直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

LLM通过已知的“世界知识”进行训练,那LLM是否能够为人类产生新的“世界知识”?

回答

LLM (大型语言模型) 确实能够基于已有的"世界知识"产生一些新的知识和见解,但这种新知识的创造过程更多是组合、推理和外推现有知识,而非从无到有地创造全新的知识。我们可以从以下几个方面来解释:

  1. 知识组合和关联 LLM 擅长将已有的知识片段进行组合和建立新的联系,从而产生看似新颖的见解。例如结合"物理学"和"信息论"的知识,推导出"比特"在物理系统中的作用等。

  2. 知识推理和外推 基于已有的知识框架,LLM 可以进行逻辑推理并对已知结论作出外推和发散,得到一些新的、未曾见过的结论。例如利用量子理论推导出新的粒子存在可能性。

  3. 模式发现 LLM 通过学习大量数据,能够发现一些新的数据模式和规律性,为人类发现新知识提供线索和启发。例如在医疗数据中发现一些疾病新的症状模式等。

  4. 知识重组和解构 LLM 可以对知识进行解构和重新组织,从而产生一些新的表述方式和见解角度,虽然本质知识未发生变化。

  5. 模拟思维实验 利用 LLM 的计算能力,我们可以模拟一些在现实中无法开展的思维实验,探索一些未知的领域和前沿,获得新的认知。

总的来说,LLM 在生成新知识方面的能力是有限的,还难以完全取代人类的创造力和想象力。但它可以通过组合、关联、外推等方式,为人类发现新知识提供有价值的辅助和支持作用。未来 LLM 将如何推动人类知识的发展仍有待进一步观察。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

其他人在问
如何将传统知识库通过LLM能力转化成更智能与精细化的知识库?包括但不限于分段、QA问答和图片解析描述和总结
将传统知识库通过 LLM 能力转化为更智能和精细化的知识库是一个复杂但可行的过程,以下是一些关键步骤和方法: 1. 数据预处理:对传统知识库中的内容进行清理、格式化和标准化,确保数据的质量和一致性。 2. 内容分段:根据主题和逻辑结构,将长篇的知识内容合理分段,使信息更易于理解和处理。 3. 提取关键信息:从文本中提取重要的概念、实体和关系,为后续的问答和总结做准备。 4. 构建 QA 问答对:分析知识库中的内容,设计有针对性的问题和准确的答案,形成问答对,以方便用户快速获取所需信息。 5. 图片解析描述:对于包含图片的内容,使用图像识别技术提取关键元素,并进行详细的描述和解释。 6. 总结归纳:对分段后的内容进行总结,提炼核心要点,帮助用户快速了解主要内容。 在实施过程中,需要不断优化和调整方法,以确保转化后的知识库能够满足用户的需求,提供更高效和准确的服务。
2024-11-18
目前最强 llm
目前在大型语言模型(LLM)领域,Llama2 70B 可能是最强大的开源权重模型。它由 Meta.ai 发布,包含 700 亿个参数,模型的权重、架构和相关论文均已公开,在文件系统上表现为两个文件:一个包含参数的文件,以及一段运行这些参数的代码。参数文件大小约 104GB,采用 float 16 数据类型。 此外,GPT4V 是基于最先进的 LLM 并使用大量多模态数据训练的具有视觉能力的先进模型,在理解和处理不同输入模态的任意组合方面表现出色,支持多种输入和工作模式。 需要注意的是,尽管语言模型能力令人印象深刻,但仍存在一些限制,如生成的“幻觉”问题,在需要高级推理能力的任务上存在困难,还需要更具挑战性和强大的评估来衡量其真正的理解能力。
2024-11-15
有哪些工具直接可以调用国外的多个LLM
以下是一些关于能够调用国外多个 LLM 的相关信息: 开源项目作者 ailm 提出一种仅使用提示词工程和精巧的代码设计,让 LLM 获得稳定的 tool calling 能力,使用多个不具备该功能的 LLM 进行实验,成功率达 100%,工作基于 comfyui 开发,适合无代码基础的人员复现和修改。 在高级提示词工程领域,工具、连接器和技能的整合能显著增强 LLM 的能力。工具是指 LLM 可利用的外部功能或服务,扩展任务范围;连接器是 LLM 与外部工具或服务的接口,管理数据交换和通信;技能是 LLM 可执行的专门功能。 目前开源模型与专有产品存在差距但在缩小,如 Meta 的 LLaMa 模型引发一系列变体。当开源 LLM 达到一定准确度水平时,预计会有大量实验等。开发人员对 LLM 操作工具的研究尚不深入,一些工具如缓存(基于 Redis)、Weights & Biases、MLflow、PromptLayer、Helicone 等得到较广泛使用,还有新工具用于验证 LLM 输出或检测攻击。多数操作工具鼓励使用自身的 Python 客户端进行 LLM 调用。
