Navigate to WaytoAGI Wiki →
Home/question.detail.breadcrumb.questionList/question.detail.breadcrumb.questionDetail

LLM通过已知的“世界知识”进行训练,那LLM是否能够为人类产生新的“世界知识”?

Answer

LLM (大型语言模型) 确实能够基于已有的"世界知识"产生一些新的知识和见解,但这种新知识的创造过程更多是组合、推理和外推现有知识,而非从无到有地创造全新的知识。我们可以从以下几个方面来解释:

  1. 知识组合和关联 LLM 擅长将已有的知识片段进行组合和建立新的联系,从而产生看似新颖的见解。例如结合"物理学"和"信息论"的知识,推导出"比特"在物理系统中的作用等。

  2. 知识推理和外推 基于已有的知识框架,LLM 可以进行逻辑推理并对已知结论作出外推和发散,得到一些新的、未曾见过的结论。例如利用量子理论推导出新的粒子存在可能性。

  3. 模式发现 LLM 通过学习大量数据,能够发现一些新的数据模式和规律性,为人类发现新知识提供线索和启发。例如在医疗数据中发现一些疾病新的症状模式等。

  4. 知识重组和解构 LLM 可以对知识进行解构和重新组织,从而产生一些新的表述方式和见解角度,虽然本质知识未发生变化。

  5. 模拟思维实验 利用 LLM 的计算能力,我们可以模拟一些在现实中无法开展的思维实验,探索一些未知的领域和前沿,获得新的认知。

总的来说,LLM 在生成新知识方面的能力是有限的,还难以完全取代人类的创造力和想象力。但它可以通过组合、关联、外推等方式,为人类发现新知识提供有价值的辅助和支持作用。未来 LLM 将如何推动人类知识的发展仍有待进一步观察。

Content generated by AI large model, please carefully verify (powered by aily)

References

Others are asking
LLM
系统学习 LLM 开发是一个系统性的过程,涵盖以下方面: 1. 掌握深度学习和自然语言处理基础:包括机器学习、深度学习、神经网络等基础理论,以及自然语言处理中的词向量、序列模型、注意力机制等。相关课程有吴恩达的深度学习课程、斯坦福 cs224n 等。 2. 理解 Transformer 和 BERT 等模型原理:熟悉 Transformer 模型架构及自注意力机制原理,掌握 BERT 的预训练和微调方法,阅读相关论文如 Attention is All You Need、BERT 论文等。 3. 学习 LLM 模型训练和微调:进行大规模文本语料预处理,使用 LLM 预训练框架如 PyTorch、TensorFlow 等,微调 LLM 模型进行特定任务迁移。相关资源有 HuggingFace 课程、论文及开源仓库等。 4. LLM 模型优化和部署:掌握模型压缩、蒸馏、并行等优化技术,进行模型评估和可解释性研究,实现模型服务化、在线推理、多语言支持等。相关开源工具有 ONNX、TVM、BentoML 等。 5. LLM 工程实践和案例学习:结合行业场景进行个性化的 LLM 训练,分析和优化具体 LLM 工程案例,研究 LLM 新模型、新方法的最新进展。 6. 持续跟踪前沿发展动态:关注顶会最新论文、技术博客等资源。 以下是 2 月 19 日的 Xiaohu.AI 日报相关内容: 1. Large World Model探索:介绍了百万 Token 的通用世界大模型,旨在理解长视频和超长文本。LWM 在 100 万个令牌的上下文中超越 GPT4V 和 Gemini Pro 的检索精度,特色能力包括长视频理解、高精度事实检索和多格式内容生成。相关链接:https://largeworldmodel.github.io 、https://github.com/LargeWorldModel/LWM 、https://x.com/xiaohuggg/status/1759566391693504940?s=20 2. 世界上最快的大型语言模型:Mixtral 8X7B 输出速度为 500 token/s,Llama 2 7B 的速度是 750 tokens/s,速度快但准确性有待提高。相关链接:http://groq.com 、http://wow.groq.com 、https://x.com/xiaohuggg/status/1759457147962941852?s=20 3. Reddit 用户自制 GLIGEN GUI:由于缺少直观的 GUI,一个 Reddit 大佬自己动手制作了一个。用户可以自定义图像中对象的大小、位置和空间关系,强调了用户对生成图像细节的控制能力。相关链接:https://github.com/mutex/gligengui 、https://gligen.github.io 、https://x.com/xiaohuggg/status/1759431911951450437?s=20
