚有提升空间。
2025-04-01
浅谈“生成式人工智能在中职实训课的应用”
生成式人工智能在中职实训课的应用: 生成式人工智能是一种能够生成新的、未曾存在内容的人工智能技术,所生成的内容可以是多模态的,包括文本(如文章、报告、诗歌等)、图像(如绘画、设计图、合成照片等)、音频(如音乐、语音、环境声音等)、视频(如电影剪辑、教程、仿真等)。 其应用场景广泛,例如: 文档摘要:将长篇文章或报告总结为简短、精准的摘要。 信息提取:从大量数据中识别并提取关键信息。 代码生成:根据用户的描述自动编写代码。 营销活动创建:生成广告文案、设计图像等。 虚拟协助:例如智能聊天机器人、虚拟客服等。 呼叫中心机器人:能够处理客户的电话请求。 生成式人工智能的工作方式如下: 1. 训练阶段:通过从大量现有内容(文本、音频、视频等)中学习进行训练,训练的结果是一个“基础模型”。 2. 应用阶段:基础模型可以用于生成内容并解决一般性问题,还可以使用特定领域的新数据集进一步训练,以解决特定问题,从而得到一个量身定制的新模型。 Google Cloud 提供了相关工具,如 Vertex AI 是端到端机器学习开发平台,旨在帮助开发人员构建、部署和管理机器学习模型;Generative AI Studio 允许应用程序开发人员或数据科学家快速制作原型和自定义生成式 AI 模型,无需代码或代码量少;Model Garden 是一个平台,可以让用户发现 Google 的基础和第三方开源模型,并与之交互,它提供了一组 MLOps 工具,用于自动化机器学习管道。 在教育领域,从 AI 助教到智慧学伴的应用探索中,以“移动教学与促动”课程实习周为例,让教育学专业的学生了解和尝试运用教育 APP、二维码、教育游戏等技术方式开展移动教学。课程实习需要在 5 天内让非技术背景的学生分组设计课程并展示,由于学生众多,教师难以给予个性化指导,而 AI 在一定程度上补足了学生缺乏的经验。
2025-03-31
人工智能的意义
人工智能具有多方面的重要意义: 从监管角度看,有效监管人工智能需要对其有共同的理解。目前对于人工智能没有广泛共识的通用定义,但通过参考其“适应性”和“自主性”这两个产生定制监管响应需求的特性来定义。“适应性”使解释系统结果的意图或逻辑变得困难,“自主性”使结果的责任分配变得困难。 从产业发展角度看,人工智能是引领新一轮科技革命和产业变革的基础性和战略性技术,加速与实体经济深度融合,改变工业生产模式和经济发展形态,对新型工业化、制造强国、网络强国和数字中国建设发挥重要支撑作用。我国人工智能产业在技术创新、产品创造和行业应用等方面快速发展,形成庞大市场规模,伴随新技术加速迭代,呈现创新技术群体突破、行业应用融合发展、国际合作深度协同等新特点,亟需完善产业标准体系。 从学科本身角度看,人工智能是一门研究如何使计算机表现出智能行为,例如做人类擅长之事的科学。对于一些无法明确编程的任务,如根据照片判断人的年龄,正是人工智能感兴趣的领域。在金融、医学和艺术等领域,人工智能也带来了诸多益处。
2025-03-28
我希望了解人工智能大模型公司的整体产业情况
以下是关于人工智能大模型公司的整体产业情况: 2024 年被称为国内大模型落地元年,经过一年时间的发展,呈现出以下特点: 1. 竞争格局:国内大模型行业基本形成了以百度、阿里、字节等科技大厂和创业“AI 六小虎”为主要玩家的竞争态势。 2. 落地增长:2024 年 1 至 11 月,国内大模型中标项目数量和金额大幅增长。中标项目共 728 个,是 2023 年全年的 3.6 倍;中标金额 17.1 亿元,是 2023 年全年的 2.6 倍。中标项目数前五的行业分别是运营商、能源、教育、政务、金融。 3. 厂商表现:百度在中标数量和金额方面排名所有厂商之首,科大讯飞居第二。在金融行业,百度也排名第一。 4. 行业应用:在智能终端行业,超半数手机厂商使用文心大模型,多家车企已接入百度文心大模型。 5. 能力要求:大模型进入产业落地后,除模型本身能力外,落地应用所需的全栈技术能力、工程化配套工具等对落地效果有直接影响。企业落地大模型需要具备构建算力、数据治理、模型训练、场景落实、应用搭建、持续运营、安全合规等整套能力,大模型的竞争正成为体系化之战。 此外,2023 年国内大模型发展情况包括:智谱推出了 4 代 GLM,MiniMax 推出新模型及“星野”APP,月之暗面在长 Token 能力上表现出色。但在 2C 端真正出圈的产品较少,在 2B 行业中,大模型对收入撬动有限。硬件层上,国内仍缺乏胜任大模型训练的芯片,华为昇腾在单卡指标上接近,但存在稳定性和生态问题。