2024-11-12
集成LLM的工具
以下是关于集成 LLM 的工具的相关内容: 一、“手臂和腿部”:赋予模型使用工具的能力 1. 从知识挖掘转向行动导向,增加模型使用工具的能力,有望在消费者和企业领域实现一系列用例。 对于消费者,LLMs 可能给出菜谱建议并订购食材,或推荐早午餐地点并预订餐桌。 在企业领域,创始人可接入 LLMs 使应用程序更易用,如在 Salesforce 等应用中,用户能用自然语言更新,模型自动更改,减少维护 CRM 所需时间。 2. LLM 虽对常见系统有复杂理解能力,但无法执行提取的信息。不过,公司在不断改善其使用工具的能力。 老牌公司如必应、谷歌和初创公司如 Perplexity、You.com 推出搜索 API。 AI21 Labs 推出 JurassicX,解决独立 LLMs 缺陷。 OpenAI 推出 ChatGPT 插件测试版,允许与多种工具交互,在 GPT3.5 和 GPT4 中引入函数调用,允许开发者将 GPT 能力与外部工具链接。 二、无需微调,仅用提示词工程就能让 LLM 获得 tool calling 的功能 1. 提示词工程主要由提示词注入和工具结果回传两部分代码组成。 2. 提示词注入用于将工具信息及使用工具的提示词添加到系统提示中,包含 TOOL_EAXMPLE、tools_instructions、REUTRN_FORMAT 三个部分。 TOOL_EAXMPLE 提示 LLM 如何理解和使用工具,编写时用无关紧要工具作示例避免混淆。 tools_instructions 是通用工具字典转换成 LLM 可读的工具列表,可动态调整。 REUTRN_FORMAT 定义调用 API 格式。 3. 工具结果回传阶段利用正则表达式抓取输出中的“tool”和“parameters”参数,对于 interpreter 工具使用另一种正则表达式提取 LLM 输出的代码,提高使用成功率。通过识别 LLM 返回的调用工具字典,提取对应值传入工具函数,将结果以 observation 角色返回给 LLM,对于不接受某些角色的 LLM 接口,可改为回传给 user 角色。通过以上提示词工程,可让无 tool calling 能力的 LLM 获得稳定的该能力。
2024-11-12
摘要总结作为 llm 训练的下游任务,一般的训练流程是怎样的
作为 LLM 训练的下游任务,一般的训练流程如下: 1. 首先从大量文本数据中训练出一个基础 LLM。 2. 随后使用指令和良好尝试的输入和输出来对基础 LLM 进行微调和优化。 3. 接着通常使用称为“人类反馈强化学习”的技术进行进一步细化,以使系统更能够有帮助且能够遵循指令。 在训练过程中,会涉及到一些相关的理论探讨和评价指标: 理论探讨方面,如在推理阶段对 InContext Learning 能力的运行分析,将其视为隐式微调,通过前向计算生成元梯度并通过注意力机制执行梯度下降,且实验表明 LLM 中的某些注意力头能执行与任务相关的操作。 评价指标方面,entropylike 指标(如 crossentropy 指标)常用于表征模型的收敛情况和测试集的简单评估(如 Perplexity 指标),但对于复杂的下游应用,还需更多指标,如正确性(Accuracy)、信息检索任务中的 NDCG@K 指标、摘要任务中的 ROUGE 指标、文本生成任务中的 BitsperByte 指标、不确定性中的 ECE 指标、鲁棒性(包括 invariance 和 equivariance)、公平性、偏见程度和有毒性等。
2024-11-07
如何学会ollma dify