2024-12-24
LLM 提示词怎么写
以下是关于 LLM 提示词编写的相关内容: 在“艾木:提示词编程|有必要用 Lisp 语言写提示词吗?”中,“小确幸”这段提示词用 Lisp 语言描述了一个简单工作流,包含对用户输入文本的处理和生成 SVG 卡片等步骤,内部还有一系列子步骤和 fewshot examples。但大语言模型按程序描述的逻辑运行这类复杂程序有难度。 在“走入 AI 的世界”中,提示词(Prompt)是输入给大模型的文本内容,其质量会显著影响大模型回答的质量。 在“藏师傅教你用 AI 三步制作任意公司的周边图片,不用到处找样机文件”中,介绍了用 LLM 生成图像提示词的流程,包括获取 Logo 图片的描述,根据描述和生成意图生成图片提示词,将图片和提示词输入 Comfyui 工作生成等步骤,并给出了相关示例。
2024-12-16
开源的开源的 LLM 微调推理,agent开发平台
以下是为您整理的关于开源的 LLM 微调推理、agent 开发平台的相关内容: LLM 作为 Agent 的“大脑”的特点: 1. 知识获取能力:通过预训练学习大量语言数据,掌握丰富语言信息和常识知识,能处理多种任务。 2. 指令理解:擅长解析人类语言指令,采用深度神经网络进行自然语言理解和生成,精准理解意图。 3. 泛化能力:在未见过的数据上表现良好,能利用先前知识处理新挑战,形成对语言结构的通用理解。 4. 推理和规划:能够进行逻辑推理和未来预测,分析条件制定最佳行动方案,在复杂环境中做出理性选择。 5. 交互能力:拥有强大对话能力,在多人多轮次对话中自然流畅交流,改善用户体验。 6. 自我改进:基于用户反馈和效果评估,通过调整参数、更新算法提升性能和准确性。 7. 可扩展性:可根据具体需求定制化适配,针对特定领域数据微调提高处理能力和专业化水平。 相关产品和平台: 1. ComfyUI:可在其中高效使用 LLM。 2. Vercel AI SDK 3.0:开源的工具,可将文本和图像提示转换为 React 用户界面,允许开发者创建丰富界面的聊天机器人。 3. OLMo7BInstruct:Allen AI 开源的微调模型,可通过资料了解从预训练模型到 RLHF 微调模型的所有信息并复刻微调过程。 4. Devv Agent:能提供更准确、详细的回答,底层基于 Multiagent 架构,根据需求采用不同 Agent 和语言模型。 实例探究: 1. ChemCrow:特定领域示例,通过 13 个专家设计的工具增强 LLM,完成有机合成、药物发现和材料设计等任务。 2. Boiko et al. 研究的 LLM 授权的科学发现 Agents:可处理复杂科学实验的自主设计、规划和执行,能使用多种工具。
2024-12-12
LLM 和 AI Agent的区别
LLM(大型语言模型)和 AI Agent(人工智能智能体)存在以下区别: LLM 主要侧重于语言的理解和生成,具有强大的语言处理能力。它们在大规模语料库上进行预训练,能够通过少量样本展现出泛化能力。然而,其缺点是计算资源消耗大,可能存在偏见和误解。 AI Agent 则为人工智能应用程序提供了全新的功能,包括解决复杂问题、对外界采取行动以及在部署后从经验中学习。它们通过高级推理/规划、工具使用、记忆/递归/自我反思的组合来实现这些功能。AI Agent 能够进行令人难以置信的演示,但目前大多数框架仍处于概念验证阶段,还不能可靠、可重现地完成任务。 基于 LLM 的 AI Agent 以 LLM 置于“大脑”或“控制器”的核心位置,赋予强大的语言理解和生成能力。为扩展感知和行动范围,采用多模态感知技术和工具利用策略,能理解和响应多种类型输入,并与环境有效互动。通过思维链和问题分解技术展现出推理和规划能力,还能从反馈中学习并执行新行动,表现出类似反应式 Agent 的特性。其已在软件开发、科学研究等现实场景中应用,能利用自然语言理解和生成能力与其他 Agent 交流协作。特点是基于大规模神经网络,特别是 Transformer 架构,技术上有 Llama、GPT 等预训练大型语言模型,优点是强大的语言理解、生成和对话能力,缺点是计算资源消耗大,可能存在偏见和误解。