2025-03-27
AI时代下人才的发展
在 AI 时代,人才的发展具有以下重要方面: 跨学科思维与知识整合能力: AI 善于单领域的深度计算,但跨领域的综合创新仍是人类的优势。能够将不同学科的知识串联,进行类比、迁移和融合,是产生创新思路的源泉之一。未来复杂问题往往涉及多方面因素,仅靠单一领域视角难以解决。人类大脑在跨域联想方面远胜机器,能把看似无关的点联系起来,这正是创造力的体现。 要培养跨学科思维,首先要建立广博的知识面,对主要学科门类有基本了解。其次要刻意练习融会贯通,面对问题时尝试多学科视角。学校和培训应鼓励跨学科项目、通识教育。可以采取“T 字型”发展,一方面在主攻领域深耕,另一方面广泛涉猎相关领域。培养该能力还需提高系统思考和抽象概括能力。长远看,这种跨界整合能力将非常抢手,因为创造性突破往往发生在学科交叉处。 适应 AI 时代的关键技能: 技术专业人士需要发展 AI 难以替代的技能,包括团队建设、跨文化交流、创新解决方案的设计等。AI 虽然可以输出代码,但无法建立团队、跨越文化界限交流或激发团队创造力。对于从事可能被 AI 取代风险工作的技术工作者,需要重新思考职业生涯规划,可能意味着学习新技能或转向更需要人类特质的工作领域。 总的来说,生成式人工智能正在重塑技术就业市场的未来,既带来挑战也提供机遇。关键在于理解并适应这一变化,发展 AI 无法替代的技能,并在新的技术生态中找到自己的位置。同时要注重人类的创造力和创新能力。
2025-03-18
企业如何培养全员AI思维,将AI融入企业文化,驱动人才转型,推动AI驱动的创新。
企业培养全员 AI 思维、将 AI 融入企业文化、驱动人才转型并推动 AI 驱动的创新,可参考以下方面: 1. 组织管理转型:参考波士顿咨询公司发布的《》报告,AI 技术将推动组织从金字塔结构向松树型转变,需要人才具备创新、持续学习、透明和协作能力,组织文化应强调人的价值和认知多样性。为加速 AI 转型,建议采取自上而下的战略推动和自下而上的创新激活,培养关键人才,并重塑员工技能。 2. 构建 AI 监督与反馈机制: 建立异常监测机制,针对 AI 决策结果进行定期回顾,设立异常情况触发预警机制,避免因 AI 错误而导致决策失误。 在关键业务决策中设置人类干预节点,在 AI 给出初步建议后由人类进行审核和判断,特别是财务预测、市场扩展策略等核心业务决策应有清晰的人工复核流程。 企业可以引入“人机协作审查委员会”,由高层管理人员、业务线负责人和技术团队组成,每月审查 AI 关键决策的结果,设定触发条件(如连续三次异常预测)来判断是否需要人工干预。 3. 保留人类的创新与主导地位: 虽然 AI 能通过数据提供创新支持,但真正的突破性创新依然需要人类的参与,企业应明确 AI 是助力而非替代。在中国市场,创新是企业保持竞争优势的关键,过度依赖 AI 可能会削弱员工的创新力和主动性。 设立创新实验室,让 AI 提供背景数据和支持,员工在此基础上进行创意开发,AI 可以生成基础创意,员工进行拓展和跨领域应用。 进行跨部门协作,创建多样化团队,整合市场、技术和创意团队的力量,让 AI 提供洞察和辅助,具体决策由团队中的人类成员作出。 企业可以设立“AI 创新月”,每月让不同部门提出与 AI 相关的创新方案,要求员工结合 AI 的分析提出创意,而非直接采用 AI 方案,以培养团队的创新能力,避免 AI 的全权主导。
2025-03-12
《2024大模型人才报告》