以下是关于学习 Ollama 的详细步骤: 1. 了解 Ollama :Ollama 是一个开源的框架,旨在简化在本地运行大型语言模型(LLM)的过程。它是一个轻量级、可扩展的框架,提供了简单的 API 来创建、运行和管理模型,还有预构建模型库,降低了使用门槛,适合初学者或非技术人员使用,特别是希望在本地与大型语言模型交互的用户。 2. 安装 Ollama : 官方下载地址:https://ollama.com/download 。 安装完成后,可通过访问 http://127.0.0.1:11434/ 判断是否安装成功。 3. 启动 Ollama : 从 ollama 的 github 仓库找到对应版本并下载。 启动 ollama 后,在 cmd 中输入 ollama run gemma2 将自动下载 gemma2 模型到本地并启动。 将 ollama 的默认 base URL=http://127.0.0.1:11434/v1/ 以及 api_key=ollama 填入 LLM 加载器节点即可调用 ollama 中的模型进行实验。 4. 常见报错及解决方案:如果 ollama 连接不上,很可能是代理服务器的问题,请将 127.0.0.1:11434 添加到不使用代理服务器的列表中。 5. 使用 Ollama 运行本地大模型: 安装完成 ollama 后,在命令行中运行相应命令。 可通过查看并选择要运行的本地大模型,如 llama2 大模型。考虑机器配置及不同版本的内存要求选择合适的模型参数。运行时,ollama 会自动下载大模型到本地。
2024-11-06
本群怎么实现的调用知识库
要实现本群对知识库的调用,可以通过以下两种方式: 1. 在 Bot 内使用知识库: 登录。 在左侧导航栏的工作区区域,选择进入指定团队。 在 Bots 页面,选择指定 Bot 并进入 Bot 详情页。 在 Bot 编排页面的知识库区域,单击加号图标,添加指定的知识库。 (可选)添加知识库后,可以在自动调用下拉界面内,调整知识库的配置项。配置项说明如下: 最大召回数量:Bot 在调用知识库匹配用户输入内容时,返回的数据片段数量,数值越大返回的内容越多。 最小匹配度:Bot 在调用知识库匹配用户输入内容时,会将达到匹配度要求的数据片段进行召回。如果数据片段未达到最小匹配度,则不会被召回。 调用方式:知识库的调用方式。自动调用:每轮对话将自动从所有关联的知识库中匹配数据并召回;按需调用:您需要在人设与回复逻辑中提示 Bot 调用 RecallKnowledge 方法,以约束 Bot 在指定时机从知识库内匹配数据。 (可选)在预览与调试区域调试 Bot 能力时,扩展运行完毕的内容可以查看知识库命中并召回的分片内容。 2. 在工作流内使用 Knowledge 节点: 登录。 在左侧导航栏的工作区区域,选择进入指定团队。 在页面顶部进入工作流页面,并打开指定的工作流。 在左侧基础节点列表内,选择添加 Knowledge 节点。
2024-11-21
AI知识库有什么
AI 知识库主要包括以下内容: 通往 AGI 之路:这是一个由开发者、学者和有志人士等参与的学习社区和开源的 AI 知识库。在这里,用户既是知识的消费者,也是知识的创作者。它不仅是一个知识库,还是连接学习者、实践者和创新者的社区,让大家在这里碰撞思想,相互鼓舞,一同成长。 特点: 由一群热爱 AI 的专家和爱好者共同建设。 大家贡献并整合各种 AI 资源,使大家可以轻松学习各种 AI 知识,应用各类 AI 工具和实战案例等。 提供一系列开箱即用的工具,如文生图、文生视频、文生语音等详尽的教程。 追踪 AI 领域最新的进展,时刻更新,让用户每次访问都能有新的收获。 链接: https://waytoagi.com/ 即刻体验:https://waytoagi.com/ 此外,还有关于 Coze 的知识库相关内容,如大圣撰写的文章,帮助非编程人士理解 AI 时代的知识库,包括其概念、实现原理、能力边界,以及在通往 AGI 之路大群中通过对话获取知识库中资料的原理,还有如何更好地使用 Coze 等 AI Agent 平台中的知识库组件来打造更加强大的智能体。
2024-11-21
如何将知识库里的文件进行分类清晰数据,使其变得更加智能化