2024-12-09
如何调教LLM写好提示词
以下是关于调教 LLM 写好提示词的相关内容: 1. 无需微调,仅用提示词工程就能让 LLM 获得 tool calling 的功能: 提示词工程主要由提示词注入和工具结果回传两部分代码组成。 提示词注入将工具信息及使用工具的提示词添加到系统提示中,其中 INSTRUCTION 包含 TOOL_EAXMPLE、tools_instructions、REUTRN_FORMAT 三个部分。TOOL_EAXMPLE 用于提示 LLM 理解和使用工具,编写时注意用无关紧要的工具作示例避免混淆。tools_instructions 可通过输入不同工具动态调整,让 LLM 得知可用工具及使用方法。REUTRN_FORMAT 定义调用 API 的格式。 工具结果回传阶段利用正则表达式抓取输出中的“tool”和“parameters”参数,对于 interpreter 工具使用另一种正则表达式提取 LLM 输出的代码,提高使用成功率。识别 LLM 返回的调用工具字典,提取对应值传入工具函数,将结果以 observation 角色返回给 LLM,若接口不接受,可改为回传给 user 角色。 2. 藏师傅教您用 AI 三步制作任意公司的周边图片: 整个流程分为三个部分:获取 Logo 图片的描述、根据 Logo 图片的描述和生成意图生成图片提示词、将图片和提示词输入 Comfyui 工作生成。 用下面的提示词生成关于 Logo 图片的描述:为帮助视障艺术家,需详细描述图像内容,包括摄影、标志设计等方面,控制在 50 字左右。 用 LLM 生成图像提示词:将第一步生成的提示词填入{图像描述}位置,将想生成的周边填入{周边描述}部分。 3. 小七姐:Prompt Engineering a Prompt Engineer 精读翻译: 提示词工程是优化大型语言模型性能的具有挑战性但至关重要的任务,需要复杂推理检查模型错误等。 研究了“PROMPT ENGINEERING A PROMPT ENGINEER”的问题,介绍并分析关键组成部分,如逐步推理模板和上下文规范等。 最终方法 PE2 在多个数据集和任务中表现出色,能进行有意义和针对性的提示词编辑,展现出反事实推理能力。
2024-12-08
LLM对未来的影响有哪些
LLM 对未来的影响主要体现在以下几个方面: 1. 应用程序架构:代理有可能成为 LLM 应用程序架构的核心部分,为人工智能应用程序提供解决复杂问题、对外界采取行动以及从经验中学习等全新功能。但目前大多数代理框架仍处于概念验证阶段。 2. 能力拓展:未来的大型语言模型将能够读取和生成文本,拥有更丰富的知识,能利用现有软件基础架构,具备查看和生成图像与视频、听取发声创作音乐、利用系统 2 进行深入思考、在特定领域自我优化以及针对特定任务定制和调整等能力。 3. 落地应用:LLM 技术正从 demo 向落地阶段发展,在达到一定水平后,其在各个业务场景中的实用性将大大提升。但当前大部分应用仍处于探索阶段,在推理、训练学习效率等方面还有待提高,且与视觉、触觉等技术的搭配尚未成熟。同时,关于数据驱动的概率模型和由第一性原理建立的数理模型如何更好地模拟世界以及两者的融合方式仍有待解决。在应用方面,包括自然语言、ToB、ToC 等领域。
2024-12-03
学习这些知识的方法
以下是关于学习 AI 相关知识的方法: 对于大语言模型(LLM)知识的学习路径: 首先,学习大语言模型入门者的课程,这是基础。 接着,进一步学习面向开发者的课程,以应用于实际项目。 系统学习 LLM 开发: 掌握深度学习和自然语言处理基础,包括机器学习、深度学习、神经网络等基础理论,以及自然语言处理基础,如词向量、序列模型、注意力机制等。相关课程有吴恩达的深度学习课程、斯坦福 cs224n 等。 理解 Transformer 和 BERT 等模型原理,包括 Transformer 模型架构及自注意力机制原理,以及 BERT 的预训练和微调方法。掌握相关论文,如 Attention is All You Need、BERT 论文等。 学习 LLM 模型训练和微调,包括大规模文本语料预处理,使用 LLM 预训练框架,如 PyTorch、TensorFlow 等,以及微调 LLM 模型进行特定任务迁移。相关资源有 HuggingFace 课程、论文及开源仓库等。 