Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI发展技术原理脑图

Answer

以下是关于 AI 发展技术原理的相关内容:

  • 腾讯研究院发布的“AI50 年度关键词”报告,基于全年三十余万字的 AI 进展数据库,精选 50 个年度关键词,覆盖大模型技术的八大领域,通过“快思考”与“慢思考”两种维度进行分析,形成 50 张 AI 技术图景卡片。其中“快思考”维度采用人机协同方式呈现印象卡片,“慢思考”维度深入分析技术发展底层逻辑。
  • DiT 架构是结合扩散模型和 Transformer 的架构,用于高质量图像生成的深度学习模型,其带来了图像生成质的飞跃,且 Transformer 从文本扩展至其他领域,Scaling Law 在图像领域开始生效。
  • 从 AI 发展历程来看,自 1950 年提出至今短短几十年,在国内近 20 年随着互联网发展才开始普及。最初应用主要是基于 NLP 技术的聊天和客服机器人,随后中英文翻译、语音识别、人脸识别等技术取得突破并广泛应用。但以前模型应用范围相对狭窄,而 OpenAI ChatGPT 等大型语言模型的突破展示了新的发展路线,通过大规模模型预训练可涌现出广泛智能应用。
  • 小白理解 AI 技术原理与建立框架的相关内容包括:思维链可显著提升大语言模型在复杂推理的能力;RAG 是检索增强生成,可搭建企业和个人知识库;PAL 是程序辅助语言模型;ReAct 是 reason 与 action 结合的框架,可让模型动态推理并与外界环境互动。

希望以上内容对您有所帮助。

Content generated by AI large model, please carefully verify (powered by aily)

References

AI50年度关键词——腾讯研究院.pdf

基于全年研究积累的三十余万字AI进展数据库,对当前AI发展进行阶段性总结具有重要意义。为了系统呈现AI发展的关键技术要点和趋势,该报告精选了50个年度关键词,覆盖大模型技术的八大领域:图像处理、视频生成、3D生成、编程助手、Agent、端侧智能、具身智能和基础模型;借鉴大模型的思维特征,创新性1的通过"快思考"与"慢思考"两种维度进行分析,形成了50张AI技术图景卡片。•"快思考"维度呈现印象卡片,采用人机协同方式完成。项目团队研究人员主导提示词工程与价值判断,把握内容方向;AI系统负责执行,最终绘制输出技术定义、图示与总结语;•"慢思考"维度则深入分析技术发展的底层逻辑。重点整合研究团队在圆桌讨论和专题研究中的深度思考,借助AI辅助梳理出逻辑链条、本质洞见与趋势判断,为读者勾勒AI发展的脉络与方向。AI技术呈现持续演进、动态发展的特征。该报告通过50个关键词构建的技术图景,旨在展现AI发展的重点领域,把握未来关键趋势,为各界提供研究与决策参考。腾讯研究院将持续深化AI&Society领域的探索,并诚挚的邀请各界好友一共关注与参与,一起迈向一个智能共生的时代。——腾讯研究院院长司晓23DiT架构结合扩散模型和Transformer的架构,用于高质量图像生成的深度学习模型。核心观察A:Transformer从文本扩展至其它B:DiT架构带来图像生成质的飞跃C:Scaling Law在图像领域开始生效逻辑链条