以下是与您查询的相关报告: 2024 年 9 月 10 日: 《》由蚂蚁集团和中国信通院联合发布,探讨了大模型在金融、医疗、政务等行业的应用挑战和解决方案。报告提出了一个系统化的可信应用框架,强调了专业性、可控性、真实性和安全性四个核心要素,并从数据质量、模型能力、推理过程、系统安全等方面提供了具体的技术实现建议。 《》 《》 《》 《》 2024 年 7 月 10 日: 极客邦科技通过《》报告深入探讨 AIGC 技术在企业中的应用,提供实战经验和趋势洞察。这份报告集合了多篇文章和案例,覆盖互联网产品、企业生产、医疗、教育等行业,展现大模型应用潜力。 《》 《》 《》 《》 2024 年 9 月 18 日: 《》探讨了 AI 技术,尤其是大模型技术对劳动力市场的影响。 《》探讨了 AI 技术在营销领域的应用现状和发展趋势。 《》 《》 您可以通过相应的链接获取更详细的内容。
2024-10-29
大模型人才报告
以下是为您提供的大模型相关报告和指南: 《》由蚂蚁集团和中国信通院联合发布,探讨了大模型在金融、医疗、政务等行业的应用挑战和解决方案,提出了系统化的可信应用框架,并从多方面提供了技术实现建议。 其他相关报告发布在,包括: 《》 《》 《》 《》 大模型入门指南:原文地址为 https://mp.weixin.qq.com/s/9nJ7g2mo7nOv4iGXT_CPNg ,作者为写代码的西瓜。该指南主要介绍作者在搭建大模型过程中学到的知识,以及如何在 macOS 上运行大模型。
2024-10-15
2024大模型人才报告
以下是 2024 年部分大模型相关的人才报告及研究报告: 2024 年 9 月 10 日,《》由蚂蚁集团和中国信通院联合发布,探讨了大模型在金融、医疗、政务等行业的应用挑战和解决方案,提出了系统化的可信应用框架,并从多方面提供了技术实现建议。 2024 年 1 月 24 日,《》由中国社科院和腾讯研究院发布,通过实验观察到部分社会群体期待大模型有“人情味”。 2024 年 2 月 4 日,更新了多份研究报告文档,如《》等。 此外,还有以下相关报告: 《》 《》 《》 《》 您可以通过以下链接获取更多详细内容: 研究报告板块: 知识星球:
2024-10-08
如何用AI辅助人才招聘
以下是关于如何用 AI 辅助人才招聘的相关信息: 拜登签署的 AI 行政命令: 为确保政府负责任地部署 AI 并现代化联邦 AI 基础设施,总统指示采取以下行动: 1. 为各机构使用 AI 发布指导,包括明确保护权利和安全的标准,改进 AI 采购,并加强 AI 部署。 2. 通过更快速和高效的合同,帮助各机构更快速、更便宜、更有效地获取特定的 AI 产品和服务。 3. 由人事管理办公室、美国数字服务、美国数字军团和总统创新奖学金领导,加速快速招聘 AI 专业人员,作为政府范围内 AI 人才激增的一部分。各机构将为各级相关领域的员工提供 AI 培训。 人工智能在招聘中的潜在风险与应对策略: 潜在风险包括歧视和不安全的决策等。 应对策略包括: 1. 更新人力资源程序,以限制潜在的不同影响。 2. 对人力资源技术提供商进行尽职调查。 3. 修改当前的人力资源隐私声明,以符合国家隐私或 AI 相关法规。 4. 对 AI 的训练数据进行审查,确保其质量并无偏差。 5. 告知申请人有关数据收集和 AI 筛选流程的细节,保障其信息透明度。 6. 提供合理的便利措施,确保残障申请人和其他少数群体不会被排除在外。 7. 定期评估 AI 筛选结果,发现任何潜在的歧视并及时优化。 AI 面试官的相关产品: 1. 用友大易 AI 面试产品:具有强大的技术底座、高度的场景贴合度、招聘全环节集成的解决方案、先进的防作弊技术以及严密的数据安全保障。能帮助企业完成面试,借助人岗匹配模型,自主完成初筛,并对符合企业要求的候选人自动发送面试邀约。 2. 海纳 AI 面试:通过在线方式、无需人为干预完成自动面试、自动评估,精准度高达 98%,面试效率比人工方式提升 5 倍以上。同时候选人体验也得到改善、到面率比之前提升最高达 30%。 3. InterviewAI:在线平台,提供与面试职位相关的问题和由 AI 生成的推荐答案。候选人可以使用设备上的麦克风回答每个问题,每个问题最多回答三次。对于每个答案,候选人将收到评估、建议和得分。 使用这些产品时,企业需要考虑到数据安全性和隐私保护的问题。
2024-10-03
我正在找工作,需要写简历和准备面试,什么AI软件可以对我现在的情况起到辅助作用呢?