进行 LLM 模型优化和部署,包括模型压缩、蒸馏、并行等优化技术,模型评估和可解释性,以及模型服务化、在线推理、多语言支持等。相关资源有 ONNX、TVM、BentoML 等开源工具。 进行 LLM 工程实践和案例学习,结合行业场景进行个性化的 LLM 训练,分析和优化具体 LLM 工程案例,研究 LLM 新模型、新方法的最新进展。 持续跟踪前沿发展动态,关注顶会最新论文、技术博客等资源。 对于低年级小学生的 Genie 模型科普: Genie 模型通过“观看视频”的方法学习,就像小朋友通过看、听、读书和练习来学习新知识。它观看了大量互联网视频,从而学会很多事情。 Genie 模型运用“深度学习”技术让自己更聪明,通过分析学习到的视频内容找出规律和联系,然后根据提示创造全新的虚拟世界。 Genie 模型里有“模型参数”,就像玩具机器人的调节按钮,这些参数能调节模型做不同的事情。 Genie 模型在学习时无需人们告知每个动作的名称,而是通过不断尝试和练习来学习。
2024-12-26
我如何创建一个自己的知识库和对话机器人,当我有问题时可以根据知识库的内容给我一个回答。
要创建一个自己的知识库和对话机器人,并实现根据知识库内容回答问题,您可以参考以下步骤: 1. 了解 RAG 机制:RAG 机制全称为“检索增强生成”(RetrievalAugmented Generation),是一种用于自然语言处理的技术,结合了检索和生成两种主要的人工智能技术。它先从大型数据集中检索与问题相关的信息,然后利用这些信息生成更准确、相关的回答。 2. 创建知识库:创建一个包含大量相关文章和资料的知识库,例如有关 AI 启蒙和信息来源的知识库。通过手工录入的方式陆续将各个板块的文章和资料导入到知识库中。 3. 设计 Bot:在设计对话机器人时,添加创建好的知识库,并设置合适的搜索策略、最大召回数量和最小匹配度,以更好地利用知识库返回的内容进行结合回答。 4. 配置相关要素:在问答机器人的配置中,包括 AI 模型、提示词和知识库。AI 模型如同学习过无数知识的人;提示词用于指定模型的角色和专注技能;知识库则相当于给员工的工作手册。例如,可以使用阿里千问模型,设定角色为“美嘉”,知识库为《爱情公寓》全季剧情。 通过以上步骤,您可以创建一个能够根据知识库内容回答问题的对话机器人。
2024-12-25
我想系统性的,由浅入深的学习AI知识,请给出我一个规划
以下是为您制定的由浅入深系统性学习 AI 知识的规划: 一、基础阶段 1. 编程语言学习 选择 Python 或 JavaScript 等编程语言,学习编程语法、数据结构和算法等基础知识,为后续的 AI 学习打下坚实基础。 2. 了解 AI 基本概念 阅读相关入门文章,熟悉 AI 的术语、基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 二、入门阶段 1. 学习路径引导 参考「」中的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并争取获得证书。 2. 体验 AI 工具和平台 尝试使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 三、深入学习阶段 1. 选择感兴趣的模块 AI 领域广泛,包括图像、音乐、视频等。根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且实用。 2. 学习 AI 基础知识 了解 AI 的发展历程、主要技术(如机器学习、深度学习等)。 学习 AI 在教育、医疗、金融等领域的应用案例。 四、实践阶段 1. 参与实践项目 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 2. 分享与交流 在知识库分享自己实践后的作品和经验,与他人交流学习。 五、前沿关注阶段 1. 关注动态 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,按照以上规划,从编程基础、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能,您将逐步深入 AI 领域,为未来的发展做好准备。
2024-12-24
ppt转word 好用的ai 知识梳理工具