以下是关于如何将知识库里的文件进行分类清晰数据,使其变得更加智能化的方法: 1. 在线知识库 点击创建知识库,创建一个画小二课程的 FAQ 知识库。 飞书在线文档中每个问题和答案以分割,可点击编辑修改和删除。 点击添加 Bot,并在调试区测试效果。 2. 本地文档 注意拆分内容,提高训练数据准确度,将海报的内容训练到知识库里面。 对于画小二这个课程,80 节课程分为 11 个章节,不能一股脑全部放进去训练。 首先将 11 章的大的章节名称内容放进来,章节内详细内容依次按固定方式进行人工标注和处理。 然后选择创建知识库自定义清洗数据。 3. 发布应用 点击发布,确保在 Bot 商店中能够搜到。 4. 飞书知识库 在飞书里面选择对应的文件夹,一次最多智能选择 20 个文件(若文件大于 20 个可多建几个知识库)。 可以选择自动进行数据清洗,数据清洗是把数据进行类结构化整理,内容中的图片资料也会保留。 测试对话,基本反馈正常,目前 coze 存在不稳定版本,需要不断调试完善。 5. Excel 知识库 可以增加其他形式的知识库。 上传表格的知识库不要过于复杂,不要有合并表格情况,同时系统不认不同的 Sheet。 数据处理完成会显示 100%进度,加工出来的数据,点击添加 Bot,就增加到知识库中,然后测试发布和返回。 6. 网页知识库 有自动采集和手动采集两种方式,手动采集需要安装插件,操作稍微有点小复杂。 选择批量添加,写入画小二官网的地址,可根据需求添加自己的网站。 将网站所有的页面都扫描出来,点击确认,将全站数据解析并保存到知识库里面,按照默认自动清洗数据。 7. 创建知识库并上传文本内容 本地文档:在文本格式页签下,选择本地文档,然后单击下一步。将要上传的文档拖拽到上传区,或单击上传区域选择要上传的文档。目前支持上传.txt、.pdf、.docx 格式的文件内容,每个文件不得大于 20M,一次最多可上传 10 个文件。当上传完成后单击下一步。选择内容分段方式,包括自动分段与清洗(系统会对上传的文件数据进行自动分段,并会按照系统默认的预处理规则处理数据)和自定义(手动设置分段规则和预处理规则,包括分段标识符、分段最大长度、文本预处理规则,如替换掉连续的空格、换行符和制表符,删除所有 URL 和电子邮箱地址)。单击下一步完成内容上传和分片。
2024-11-21
如何做好中国市场的知识库可以让ai学习并给出详细的三年计划
很抱歉,目前知识库中没有关于如何做好中国市场的知识库让 AI 学习并给出详细三年计划的相关内容。但一般来说,要做好这个计划,您可以从以下几个方面考虑: 1. 市场调研:深入了解中国市场的特点、需求、竞争态势等,为 AI 提供丰富准确的数据。 2. 数据整理:将收集到的市场信息进行分类、清洗和标注,以便 AI 能够有效学习。 3. 设定目标:明确三年中在市场份额、客户满意度、品牌知名度等方面的具体目标。 4. 阶段规划:第一年着重基础建设,如数据积累和模型训练;第二年优化模型,拓展应用场景;第三年实现规模化应用和持续优化。 5. 技术支持:确保有足够的技术团队来维护和更新 AI 系统。 6. 反馈机制:建立有效的反馈渠道,根据市场变化和用户反馈及时调整 AI 的学习方向。 以上只是一个初步的框架,您还需要根据具体的行业和市场情况进行进一步的细化和完善。
2024-11-20
你现在是一个学习AI 方面的小白,你下定决心要去学习AI的相关知识。你应该从哪入手
对于决心学习 AI 相关知识的新手,建议从以下方面入手: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出自己的作品。 在知识库提供了很多大家实践后的作品、文章分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 对于不会代码的新手,若希望继续精进 AI 学习,可以尝试了解以下作为基础的内容: 1. AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 4. 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,中学生可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能,为未来的 AI 发展做好准备。但需注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-11-19
如何组建自己的本地知识库