以下是一些可以在您找工作写简历和准备面试时提供辅助的 AI 软件: 1. 写简历方面: Kickresume 的 AI 简历写作器:使用 OpenAI 的 GPT4 语言模型自动生成简历,能为简历摘要、工作经验和教育等专业部分编写内容,并保持一致语调。 Rezi:受到超过 200 万用户信任的领先 AI 简历构建平台,使用先进的 AI 技术自动化创建可雇佣简历的每个方面,包括写作、编辑、格式化和优化。 Huntr 的 AI 简历构建器:提供免费的简历模板,以及 AI 生成的总结/技能/成就生成器和 AI 驱动的简历工作匹配。 更多 AI 简历产品,还可以查看这里:https://www.waytoagi.com/category/79 2. 面试准备方面: Applicant AI:人工智能面试系统,通过 AI 视频聊天快速筛选求职者,匹配招聘标准,自动推送合适候选人至下一阶段,减少人工干预,可安排面试流程,提高招聘效率。 用友大易 AI 面试产品:具有强大的技术底座、高度的场景贴合度、招聘全环节集成的解决方案、先进的防作弊技术以及严密的数据安全保障,能帮助企业完成面试,借助人岗匹配模型,自主完成初筛,并对符合企业要求的候选人自动发送面试邀约。 海纳 AI 面试:通过在线方式、无需人为干预完成自动面试、自动评估,精准度高达 98%,面试效率比人工方式提升 5 倍以上。同时候选人体验也得到改善、到面率比之前提升最高达 30%。 InterviewAI:在线平台,提供与面试职位相关的问题和由 AI 生成的推荐答案。候选人可以使用设备上的麦克风回答每个问题,每个问题最多回答三次。对于每个答案,候选人将收到评估、建议和得分。 需要注意的是,使用这些产品时,要考虑到数据安全性和隐私保护的问题。
2025-03-13
coze能对电商工作起到哪些提升作用?
Coze 能对电商工作起到以下提升作用: 1. 个性化邮件发送:市场团队可以利用 Coze 的工作流,将客户名单作为输入数组,通过循环节点依次为每位客户生成定制化邮件,在几分钟内完成邮件发送,避免重复劳动。 2. 商品评价分析:运营团队能够把电商平台的商品评价数据作为输入数组,使用循环节点逐一分析,计算好评率和差评率,并生成总结报告。原本耗时 2 3 小时的人工作业可缩短到几分钟,同时避免出错。 Coze 的工作流具有以下特点: 1. 可视化:允许用户通过可视化的方式组合各种功能模块,如插件、大语言模型、代码块等,从而实现复杂和稳定的业务流程编排。 2. 低代码:工作流的创建和编辑可以通过可视化的拖拽界面完成,无需编写代码,大大降低了工作流搭建的门槛。 3. 功能丰富:支持丰富的功能模块,包括调用大语言模型进行文本生成、调用插件进行数据处理等,用户可根据需求灵活组合。 4. 集成性强:创建好的工作流可以直接集成到 Coze 的聊天机器人中使用,实现复杂的业务逻辑。 循环节点是自动化流程的重要组成部分,通常分为数组循环、指定次数循环和无限循环三种核心模式。数组循环适用于对一组有序数据逐条处理的场景,是自动化流程中最常见的一种模式,能够高效地逐条执行重复性操作。
2025-03-09
RAG内LLM的主要作用,简单概括
RAG(检索增强生成)中LLM(大语言模型)的主要作用包括: 1. 利用外部检索到的知识片段生成更符合要求的答案。由于LLM无法记住所有知识,尤其是长尾知识,且知识容易过时、不好更新,输出难以解释和验证,容易泄露隐私训练数据,规模大导致训练和运行成本高,通过RAG为LLM提供额外且及时更新的知识源,有助于生成更准确和有用的回答。 2. 在RAG的工作流程中,LLM接收整合后的知识片段和特定指令,利用其推理能力生成针对用户问题的回答。 3. 事实性知识与LLM的推理能力相分离,LLM专注于运用推理能力处理外部知识源提供的信息。
2025-03-08
想学习Ai制作用哪些免费软件好