以下是一些好用的将 PPT 转 Word 的 AI 知识梳理工具: 1. Claude:不仅能帮助快速寻找符合条件的论文、提取精炼论文中某部分信息,还能找到适合的 PPT 制作工具并教会使用。 2. Gamma.app:在线 PPT 制作网站,允许通过输入文本和想法提示快速生成幻灯片,支持嵌入多媒体格式。 3. 美图 AI PPT:通过输入简单文本描述生成专业 PPT 设计,包含丰富模板库和设计元素。 4. Mindshow:提供自动布局、图像选择和文本优化等智能设计功能。 5. 讯飞智文:利用科大讯飞在语音识别和自然语言处理领域的技术优势,提供智能文本生成、语音输入、文档格式化等功能。
2024-12-24
想制作个人的知识库国内有什么好的AI工具么
以下是一些国内可用于制作个人知识库的 AI 工具: 1. Kimi 智能助手:是 ChatGPT 的国产平替,上手体验好,适合新手入门学习和体验 AI。不用科学上网、不用付费、支持实时联网,是国内最早支持 20 万字无损上下文的 AI,对长文理解表现出色,能一次搜索几十个数据来源,无广告,能定向指定搜索源(如小红书、学术搜索)。PC 端可通过下载。 2. 飞书:汇集了各类 AI 优质知识库、AI 工具使用实践,助力人人成为效率高手。可通过下载。 此外,学习使用国内大语言模型工具可以从提示词开始。一些国产大模型如智谱和文心可以实现文生图的功能。
2024-12-24
想建立个人知识库使用什么AI工具更好一些
以下是为您推荐的用于建立个人知识库的 AI 工具: 1. AnythingLLM:包含所有 Open WebUI 的能力,额外支持选择文本嵌入模型、选择向量数据库。安装地址:https://useanything.com/download 。安装完成后需进行配置,主要分为三步:选择大模型、选择文本嵌入模型、选择向量数据库。在使用时,可创建独有的 Workspace 与其他项目数据隔离,包括创建工作空间、上传文档并进行文本嵌入、选择对话模式(Chat 模式会综合训练数据和上传文档给出答案,Query 模式仅依靠文档数据给出答案),配置完成后即可进行对话测试。 2. LlamaIndex:是更高一层 LangChain 的抽象,简化了 LangChain 对文本分割、查询的接口,提供了更丰富的 Data Connector。只针对 GPT Model 做 Index,参考 https://gptindex.readthedocs.io/en/latest/ 。 3. ExoBrain 的集成软件 Maimo.ai:作为外脑的主要记忆空间,能捕获多种数字内容并随时随地访问,可挂接和导入外部记忆,能快速理解捕获内容、灵活创作笔记、生成创作建议,可与外脑知识库对话并自动做外部检索完善答案。今年十一月将开放第一个体验版,关注获取最新信息。
2024-12-24
最近有什么新的AI工具
以下是一些新的 AI 工具: 游戏方面: Unity 推出了两款 AI 工具,包括提供新 Copliot 工具,可通过与 Muse Chat 聊天快速启动创建游戏项目,如一键生成塔防类游戏基础框架、创建人物角色动作,还能协助编码和创建 3D 材质、动画等内容。Muse Chat 现已经开放 Waiting list,可通过 https://create.unity.com/aibeta 申请加入,官方提示这个暑假会进一步开放。 Unity Sentis 是第一个将 AI 模型嵌入到实时 3D 引擎中的跨平台解决方案,能在终端用户平台上增强游戏玩法和其他功能,目前还在封测阶段。 思维导图方面: GitMind:免费跨平台,支持多种模式,可通过 AI 自动生成思维导图。 ProcessOn:国内思维导图+AIGC 工具,能利用 AI 生成思维导图。 AmyMind:轻量级在线工具,无需注册登录,支持自动生成节点。 Xmind Copilot:基于 GPT 的 AI 思维导图助手,可一键拓展思路、生成文章大纲。 TreeMind:输入需求由 AI 自动完成思维导图生成。 EdrawMind:提供包括 AI 驱动的头脑风暴功能等一系列 AI 工具。 建筑设计审核规划平面图方面: HDAidMaster:云端工具,在建筑、室内和景观设计领域表现出色,搭载自主训练的建筑大模型 ArchiMaster。 Maket.ai:面向住宅行业,能根据输入自动生成户型图。 ARCHITEChTURES:AI 驱动的三维建筑设计软件,可引入标准和规范约束设计结果。 Fast AI 人工智能审图平台:形成全自动智能审图流程,能实现数据汇总与管理。 需要注意的是,以上内容由 AI 大模型生成,请仔细甄别。每个工具都有其特定的应用场景和功能,建议根据具体需求选择合适的工具。
2024-12-25
推荐一个利用已有图片可以生成新的图片的ai