以下是组建自己本地知识库的详细步骤: 一、了解 RAG 技术 因为利用大模型的能力搭建知识库本身就是一个 RAG 技术的应用,所以在进行本地知识库的搭建实操之前,需要先对 RAG 有大概的了解。 RAG 是指检索增强生成(Retrieval Augmented Generation)。当需要依靠不包含在大模型训练集中的数据时,通过检索外部数据,然后在生成步骤中将这些数据传递给 LLM。 RAG 应用可抽象为以下 5 个过程: 1. 文档加载(Document Loading):从多种不同来源加载文档,如 PDF 等非结构化数据、SQL 等结构化数据以及 Python、Java 之类的代码等。 2. 文本分割(Splitting):把 Documents 切分为指定大小的块,称为“文档块”或“文档片”。 3. 存储: 将切分好的文档块进行嵌入(Embedding)转换成向量的形式。 将 Embedding 后的向量数据存储到向量数据库。 4. 检索:通过某种检索算法找到与输入问题相似的嵌入片。 5. Output(输出):把问题以及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示一起生成更加合理的答案。 二、通过 Open WebUI 使用大模型 1. 首先访问相关网址。打开页面时,使用邮箱注册账号。 2. 登陆成功后,Open WebUI 一般有两种使用方式: 聊天对话。 RAG 能力,即让模型根据文档内容回答问题,这是构建知识库的基础之一。 三、本地知识库进阶 如果想要对知识库进行更加灵活的掌控,需要一个额外的软件:AnythingLLM。这个软件包含了所有 Open WebUI 的能力,并且额外支持了以下能力: 1. 选择文本嵌入模型。 2. 选择向量数据库。 安装地址:https://useanything.com/download 。安装完成后,会进入到其配置页面,主要分为三步: 1. 第一步:选择大模型。 2. 第二步:选择文本嵌入模型。 3. 第三步:选择向量数据库。 构建本地知识库: 1. 在 AnythingLLM 中创建自己独有的 Workspace 跟其他的项目数据进行隔离。 2. 首先创建一个工作空间。 3. 上传文档并且在工作空间中进行文本嵌入。 4. 选择对话模式。AnythingLLM 提供了两种对话模式: Chat 模式:大模型会根据自己的训练数据和上传的文档数据综合给出答案。 Query 模式:大模型仅仅会依靠文档中的数据给出答案。 5. 测试对话。当上述配置完成之后,就可以跟大模型进行对话了。 最后,送给大家一句话:看十遍不如实操一遍,实操十遍不如分享一遍。如果对 AI Agent 技术感兴趣,可以联系作者或者加免费知识星球(备注 AGI 知识库)。
2024-11-19
最新的文生视频/图生视频能力是什么
以下是关于最新的文生视频/图生视频能力的介绍: PIKA1.0 启用了全新的模型,文生视频质量大幅提升,例如输入“Cinematic,happy laughing girl in office,Pixar style”的 Prompt 能瞬间生成匹配皮克斯水平的镜头,且稳定性和神情表现出色,爆杀市面上所有的 AI 视频。在文生图方面,新模型也极其稳定。同时,图生视频效果很棒,人的一致性逆天,语义理解强,动作幅度大。此外,还有一些小技巧,如在右下角第三个设置里,负面提示(Negative prompt)可以常驻“blurry,out of focus,twisted,deformed”,提示词相关性别设 5 15 之间效果较好。 这半年来,除传统的文生视频、图生视频能力迭代外,主要技术发展还围绕着通过转绘改变画风、视频内人物识别和替换方向。在服务头部创作者方面,未来产品会强化编辑器能力和视频细节可控性,并智能化后期制作任务。影视后期方向,可将动捕演员表演转化为虚拟角色提高特效制作效率。专业领域,创作者能通过草图分镜验证效果。在 C 端大众消费侧,AI 视频有望在小说、网文阅读、短情景剧等内容消费方向发挥潜力,人物识别和替换可衍生电商平台虚拟试衣间能力。Viggle、DomoAI 的产品中的模板套用能力若低成本开放在短视频产品中,可能带来新的爆发周期。 Stable Video Diffusion 1.1 新模型以及 stablevideo.com 开始内测,清晰度、控制方式和效果都有很大提升,目前提供文生视频、图生视频两种方式,文生视频先生成 4 张图像选一张用于生成视频,图生视频提供几种控制方式(仅开放了一部分),另外目前提供 17 种风格。
2024-11-10
近期有什么新的AI软件?