人人都能搞定的大模型原理 - 神经网络

AI发展历程(图片来源:智源研究院)AI的发展从1950年的提出,到如今的成就,其实也才发展短短几十年。对于大众来说,我们对AI领域的使用是随着国内互联网的发展,在近20年才开始普及。最初的应用主要是基于NLP技术的聊天机器人和客服机器人,这个也是博主近几年所从事的领域。(以前大家还总吐槽机器人很傻,现在却变成了AI即将取代人类,舆论的变化真快啊,哈哈)随后,中英文翻译、语音识别、人脸识别等技术取得了突破,这些突破在我们日常生活中的应用也非常广泛,比如语音助手、智能翻译设备、人脸识别支付系统等。但以前的这些技术突破大多都还仅限于特定领域内,模型的应用范围相对狭窄,比如翻译机器人训练完成后只能做翻译,客服机器人只能在特定的语境中才能给你准确的回复。然而,随着OpenAI ChatGPT等大型语言模型的突破,则向人们展示了一种新的发展路线,通过大规模的模型预训练,可以涌现出广泛的智能应用,一个模型就能实现聊天、翻译、数学问题解答、代码编程、写作辅导,甚至情感咨询等等能力。这种集多功能于一体,像人类一样智能的AI模型,为AI未来的发展提供了新的技术方向同时,也给人类带来了新的焦虑:说好的AI帮人类扫地、洗碗,人类去写诗、画画的!怎么现在变成了AI都去写诗和画画了,我们人类却还在扫地、洗碗😂博主第一次看到这段网上的调侃时,也觉得非常的好笑,但细细想来你就会发现,“人机共生”几乎是人类发展的必然。现在哪个年轻人出门不带手机?谁工作不用电脑?手机、电脑不就是机器吗。我们已经不知不觉中和这些机器共同生活了几十年,人类的生活水平非但没有降低,反而生活的便利性还大大提高了许多。

【AI学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)

4)思维链——谷歌在2022年一篇论文提到思维链可以显著提升大语言模型在复杂推理的能力(即有推理步骤),即使不用小样本提示,也可以在问题后面加一句【请你分步骤思考】5)RAG——检索增强生成Retrieval-Augmented Generation,外部知识库切分成段落后转成向量,存在向量数据库。用户提问并查找到向量数据库后,段落信息会和原本的问题一块传给AI;可搭建企业知识库和个人知识库。6)PAL——程序辅助语言模型Program-Aided Language Model,2022年一篇论文中提出;比如对于语言模型的计算问题,核心在于不让AI直接生成计算结果,而是借助其他工具比如Python解释器作为计算工具。7)ReAct——2022年一篇《React:在语言模型中协同推理与行动》的论文提出了ReAct框架,即reason与action结合,核心在于让模型动态推理并采取行动与外界环境互动。比如用搜索引擎对关键字进行搜索,观察行动得到的结果。可借助LangChain等框架简化构建流程。个人总结:看很多大佬的发言,都说要关注或直接阅读技术论文,比如产品经理转型AI产品经理,也需要懂技术脉络。而小白直接看技术论文还是有难度,虽然现在可以让AI辅助阅读,不过还是要完成一定的知识储备。而林粒粒呀的这期视频是一个很好的科普入门,欢迎大家给她点赞。二、视频二——技术框架与关于未来的想象写在前面:我之前对安克创新的印象就是一个卖充电宝的公司,还有卖安防设备;但看了这期访谈,被CEO阳萌的认知震撼了,很多观点对我有启发,强烈建议看原访谈视频。1、观点——Transformer是仿生算法的阶段性实现,10年、20年后大家将不再用TA