以下是一些可以利用已有图片生成新图片的 AI 工具: 1. Artguru AI Art Generator:这是一个在线平台,能够生成逼真图像,为设计师提供灵感,丰富创作过程。 2. Retrato:一种 AI 工具,可将图片转换为非凡肖像,拥有 500 多种风格选择,适合制作个性头像。 3. Stable Diffusion Reimagine:新型 AI 工具,通过稳定扩散算法生成精细、具有细节的全新视觉作品。 4. Barbie Selfie Generator:专为喜欢梦幻童话风格的人设计的 AI 工具,能将上传的照片转换为芭比风格,效果很好。 此外,星流一站式 AI 设计工具在入门模式下,可使用多种图像控制功能来精准控制生成图像的内容和风格,如空间关系、线稿、人物长相、姿势等。其参考功能包括全部图片参考功能、原图、景深、线稿轮廓、姿势、Lineart 线稿、Scribble 线稿、光影、Segmant 构图分割、SoftEdge 线稿、配色参考、配色打乱、法线贴图、MLSD 线稿等。 OpenAI 的 DALL·E 模型也可用于图像生成,其图片 API 提供了三种与图片交互的方法:根据文本提示从头开始创建图像、根据新文本提示创建现有图像的编辑、创建现有图像的变体。在测试阶段,默认速率限制为每分钟 50 张图像,若想提高速率限制,可查看相关帮助中心文章。
2024-12-23
怎么利用人工智能为一家一人公司赋能,具体实施办法,图片,视频等除外,讲一些实用的,新的想法
对于一家一人公司而言,利用人工智能赋能可以从以下几个实用且新颖的方面入手: 首先,在客户服务方面,可以运用智能聊天机器人来处理常见问题,提高响应速度和服务质量。通过自然语言处理技术,让机器人能够理解客户的需求并提供准确的回答。 其次,在市场营销中,利用人工智能进行数据分析,深入了解目标客户的行为和偏好,从而精准定位市场,制定更有效的营销策略。 再者,在业务流程优化上,借助人工智能的自动化能力,例如自动化文档处理、自动化邮件分类等,节省时间和精力,提高工作效率。 另外,在财务管理方面,使用人工智能工具进行风险预测和财务规划,帮助做出更明智的决策。 最后,在产品研发中,利用人工智能的创意生成能力,获取新的产品设计思路和创新点。
2024-12-18
未来产业变革和技术创新的焦点
未来产业变革和技术创新的焦点主要体现在以下几个方面: AI 行业: 大型语言模型(LLM)面临模型能力提升、算力算法与数据协同、以评测为中心的体系构建以及平衡用户需求与模型推理深度等多重挑战。解决这些问题有助于推动 LLM 技术的有效应用和商业化进程。 2025 年或将成为 AI 技术逐渐成熟、应用落地取得阶段性成果的关键节点,也是 AI 产业链“资产负债表”逐步修复的年份。 大型基座模型能力的优化与提升,通过创新技术强化复杂推理和自我迭代能力,推动在高价值领域应用,同时优化模型效率和运行成本。 推进世界模型与物理世界融合,构建具备空间智能的世界模型,促进机器人、自主驾驶和虚拟现实等领域发展。 实现 AI 的多模态融合,整合多模态数据提升内容生成的多样性与质量,创造全新应用场景。 新工业革命: 生物技术与人工智能结合,如在医疗保健领域,COVID 已激发生物制药和医疗保健行业的新一波创新。 科技变革与投资: 2024 年正处于一场历史性的科技革命之中,AI 革命预计到 2030 年对 GDP 的贡献将超过以往任何一次革命,这场革命是多种科技融合的产物。 回顾历史,第二次工业革命使电力成为主要动力,信息革命由互联网诞生起始,如今正处于移动互联网尾声,向智能革命迈进。
2024-12-18
新闻资讯场景可以和现在的ai能力结合出哪些新的应用场景
新闻资讯场景与当前 AI 能力结合可以产生以下新的应用场景: 1. 文本生成和内容创作:生成连贯、有逻辑的新闻报道、评论等文本内容。 2. 聊天机器人和虚拟助手:为用户提供新闻相关的咨询和服务。 3. 编程和代码辅助:辅助新闻资讯平台的开发和优化。 4. 翻译和跨语言通信:促进不同语言背景的用户获取新闻资讯。 5. 情感分析和意见挖掘:分析新闻评论中的用户情感和观点,为新闻报道提供参考。 6. 教育和学习辅助:创建与新闻相关的学习材料,辅助新闻知识的学习。 7. 图像和视频生成:根据新闻内容生成相应的图像和视频。 8. 游戏开发和互动体验:将新闻元素融入游戏,增强用户的沉浸式体验。 9. 医疗和健康咨询:提供与健康新闻相关的初步建议和信息查询服务。 10. 法律和合规咨询:帮助解读与新闻相关的法律文件和合规问题。 在专业创作者方面,AI 生成能够为新闻类作品赋予独特风格和想象力,为创作者提供灵感,降低后期制作的门槛和成本。目前该应用主要集中在新闻相关的音乐 MV、短篇电影、动漫等方向。 对于自媒体、非专业创作者,AI 可以帮助解决视频剪辑痛点,如为科技、财经、资讯类重脚本内容的视频生成分镜、视频,降低视频素材制作门槛,还能将文章高效转成视频内容,以及解决同一素材在不同平台分发的成本问题。 对于企业客户,AI 视频生成可以为没有足够视频制作资金的小企业、非盈利机构大幅缩减新闻相关视频的制作成本。