以下是近期一些新的 AI 软件: You.com:是一款具有多种搜索模式且注重隐私的搜索引擎。 Genspark:通过 Sparkpages 来满足用户个性化的搜索需求。 Rockset:刚被 OpenAI 收购,提供实时搜索和分析数据库服务。 Butterflies AI:人类与 AI 共存的社交软件。 MeetRecord:可以对销售通话进行记录和辅导的 AI 助手。 此外,还有以下一些 AI 应用: 超级简历优化助手:AI 简历优化工具,使用自然语言处理技术,帮助用户优化简历提高求职成功率。 酷家乐等设计软件:AI 室内设计方案生成,结合图像生成、机器学习技术,快速生成个性化室内设计方案。 Amper Music:AI 音乐创作辅助工具,运用机器学习、音频处理技术,协助音乐创作者进行创作。 松果倾诉智能助手:AI 情感咨询助手,基于自然语言处理、情感分析技术,为用户提供情感支持和建议。 小佩宠物智能设备:AI 宠物健康监测设备,借助传感器数据处理、机器学习技术,实时监测宠物健康状况。 马蜂窝智能行程规划:AI 旅游行程规划器,利用数据分析、自然语言处理技术,根据用户需求生成个性化旅游行程。 作业帮智能辅导:AI 在线教育个性化辅导,通过机器学习、自然语言处理技术,为学生提供个性化学习辅导。 另外还有: AI 游戏道具推荐系统:利用数据分析、机器学习技术,根据玩家需求推荐游戏道具。 AI 天气预报分时服务:基于数据分析、机器学习技术,如彩云天气分时预报,提供精准的分时天气预报。 AI 医疗病历分析平台:运用数据分析、自然语言处理技术,如医渡云病历分析系统,分析医疗病历,辅助诊断。 AI 会议发言总结工具:借助自然语言处理、机器学习技术,如讯飞听见会议总结功能,自动总结会议发言内容。 AI 书法作品临摹辅助工具:通过图像识别、数据分析技术,如书法临摹软件,帮助书法爱好者进行临摹。
2024-11-10
ChatGPT最新的版本是什么
目前 ChatGPT 官网主要有以下版本: 1. GPT3.5:免费版本,拥有 GPT 账号即可使用,但智能程度相对较低,无法使用 DALL.E3(AI 画图功能)、GPTs 商店和高级数据分析等插件,知识更新到 2022 年 1 月。 2. GPT4:智能程度较高,知识更新到 2023 年 12 月。想要使用更多功能需要升级到 PLUS 套餐,收费标准为 20 美金一个月,还有团队版和企业版,费用更贵,一般推荐使用 PLUS 套餐。 3. ChatGPT 4o:5.13 发布,可免费体验,但免费体验次数有限,知识更新到 2023 年 10 月。想要更多功能也需要升级到 PLUS 套餐。
2024-11-09
最新的开源数字人项目
以下是一些最新的开源数字人项目: 1. 项目地址:https://github.com/wanh/awesomedigitalhumanlive2d ,选择了 live2d 作为数字人躯壳,其驱动方式相比 AI 生成式更可控和自然,相比虚幻引擎更轻量和简单,卡通二次元形象接受度更高。Live2D 的 SDK 驱动方式可参考官方示例:https://github.com/Live2D 。 2. 开源数字人组合方案: 第一步:先剪出音频,使用 https://elevenlabs.io/speechsynthesis 或使用 GPTsovits克隆声音,做出文案的音频。 第二步:使用 wav2lip 整合包,导入视频和音频,对口型得到视频。基础 wav2lip+高清修复整合包下载地址:https://github.com/Rudrabha/Wav2Lip 。产品:https://synclabs.so/ 。 3. 构建数字人灵魂:可借助开源社区的力量,如 dify、fastgpt 等成熟的高质量 AI 编排框架。在开源项目中使用了 dify 的框架,可利用其编排和可视化交互任意修改流程,构造不同的 AI Agent,具体部署过程参考 B 站视频:https://www.bilibili.com/video/BV1kZWvesE25 。如有更高度定制的模型,也可在 Dify 中接入 XInference 等模型管理平台部署自己的模型。数字人 GUI 工程中保留了 LLM、ASR、TTS、Agent 等多个模块,便于扩展。
2024-11-01
总结一下最新AI动态和新闻,各种新技术和新的应用方向