Others are asking
你是一个财务总监,市场分析师,但是你没有数据,现在需要你寻找一下有没有可以自动查找数据,并且根据数据生成饼状图的 AI工具
以下是为您推荐的可以自动查找数据并根据数据生成饼状图的 AI 工具: 1. Claude Financial Data Analyst:可视化金融数据分析工具,能生成多种图表,包括饼图。上传文档后可快速生成动态图表,适用于趋势分析和分布分析。详细介绍:https://xiaohu.ai/p/14811 ,GitHub:https://github.com/anthropics/anthropicquickstarts/tree/main/financialdataanalyst ,https://x.com/imxiaohu/status/1847617781594030583 。 2. PandasAI:让 Pandas DataFrame“学会说人话”的工具,用户可以以 Pandas DataFrame 的形式提出有关数据的问题,会以自然语言、表格或者图表等形式进行回答,目前仅支持 GPT 模型,OpenAI API key 需自备。示例:pandas_ai.run 。GitHub 链接:https://github.com/gventuri/pandasai 。 3. DataSquirrel:自动进行数据清理并可视化执行过程,帮助用户在无需公式、宏或代码的情况下快速将原始数据转化为可使用的分析/报告的数据分析工具。平台符合 GDPR/PDPA 标准。链接:https://datasquirrel.ai/ 。
2025-03-25
ai发展路径
AI 的发展路径如下: 技术发展历程: 早期阶段(1950s 1960s):专家系统、博弈论、机器学习初步理论。 知识驱动时期(1970s 1980s):专家系统、知识表示、自动推理。 统计学习时期(1990s 2000s):机器学习算法(决策树、支持向量机、贝叶斯方法等)。 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等。 当前前沿技术点: 大模型(Large Language Models):GPT、PaLM 等。 多模态 AI:视觉 语言模型(CLIP、Stable Diffusion)、多模态融合。 自监督学习:自监督预训练、对比学习、掩码语言模型等。 小样本学习:元学习、一次学习、提示学习等。 可解释 AI:模型可解释性、因果推理、符号推理等。 机器人学:强化学习、运动规划、人机交互等。 量子 AI:量子机器学习、量子神经网络等。 AI 芯片和硬件加速。 学习路径: 偏向技术研究方向: 数学基础:线性代数、概率论、优化理论等。 机器学习基础:监督学习、无监督学习、强化学习等。 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 自然语言处理:语言模型、文本分类、机器翻译等。 计算机视觉:图像分类、目标检测、语义分割等。 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 科研实践:论文阅读、模型实现、实验设计等。 偏向应用方向: 编程基础:Python、C++ 等。 机器学习基础:监督学习、无监督学习等。 深度学习框架:TensorFlow、PyTorch 等。 应用领域:自然语言处理、计算机视觉、推荐系统等。 数据处理:数据采集、清洗、特征工程等。 模型部署:模型优化、模型服务等。 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。
2025-03-25
思维导图生成ai