以下是一些适合学习 AI 制作的免费软件: 1. 图像制作: 最透明的选项:Adobe Firefly(https://www.adobe.com/sensei/generativeai/firefly.html) 开源选项:Stable Diffusion(https://stablediffusionui.github.io/) 最佳免费选项:Bing 或 Bing Image Creator(https://www.bing.com/images/create)(使用 DALLE),Playground(https://playgroundai.com/)(允许您使用多个模型) 最佳质量图像:Midjourney(https://midjourney.com/) 2. 数字人制作: HEYGEN:人物灵活,五官自然,视频生成很快,但中文人声选择较少。 DID:制作简单,人物灵活,免费版下载后有水印。 KreadoAI:免费,功能齐全,但音色较 AI。 对于想出点子,最佳免费选项是必应(https://www.bing.com/search?q=Bing+AI&showconv=1&FORM=hpcodx),付费选项是 ChatGPT 4.0。 在制作视频方面: 用于在视频中为人脸制作动画的最佳工具是 DiD(https://www.did.com/)。 用于从文本创建视频的最佳工具是 Runway v2(https://app.runwayml.com/)。 最佳语音克隆:ElevenLabs(https://beta.elevenlabs.io/speechsynthesis)
2025-02-23
即梦ai里,关于智能画布中的参考图的具体作用
在即梦 AI 中,智能画布中的参考图具有以下重要作用: 1. 实现多种商业创意设计:只需上传一张参考图,就能快速生成多种创意设计,例如模特图的变装、换发型、换脸、换发色和调整人物姿势;产品图的材质和背景改变;电商海报的背景、元素更改等。 2. 提升设计的灵活性和可塑性:在奶茶宣传图的制作中,参考图在制作步骤中发挥了关键作用,如在第 1 步找参考图,为后续的生成和融合等操作提供基础。 基础操作包括: 1. 打开即梦官网 https://jimeng.jianying.com/ 。 2. 选择图片生成。 3. 选择导入参考图(上传一张参考图,点击智能参考)。 相关案例: 1. 模特图自由定制:通过智能参考,轻松实现模特图的多种变化。 2. 产品图随心变化:可以改变产品材质和画面背景。 3. 电商海报一键搞定:支持随意更改背景、元素,适应不同营销主题。 原文链接:https://mp.weixin.qq.com/s/sD0RFMqnFZ6Bj9ZcyFuZNA
2025-02-17
即梦ai里,关于智能画布中的参考图的具体作用
在即梦 AI 中,智能画布中的参考图具有以下重要作用: 1. 实现多种商业创意设计:只需上传一张参考图,就能快速生成多种创意设计,例如模特图的变装、换发型、换脸、换发色和调整人物姿势;产品图的材质和背景改变;电商海报的背景、元素更改等。 2. 提升设计的灵活性和可塑性:在奶茶宣传图的制作中,参考图在制作步骤中发挥了关键作用,如在第 1 步找参考图,为后续的生成和融合等操作提供基础。 基础操作包括: 1. 打开即梦官网 https://jimeng.jianying.com/ 。 2. 选择图片生成。 3. 选择导入参考图(上传一张参考图,点击智能参考)。 相关案例: 1. 模特图自由定制:通过智能参考,轻松实现模特图的多种变化。 2. 产品图随心变化:可以改变产品材质和画面背景。 3. 电商海报一键搞定:支持随意更改背景、元素,适应不同营销主题。 原文链接:https://mp.weixin.qq.com/s/sD0RFMqnFZ6Bj9ZcyFuZNA
2025-02-17
AI的发展史
AI(人工智能)的发展历程如下: 1. 起源阶段: 1943 年,心理学家麦卡洛克和数学家皮特斯提出机器的神经元模型,为后续的神经网络奠定基础。 1950 年,计算机先驱图灵最早提出图灵测试,作为判别机器是否具备智能的标准。 1956 年,在美国达特茅斯学院召开的会议上,人工智能一词被正式提出,并作为一门学科确立下来。 2. 发展阶段: 早期阶段(1950s 1960s):包括专家系统、博弈论、机器学习初步理论。 知识驱动时期(1970s 1980s):有专家系统、知识表示、自动推理。 统计学习时期(1990s 2000s):出现机器学习算法如决策树、支持向量机、贝叶斯方法等。 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等得到发展。 3. 前沿技术点: 大模型:如 GPT、PaLM 等。 多模态 AI:包括视觉 语言模型(CLIP、Stable Diffusion)、多模态融合。 自监督学习:自监督预训练、对比学习、掩码语言模型等。 小样本学习:元学习、一次学习、提示学习等。 可解释 AI:模型可解释性、因果推理、符号推理等。 机器人学:强化学习、运动规划、人机交互等。 量子 AI:量子机器学习、量子神经网络等。 AI 芯片和硬件加速。 在过去的几十年里,AI 的发展起起落落,经历了多次热度的起伏。如今,生成式 AI 等新技术的出现引发了新的关注和探索。