以下是最新的 AI 动态和新闻,以及新技术和新的应用方向: 技术研究方向: 数学基础:包括线性代数、概率论、优化理论等。 机器学习基础:涵盖监督学习、无监督学习、强化学习等。 深度学习:涉及神经网络、卷积网络、递归网络、注意力机制等。 自然语言处理:包含语言模型、文本分类、机器翻译等。 计算机视觉:有图像分类、目标检测、语义分割等。 前沿领域:如大模型、多模态 AI、自监督学习、小样本学习等。 科研实践:包括论文阅读、模型实现、实验设计等。 应用方向: 编程基础:如 Python、C++等。 机器学习基础:如监督学习、无监督学习等。 深度学习框架:如 TensorFlow、PyTorch 等。 应用领域:包括自然语言处理、计算机视觉、推荐系统等。 数据处理:涵盖数据采集、清洗、特征工程等。 模型部署:涉及模型优化、模型服务等。 行业实践:包含项目实战、案例分析等。 AIGC 周刊动态: 2024 年 7 月第二周:快手发布可灵网页版及大量模型更新;阶跃星辰发布多款模型;商汤打造类似 GPT4o 的实时语音演示;GraphRAG:微软开源新型 RAG 架构。 2024 年 7 月第三周:Anthropic 新增分享和后台功能;LLM 分布式训练框架 OpenDiLoCo;Odysseyml 重构 AI 视频生成技术。 2024 年 7 月第四周:Open AI 发布 GPT4omini、Mistral 发布三个小模型,还有其他一堆小模型等。 2024 年 7 月第五周:Meta 发布的 Llama3.1 405B 模型,具备 128K token 上下文窗口及对 8 种语言的改进,能与领先闭源模型竞争。评估显示其在指令遵循、代码和数学能力上表现优异。同时,还提到 AI 音乐工具 Udio 的大规模更新,以及 OpenAI 推出的 SearchGPT 搜索功能。 新手学习 AI 的方法: 了解 AI 基本概念:阅读「」部分,熟悉术语和基础概念,了解主要分支及联系,浏览入门文章。 开始学习之旅:在「」中找到为初学者设计的课程,推荐李宏毅老师的课程,通过在线教育平台按自己节奏学习。 选择感兴趣的模块深入学习:如图像、音乐、视频等,掌握提示词技巧。 实践和尝试:实践巩固知识,使用各种产品创作,分享实践成果。 体验 AI 产品:与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解工作原理和交互方式。
2024-10-31
最新的AI可以做到什么程度的智能
目前最新的 AI 能够达到以下程度的智能: 1. 聊天机器人:具备基本对话能力,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 推理者:具备人类推理水平,能够解决复杂问题,如 ChatGPT,能够根据上下文和文件提供详细分析和意见。 3. 智能体:不仅具备推理能力,还能执行全自动化业务,但目前许多 AI 智能体产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。 4. 创新者:能够协助人类完成新发明,如谷歌 DeepMind 的 AlphaFold 模型,可以预测蛋白质结构,加速科学研究和新药发现。 5. 组织:最高级别的 AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。 例如 GPT3 及其半步后继者 GPT3.5(在 2023 年 3 月升级为 GPT4 之前,它驱动了现在著名的 ChatGPT)在某种程度上是朝着 AGI 迈出的巨大一步,而早期的模型像 GPT2 等实际上没有真正连贯回应的能力。
2024-10-30
2024年11月11日世界AI新闻有哪些
以下是 2024 年 11 月 1 日至 11 月 8 日的部分世界 AI 新闻: 11 月 1 日: 《》来自南乔,10 月 AI 行业大事件盘点包括多家公司的重要发布和创新,如 OpenAI 推出多项新功能,字节发布 AI 智能体耳机,以及各大模型的开源。趋势方面,强化学习被认为是推动 AGI 发展的关键技术,原生多模态模型逐渐成为研究热点。新兴应用如 AI 音乐创作、翻译和智能助手等受到关注,整体呈现出技术与应用的快速发展态势。 《》来自歸藏,10 月份美国 AI 聊天机器人市场报告显示,ChatGPT 仍是市场领导者,但份额逐渐下降。谷歌和微软在争夺第二的位置,Perplexity 和 ClaudeAI 则实现高速增长,正在从 ChatGPT 和 Gemini 手中蚕食市场份额。总体来看,专业 AI 工具的增长势头强劲,而初创公司的用户获取相对缓慢。 《》比尔・盖茨在采访中讨论了人工智能的革命性影响,认为 AI 将使每个人都能成为“超级个体”,改变人机交互方式。他强调 AI 将显著降低白领工作的成本,并逐渐影响蓝领市场。盖茨还提到他对全球健康和气候问题的关注,认为技术创新速度超出预期,未来 20 年将是充满希望的时期。他同时探讨了可再生能源的发展,尤其是核能和太阳能的潜力。 11 月 8 日: 《》由上海外国语大学图书馆发布,探讨了 AI 素养在数智时代的重要性和演变。报告指出,AI 素养不仅涉及技术知识,还包括态度、价值观和应对复杂需求的能力。随着 AI 技术的广泛应用,社会对 AI 素养的需求日益增长。 其它一些报告发布在: AIGCxChina 研究院、无界 AI:《》 《》(英文) 《》 请注意,这只是部分新闻,可能还有其他未涵盖的内容。