以下是一些与思维导图相关的 AI 工具: 1. GitMind:免费的跨平台思维导图软件,可通过 AI 自动生成思维导图,支持多种模式,如提问、回答、自动生成等。 2. ProcessOn:国内的思维导图与 AIGC 结合的工具,能利用 AI 生成思维导图。 3. AmyMind:轻量级在线 AI 思维导图工具,无需注册登录,支持自动生成节点。 4. Xmind Copilot:Xmind 推出的基于 GPT 的 AI 思维导图助手,可一键拓展思路,生成文章大纲。 5. TreeMind:“AI 人工智能”思维导图工具,输入需求后由 AI 自动完成思维导图生成。 6. EdrawMind:提供一系列 AI 工具,包括 AI 驱动的头脑风暴功能,有助于提升生产力。 总的来说,这些工具都能通过 AI 技术自动生成思维导图,提高制作效率,为知识工作者带来便利。 此外,还有一些关于思维导图生成的相关信息: 在使用 flowith 时,可通过引用节点技巧让 AI 根据特定参照输出高关联度内容,还可对比不同模型输出择优深挖,在满意内容节点添加“文本编辑器显示”进行精加工。 12 月更新的生成式 AI 年终数据中,思维导图相关的如 Whimsical Al 等也有相关流量等数据统计。
2025-03-25
ai音乐
AI 音乐相关内容如下: 关于 AI 短片配音:AI 音乐部分,点击后有直观界面,可选择人声歌曲或纯音乐,选完描述想要的音乐风格,如民谣、流行、嘻哈、国风等。若为人声歌曲,可自己写歌词或让 AI 写,通过智能歌词按钮输入简单词语给 AI 提示即可。还有音乐库选项,可选择合适风格的音乐添加到音轨。音效库方面,在搜索框输入相关音效词,如开门声,试听后添加到音轨。 人工智能音频初创公司:包括被 Apple 收购的。 AI 生成音乐的工具:是利用人工智能技术,特别是机器学习和深度学习算法创作、编排和生成音乐的软件平台。能分析大量音乐数据,学习音乐模式和结构,根据用户输入或特定指令创作新作品。推荐的 AI 音乐产品有:由前 Google DeepMind 工程师开发的 Udio()。但需注意内容由 AI 大模型生成,请仔细甄别。
2025-03-25
我想找一个能帮我总结视频内容的AI工具
以下为您介绍两种能帮您总结视频内容的 AI 工具: 1. GPT: 对于有字幕的 B 站视频,若视频栏下有字幕按钮,说明视频作者已上传字幕或后台适配了 AI 字幕。 安装油猴脚本,刷新浏览器,点击字幕会出现“下载”按钮,可选择多种字幕格式。 将下载的字文字内容全选复制发送给 GPT 即可总结视频内容。总结完还可继续向 GPT 提问更多细节内容或探讨视频内容。 2. Get 笔记: 可以一键总结视频的笔记,支持抖音、小红书、B 站短视频和甚至是直播回放链接。 测试显示不仅能生成笔记,还有逐字稿。但使用时需注意:一是 AI 可能存在幻觉,生成内容仍需人类核对检查;二是若直播未准时开始,则不会生成直播笔记。
2025-03-25
想咨询一下有没有可以自动查找数据,并且根据数据生成饼状图的 AI工具
以下是一些可以自动查找数据并根据数据生成饼状图的 AI 工具: 1. PandasAI:这是一个让 Pandas DataFrame“学会说人话”的工具,用户可以以 Pandas DataFrame 的形式提出有关数据的问题,它会以自然语言、表格或者图表等形式进行回答,目前仅支持 GPT 模型,OpenAI API key 需自备。链接:https://github.com/gventuri/pandasai 2. DataSquirrel:能够自动进行数据清理并可视化执行过程,帮助用户在无需公式、宏或代码的情况下快速将原始数据转化为可使用的分析/报告,平台符合 GDPR/PDPA 标准。链接:https://datasquirrel.ai/ 此外,在一些特定的文档中还提到了通过代码生成和特定操作生成堆叠条形图、堆叠柱状图、百分比堆条形图等用于展示数据的方式。
2025-03-25
哪个软件可以生成思维脑图
以下是一些可以生成思维脑图的软件: 1. GitMind:免费的跨平台思维导图软件,支持多种模式,可通过 AI 自动生成思维导图。 2. ProcessOn:国内的思维导图+AIGC 工具,能利用 AI 生成思维导图。 3. AmyMind:轻量级在线思维导图工具,无需注册登录,支持自动生成节点。 4. Xmind Copilot:Xmind 推出的基于 GPT 的思维导图助手,可一键拓展思路,生成文章大纲。 5. TreeMind:“AI 人工智能”思维导图工具,输入需求后由 AI 自动完成生成。 6. EdrawMind:提供一系列 AI 工具,包括 AI 驱动的头脑风暴功能,有助于提升生产力。 总的来说,这些 AI 思维导图工具都能通过 AI 技术自动生成思维导图,提高制作效率,为知识工作者带来便利。 