2025-04-08
有哪些完整综观地阐述了2022年到2025年AIGC相关技术和在设计领域的应用发展的研究报告
以下是为您找到的一些可能符合您需求的研究报告: 1. 月狐数据联合发布的《AI 产业全景洞察报告 2025》,深入分析了全球及中国人工智能产业的发展现状、全景图谱及企业出海情况。指出全球 AI 产业保持 19.1%的年均增长率,2024 年第三季度交易数量达 1245 笔,融资规模显著提升。美国在 AI 领域融资和应用市场中占据主导地位,中国紧随其后,2024 年一季度大模型规模占全球的 36%。国内 AI 企业出海呈现增长趋势,工具类和图像处理类应用在海外市场受欢迎,但东南亚和东亚地区付费习惯尚未形成。还展示了 AI 在各行业的应用现状,包括智慧医疗、智慧教育、企业服务等,强调了 AIGC 技术在提升用户体验和推动产业发展中的关键作用。链接:https://waytoagi.feishu.cn/record/DFqRrh4kqeqaIFchKtocVwVkn2d 2. 甲子光年的《2025 具身智能行业发展研究报告:具身智能技术发展与行业应用简析》,指出具身智能作为具备物理载体的智能体,强调通过与环境的交互实现智能行为,是人工智能与机器人技术的深度融合。当前,具身智能正处于技术萌芽期,受大模型技术推动成为热点,但在数据采集、模型泛化、技术路线等方面仍面临挑战。报告分析了具身智能的发展背景、现状及应用场景,认为中国在具身智能领域已走在国际前列,具备庞大的市场需求、完善的产业集群和良好的政策支持。链接:https://waytoagi.feishu.cn/record/TERPru4Jee7Gzbcu54WcUjsXnJh 3. 智能纪要:【跨界·未来】AIGC×视觉交互工作坊 Part1:AI 应用前瞻 2025 年 3 月 11 日。涵盖了 AI 在艺术创作中的应用与探索,包括 Lora 模型训练素材、模型训练比赛、Checkpoint 模型、线上与本地工作流、学习资源推荐、AI 创作挑战、装置艺术脉络、机械装置艺术理论、国内外装置艺术区别、AIGC 艺术尝试、机械进化与装置创作等方面。
2025-03-31
有哪些完整综观地阐述了2022年到2025年AIGC相关技术和应用发展的研究报告
以下是一些完整综观地阐述了 2022 年到 2025 年 AIGC 相关技术和应用发展的研究报告: 1. 月狐数据联合发布的《AI 产业全景洞察报告 2025》,深入分析了全球及中国人工智能产业的发展现状、全景图谱及企业出海情况。指出全球 AI 产业保持 19.1%的年均增长率,2024 年第三季度交易数量达 1245 笔,融资规模显著提升。美国在 AI 领域融资和应用市场中占据主导地位,中国紧随其后,2024 年一季度大模型规模占全球的 36%。国内 AI 企业出海呈现增长趋势,工具类和图像处理类应用在海外市场受欢迎,但东南亚和东亚地区付费习惯尚未形成。还展示了 AI 在各行业的应用现状,强调了 AIGC 技术在提升用户体验和推动产业发展中的关键作用。链接:https://waytoagi.feishu.cn/record/DFqRrh4kqeqaIFchKtocVwVkn2d 2. 甲子光年的《2025 具身智能行业发展研究报告:具身智能技术发展与行业应用简析》,指出具身智能作为具备物理载体的智能体,强调通过与环境的交互实现智能行为,是人工智能与机器人技术的深度融合。当前,具身智能正处于技术萌芽期,受大模型技术推动成为热点,但在数据采集、模型泛化、技术路线等方面仍面临挑战。分析了具身智能的发展背景、现状及应用场景,认为中国在具身智能领域已走在国际前列,具备庞大的市场需求、完善的产业集群和良好的政策支持。