2024-12-17
sd最新的模式是什么
Stable Diffusion(SD)最新的模式包括: 1. 隐藏在光里的秘密,AI造字光与影的艺术中,将 lightingBasedPicture 模型的终止时机由 0.6 提高到 0.7 能使文字更好识别,但再提高字会显得太突兀,需把握平衡。 2. Stability AI 正式发布了期待已久的 SDXL 1.0。SDXL 1.0 由两个模型组成,第二个模型能生成更鲜艳、更准确的颜色,且比前身具有更好的对比度、光照和阴影。SDXL 1.0 是所有开放获取图像模型中参数数量最多的模型之一,拥有 3.5B 参数基础模型和 6.6B 参数模型集成管道。 如果您想要最新的 controlnet 模型,可以添加公众号【白马与少年】,回复【SD】获取。
2024-12-17
2024年11月11日世界AI新闻有哪些
以下是 2024 年 11 月 1 日至 11 月 8 日的部分世界 AI 新闻: 11 月 1 日: 《》来自南乔,10 月 AI 行业大事件盘点包括多家公司的重要发布和创新,如 OpenAI 推出多项新功能,字节发布 AI 智能体耳机,以及各大模型的开源。趋势方面,强化学习被认为是推动 AGI 发展的关键技术,原生多模态模型逐渐成为研究热点。新兴应用如 AI 音乐创作、翻译和智能助手等受到关注,整体呈现出技术与应用的快速发展态势。 《》来自歸藏,10 月份美国 AI 聊天机器人市场报告显示,ChatGPT 仍是市场领导者,但份额逐渐下降。谷歌和微软在争夺第二的位置,Perplexity 和 ClaudeAI 则实现高速增长,正在从 ChatGPT 和 Gemini 手中蚕食市场份额。总体来看,专业 AI 工具的增长势头强劲,而初创公司的用户获取相对缓慢。 《》比尔・盖茨在采访中讨论了人工智能的革命性影响,认为 AI 将使每个人都能成为“超级个体”,改变人机交互方式。他强调 AI 将显著降低白领工作的成本,并逐渐影响蓝领市场。盖茨还提到他对全球健康和气候问题的关注,认为技术创新速度超出预期,未来 20 年将是充满希望的时期。他同时探讨了可再生能源的发展,尤其是核能和太阳能的潜力。 11 月 8 日: 《》由上海外国语大学图书馆发布,探讨了 AI 素养在数智时代的重要性和演变。报告指出,AI 素养不仅涉及技术知识,还包括态度、价值观和应对复杂需求的能力。随着 AI 技术的广泛应用,社会对 AI 素养的需求日益增长。 其它一些报告发布在: AIGCxChina 研究院、无界 AI:《》 《》(英文) 《》 请注意,这只是部分新闻,可能还有其他未涵盖的内容。
2024-11-11
目前世界上最强的Ai对话是那个
目前在世界范围内,很难确切地指出哪一个是最强的 AI 对话产品。不过,ChatGPT 是一款具有广泛影响力和显著特点的 AI 对话系统。 ChatGPT 由 OpenAI 开发,具有以下优势: 1. 开创性:作为首批向公众开放的大规模商用 AI 对话系统之一,在全球掀起了 AI 革命,改变了人们对 AI 的认知,为技术发展指明方向。 2. 用户体验:界面简洁直观,交互流畅自然,新手也能轻松上手,降低了普通人接触和使用 AI 的门槛。 3. 技术实力:背后的 GPT 系列模型性能和能力处于行业领先,在语言理解深度和生成内容质量上表现出色,能应对各种复杂任务和挑战。 然而,ChatGPT 也存在一些局限性: 1. 随着 AI 技术发展,已不再是市场上唯一的顶级选择,其他产品在特定领域可能超越它。 2. 对于国内用户,可能因网络连接问题遇到连接不稳定、响应延迟等情况,影响使用体验。 此外,大型语言模型改变了聊天机器人的局面,使得如今最好的聊天机器人能与人类进行自由流畅的对话。像 Replika、Anima 和 CharacterAI 等产品也受到许多用户的青睐,用户在与它们的关系中找到了真正的意义,并花费大量时间进行对话。
2024-10-22
有关于2024年世界人工智能大会的相关文章吗?