2024-11-11
目前世界上最强的Ai对话是那个
目前在世界范围内,很难确切地指出哪一个是最强的 AI 对话产品。不过,ChatGPT 是一款具有广泛影响力和显著特点的 AI 对话系统。 ChatGPT 由 OpenAI 开发,具有以下优势: 1. 开创性:作为首批向公众开放的大规模商用 AI 对话系统之一,在全球掀起了 AI 革命,改变了人们对 AI 的认知,为技术发展指明方向。 2. 用户体验:界面简洁直观,交互流畅自然,新手也能轻松上手,降低了普通人接触和使用 AI 的门槛。 3. 技术实力:背后的 GPT 系列模型性能和能力处于行业领先,在语言理解深度和生成内容质量上表现出色,能应对各种复杂任务和挑战。 然而,ChatGPT 也存在一些局限性: 1. 随着 AI 技术发展,已不再是市场上唯一的顶级选择,其他产品在特定领域可能超越它。 2. 对于国内用户,可能因网络连接问题遇到连接不稳定、响应延迟等情况,影响使用体验。 此外,大型语言模型改变了聊天机器人的局面,使得如今最好的聊天机器人能与人类进行自由流畅的对话。像 Replika、Anima 和 CharacterAI 等产品也受到许多用户的青睐,用户在与它们的关系中找到了真正的意义,并花费大量时间进行对话。
2024-10-22
有关于2024年世界人工智能大会的相关文章吗?
2024 年世界人工智能大会在上海举办,展示了 500 家企业的 1500 项展品,突出了机器人和大模型技术。国产机器人和大模型在 AI 应用、人机交互和专业领域展现出巨大潜力,预示着 AI 技术正快速融入日常生活和各行各业。相关文章包括: 《》 《》 《世界人工智能大会》 《》 《》 《》 《》 《》
2024-07-11
目前世界上最好的AI编程辅助工具是哪个
目前世界上有许多优秀的 AI 编程辅助工具,以下是一些常见的: GitHub Copilot:由 GitHub 联合 OpenAI 和微软 Azure 团队推出,支持多种语言和 IDE,能快速提供代码建议。 通义灵码:阿里巴巴团队推出,提供多种编程辅助能力。 CodeWhisperer:亚马逊 AWS 团队推出,由机器学习技术驱动,可实时提供代码建议。 CodeGeeX:智谱 AI 推出的开源免费 AI 编程助手,基于 130 亿参数的预训练大模型。 Cody:Sourcegraph 推出的 AI 代码编写助手,借助强大的代码语义索引和分析能力。 CodeFuse:蚂蚁集团支付宝团队为国内开发者提供的免费 AI 代码助手。 Codeium:一个由 AI 驱动的编程助手工具,提供代码建议、重构提示和代码解释。 这些工具都可以帮助提高编程效率,但每个工具的功能和适用场景可能会有所不同。你可以根据自己的需求选择最适合的工具。更多辅助编程 AI 产品,还可以查看 https://www.waytoagi.com/category/65。请注意,内容由 AI 大模型生成,请仔细甄别。
2024-07-11
世界生成式AI视频挑战
世界生成式 AI 视频挑战是由野神殿、通往 AGI 之路联合发起的一系列活动,旨在探索生成式 AI 在视频创作领域的应用和潜力。以下是对该挑战的相关介绍: 活动已完成:Video Battle 视频挑战第 3 期:眼睛 主题:眼睛 这是世界第三届生成式 AI 视频挑战的第三期,主题为"眼睛"。参赛者需要根据固定的框架场景和镜头进行自由发挥,用 AI 转化成不长于 4 秒的视频。最终,精选的视频将被拼接在一起,组成一个完整的作品。 活动已完成:Video Battle AI 视频挑战第 4 期蛋 这是世界第三届生成式 AI 视频挑战的第四期,主题为"蛋"。与第三期类似,参赛者需要根据提供的素材进行创作,并使用 AI 将其转化为视频。 活动已完成:Video Battle 视频挑战第 2 期:漂浮 主题:漂浮 这是世界第二届生成式 AI 视频挑战的第二期,主题为"漂浮"。参赛者需要根据固定的框架场景和镜头进行自由发挥,用 AI 转化成不长于 4 秒的视频。最终,精选的视频将被拼接在一起,组成一个完整的作品。 在这个挑战中,参赛者需要根据固定的框架场景和镜头进行自由发挥,用 AI 转化成不长于 4 秒的视频。最终,精选的视频将被拼接在一起,组成一个作品。
2024-05-15