链接:https://waytoagi.feishu.cn/record/TERPru4Jee7Gzbcu54WcUjsXnJh 3. Celent 的《利用 AI 在支付领域的优势》,讨论了生成式人工智能的潜力和银行业对此的积极探索,并预测 AI 将在提高支付处理效率和创造新的收入流方面发挥关键作用。链接:https://waytoagi.feishu.cn/record/Cwtnr6KSIeL8JDcmljZcc55onPx 4. 华西证券的 AIGC 行业深度报告(14):《从英伟达到华为,零部件迎来大机遇》,英伟达的新一代 GPU 架构将带来零部件的升级,同时,华为的昇腾 910C 芯片和 Atlas 900 SuperCluster 展示了国产算力集群的潜力。链接:https://waytoagi.feishu.cn/record/UXR3rwzGSe92xLcLqFmcRpnhnUc 5. 《2024 端到端自动驾驶行业研究报告》,通过访谈 30 余位专家,分析了端到端技术的发展、主要参与者、驱动力和挑战。预计到 2025 年,模块化端到端系统将开始商业化应用,推动技术、市场和产业格局的变革。链接:https://waytoagi.feishu.cn/record/QBnRra7VfexdazctR1Acc5YGn6d 6. 微软的《释放英国的 AI 潜力:利用 AI 促进经济增长》,英国拥有先进的科技行业和数字优势,但与其他国家相比领先优势有限,英国面临基础设施、数字技能和数字技术采用的瓶颈。链接:https://waytoagi.feishu.cn/record/K1bfraBc7eMFvOc1T21cto8rnhh
2025-03-31
罗列具体的AI模型产品和具体的AI技术创新点,并总结AI技术的发展趋势,并说明这些发展趋势为用户的交互体验带来了什么样的改变?按照时间线将以上内容梳理出来
以下是按照您的需求梳理的内容: 时间线 早期: 从图灵测试、早期的图灵机器人和 ELISA 开始,到 IBM 的语音控制打印机、完全由人工智能创作的小说、微软的同声传译系统。 近年来: OpenAI 发布 ChatGPT 模型,引发用户习惯从简单触控操作转向更复杂的长文本输入,未来可能延伸至长语音交互。 大模型创新方面,架构优化加速涌现,融合迭代成为趋势。Scaling Law 泛化,推理能力成为关键,倒逼计算和数据变革。AGI 探索中,视频生成点燃世界模型,空间智能统一虚拟和现实。 在应用方面,AI 在文科白领的个人助理、呼叫中心、文本处理和教育等领域表现出色,能完成 80%到 90%的工作;对于工科白领,特别是程序员,能简化代码检索和调整;在蓝领领域,自动驾驶取得显著进展。但在复杂任务方面仍有改进空间。 第一轮洗牌结束,聚焦 20 赛道 5 大场景,多领域竞速中运营大于技术,AI 助手成为竞争重点。AI+X 赋能类产品发展迅速,原生 AI 爆款难求。多模态上马,Agent 席卷一切,高度个性化呼之欲出。 人工智能发展经历了萌芽、积累沉淀到如今大模型和多模态模型百花齐放的阶段。大模型由数据、算法、算力构成,算法有技术架构的迭代,如英伟达的显卡辅助模型训练,数据质量对生成理想的大模型至关重要。 未来: 李沐预测技术发展可能催生出革命性的应用形态,但 AI 离真正变革世界还有一段距离。 预计 AI 在蓝领工作的初步应用至少需要 5 年时间。 AI 技术创新点: 大模型创新:架构优化加速涌现,融合迭代大势所趋。 Scaling Law 泛化:推理能力成皇冠明珠,倒逼计算和数据变革。 AGI 探索:视频生成点燃世界模型,空间智能统⼀虚拟和现实。 AI 技术的发展趋势: 模型架构不断优化和融合。 更加注重推理能力的提升。 探索 AGI 领域,实现虚拟和现实的统一。 应用格局不断洗牌,聚焦特定赛道和场景。 多模态和 Agent 技术的广泛应用。 对用户交互体验的改变: 用户习惯从简单触控操作转向更复杂的长文本输入,未来可能延伸至长语音交互。 AI 应用为用户提供辅助,在多个领域帮助完成任务。
2025-03-31
AI技术发展时间线,罗列具体的AI模型产品和具体的AI技术创新点,并总结AI技术的发展趋势,并说明这些发展趋势为用户的交互体验带来了什么样的改变?