2024 年世界人工智能大会在上海举办,展示了 500 家企业的 1500 项展品,突出了机器人和大模型技术。国产机器人和大模型在 AI 应用、人机交互和专业领域展现出巨大潜力,预示着 AI 技术正快速融入日常生活和各行各业。相关文章包括: 《》 《》 《世界人工智能大会》 《》 《》 《》 《》 《》
2024-07-11
目前世界上最好的AI编程辅助工具是哪个
目前世界上有许多优秀的 AI 编程辅助工具,以下是一些常见的: GitHub Copilot:由 GitHub 联合 OpenAI 和微软 Azure 团队推出,支持多种语言和 IDE,能快速提供代码建议。 通义灵码:阿里巴巴团队推出,提供多种编程辅助能力。 CodeWhisperer:亚马逊 AWS 团队推出,由机器学习技术驱动,可实时提供代码建议。 CodeGeeX:智谱 AI 推出的开源免费 AI 编程助手,基于 130 亿参数的预训练大模型。 Cody:Sourcegraph 推出的 AI 代码编写助手,借助强大的代码语义索引和分析能力。 CodeFuse:蚂蚁集团支付宝团队为国内开发者提供的免费 AI 代码助手。 Codeium:一个由 AI 驱动的编程助手工具,提供代码建议、重构提示和代码解释。 这些工具都可以帮助提高编程效率,但每个工具的功能和适用场景可能会有所不同。你可以根据自己的需求选择最适合的工具。更多辅助编程 AI 产品,还可以查看 https://www.waytoagi.com/category/65。请注意,内容由 AI 大模型生成,请仔细甄别。
2024-07-11
世界生成式AI视频挑战
世界生成式 AI 视频挑战是由野神殿、通往 AGI 之路联合发起的一系列活动,旨在探索生成式 AI 在视频创作领域的应用和潜力。以下是对该挑战的相关介绍: 活动已完成:Video Battle 视频挑战第 3 期:眼睛 主题:眼睛 这是世界第三届生成式 AI 视频挑战的第三期,主题为"眼睛"。参赛者需要根据固定的框架场景和镜头进行自由发挥,用 AI 转化成不长于 4 秒的视频。最终,精选的视频将被拼接在一起,组成一个完整的作品。 活动已完成:Video Battle AI 视频挑战第 4 期蛋 这是世界第三届生成式 AI 视频挑战的第四期,主题为"蛋"。与第三期类似,参赛者需要根据提供的素材进行创作,并使用 AI 将其转化为视频。 活动已完成:Video Battle 视频挑战第 2 期:漂浮 主题:漂浮 这是世界第二届生成式 AI 视频挑战的第二期,主题为"漂浮"。参赛者需要根据固定的框架场景和镜头进行自由发挥,用 AI 转化成不长于 4 秒的视频。最终,精选的视频将被拼接在一起,组成一个完整的作品。 在这个挑战中,参赛者需要根据固定的框架场景和镜头进行自由发挥,用 AI 转化成不长于 4 秒的视频。最终,精选的视频将被拼接在一起,组成一个作品。
2024-05-15