以下是关于 AI 技术发展的相关内容: AI 技术发展时间线: 从图灵测试、早期的图灵机器人和 ELISA,到 IBM 的语音控制打印机、完全由人工智能创作的小说、微软的同声传译系统,再到 OpenAI 发布 ChatGPT 模型,经历了萌芽、积累沉淀到如今大模型和多模态模型百花齐放的阶段。 具体的 AI 模型产品: ChatGPT 改变了用户习惯,从简单触控操作转向更复杂的长文本输入,未来可能延伸至长语音交互。 具体的 AI 技术创新点: 大模型创新方面,架构优化加速涌现,融合迭代成为趋势。 Scaling Law 泛化,推理能力成为皇冠明珠,倒逼计算和数据变革。 AGI 探索中,视频生成点燃世界模型,空间智能统一虚拟和现实。 AI 技术的发展趋势: 大模型创新:架构优化加速涌现,融合迭代大势所趋。 应用格局:第一轮洗牌结束,聚焦 20 赛道 5 大场景。 应用竞争:多领域竞速运营大于技术,AI 助手兵家必争。 应用增长:AI+X 赋能类产品大干快上,原生 AI 爆款难求。 产品趋势:多模态上马,Agent 席卷一切,高度个性化呼之欲出。 智变千行百业:左手变革生产力,右手重塑行业生态。 行业渗透率:数据基础决定初速度,用户需求成为加速度。 创投:投融资马太效应明显,国家队出手频率提升。 对用户交互体验的改变: ChatGPT 使用户从简单触控操作转向更复杂的长文本输入,未来可能延伸至长语音交互。 在文科白领方面,AI 能完成 80%到 90%的工作,如个人助理、呼叫中心、文本处理和教育等领域。 对于工科白领,特别是程序员,AI 能简化代码检索和调整。 在蓝领领域,AI 在自动驾驶方面取得显著进展。
2025-03-31
AI技术发展时间线
AI 技术的发展时间线大致如下: 早期阶段(1950s 1960s):包括专家系统、博弈论、机器学习初步理论。 知识驱动时期(1970s 1980s):专家系统、知识表示、自动推理得到发展。 统计学习时期(1990s 2000s):出现机器学习算法如决策树、支持向量机、贝叶斯方法等。 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等兴起。 2024 年 AI 关键进展时间线: 2 月:OpenAI 发布视频生成模型 Sora,首次实现高质量文本生成视频,开创 AI 视频生成新纪元。 3 月:Suno 发布 V3 版本,AI 音乐生成方向进入生产力可用状态。 4 月:Meta 发布高性能开源大模型 Llama3,降低了 AI 技术的准入门槛。 5 月:GPT4 发布。 5 月:RayBan 与 Meta 合作的智能眼镜销量突破百万。 5 月:字节上线即梦 AI。 6 月:快手发布可灵。 6 月:Apple Intelligence 发布。 9 月:OpenAI 发布 o1 预览版。 10 月:Rosetta 和 AlphaFold 算法的研发者因在蛋白质结构设计和预测中的突破性贡献获得诺贝尔化学奖;约翰·霍普菲尔德和杰弗里·辛顿因人工神经网络和深度学习的开创性贡献获诺贝尔物理学奖;Anthropic 大模型 Claude 3.5 Sonnet 获得“computer use”功能。 12 月:OpenAI 发布 o3 系列模型。 当前 AI 前沿技术点包括: 大模型(Large Language Models):如 GPT、PaLM 等。 多模态 AI:视觉 语言模型(CLIP、Stable Diffusion)、多模态融合。 自监督学习:自监督预训练、对比学习、掩码语言模型等。 小样本学习:元学习、一次学习、提示学习等。 可解释 AI:模型可解释性、因果推理、符号推理等。 机器人学:强化学习、运动规划、人机交互等。 量子 AI:量子机器学习、量子神经网络等。 AI 芯片和硬件加速。 学习路径方面: 偏向技术研究方向: 数学基础:线性代数、概率论、优化理论等。 机器学习基础:监督学习、无监督学习、强化学习等。 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 自然语言处理:语言模型、文本分类、机器翻译等。 计算机视觉:图像分类、目标检测、语义分割等。 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 科研实践:论文阅读、模型实现、实验设计等。 偏向应用方向: 编程基础:Python、C++等。 机器学习基础:监督学习、无监督学习等。 深度学习框架:TensorFlow、PyTorch 等。 应用领域:自然语言处理、计算机视觉、推荐系统等。 数据处理:数据采集、清洗、特征工程等。 模型部署:模型优化、模型服务等。 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-03-31