此外,过去 ChatGPT 无法生成思维导图,当处理复杂代码或长篇文章时,需利用 AI 提炼后再用思维导图软件转换,较为繁琐。现在有了 GPTs,可利用 Actions 调取第三方平台提供的 API 直接获取内容对应的思维导图。比如结合 Gapier 这个提供免费 Action 的第三方平台进行定制化,包含如何在 Action 中引入 Gapier 生成代码的思维导图,以及如何在 Action 中引入 Gapier 和 Webpilot 生成在线文档的思维导图。 在多智能体 AI 搜索引擎方案中,生成思维导图是其中的一个步骤。智能体能调用各种插件,除思维导图外,还有流程图、PPT 工具等,可根据工作需要选择。
2025-02-18
如何利用Ai生成长文的脑图
以下是关于利用 AI 生成长文脑图的相关信息: 一、AI 生图相关课程与分享 讨论了 AI 生图的学习课程安排,包括邀请白马老师授课、介绍相关工具网站吐司,还提及了 AI 工具的消费和应用情况等。 二、AI 绘图模型 1. 特点、优势、应用场景以及在实际操作中的使用方法和技巧。 2. 工具 SD 的各种玩法、不同界面、模型分类及应用场景,强调了其在创意设计中的作用和优势。 三、图像生成模型 1. 特点、发展历程、优势与应用。 2. 吐司网站的使用方法。 四、获取额外算力 通过特定链接注册或填写邀请码 BMSN,新用户 7 天内可额外获得 100 算力。 五、文生图的操作方式 在首页有对话生图对话框,输入文字描述即可生成图片,不满意可通过对话让其修改。 六、模型及生成效果 Flex 模型对语义理解强,不同模型生成图片的积分消耗不同,生成的图片效果受多种因素影响。 七、图生图及参数设置 可通过电图基于图片做延展,生图时能调整尺寸、生成数量等参数,高清修复会消耗较多算力建议先出小图。 八、特定风格的生成 国外模型对中式水墨风等特定风格的适配可能存在不足,可通过训练 Lora 模型改善。 九、与思维导图相关的 AI 工具 1. GitMind:免费跨平台,支持多种模式,可自动生成思维导图。 2. ProcessOn:国内思维导图+AIGC 工具,可利用 AI 生成思维导图。 3. AmyMind:轻量级在线,无需注册登录,支持自动生成节点。 4. Xmind Copilot:基于 GPT 的助手,可一键拓展思路,生成文章大纲。 5. TreeMind:输入需求由 AI 自动完成思维导图生成。 6. EdrawMind:提供一系列 AI 工具,包括头脑风暴功能,提升生产力。 十、AI 摆摊项目 1. AI 图像处理:图像生成、照片修复与动起来、动漫化头像、老照片复活、创意壁纸制作等。 2. 文案与内容创作:文案定制、朋友圈文案生成、爆款文案编写、创意故事、情话生成等。 3. 音频与音乐制作:专属歌曲创作、音频处理、声音克隆、AI 唱歌、背景音乐定制等。 4. 视频处理:视频换脸、照片转视频、视频动漫化、视频剪辑、数字人制作等。 5. 智能体与 Coze:搭建智能体、GPTs 创建、coze 工作流、微信机器人等。 6. AI 教育与咨询:AI 应用培训、课程设计、商业化咨询、AI+行业应用咨询等。
2025-01-07
根据脑图生成PPT
以下是根据您的需求为您整理的从脑图生成 PPT 的相关内容: 一、Process ON 1. 网址:https://www.processon.com/ 2. 输入大纲和要点 导入大纲和要点 手动复制:相对比较耗时间。 导入方式: 复制最终大纲的内容到本地的 txt 文件后,将后缀改为.md。若看不见后缀,可自行搜索开启后缀。 打开 Xmind 软件,将 md 文件导入 Xmind 文件中。 在 Process ON 导入 Xmind 文件。以导入方式新建思维导图,选择准备好的 Xmind 文件,导入成功。 输入主题自动生成大纲和要求:新增思维导图,输入主题,点击 AI 帮我创作,生成结束。 3. 选择模版并生成 PPT:点击下载,选择导入格式为 PPT 文件,选择模版,再点击下载。若没有会员,可在某宝买个一天会员。 二、爱设计 1. 网址:国内网站,不需要魔法。输入地址:https://ppt.isheji.com/?code=ysslhaqllp&as=invite,进行注册和登录。 2. 输入大纲和要点 导入大纲和要点:选择文档秒变 PPT 或选择导入本地大纲。 输入主题自动生成大纲和要求:输入主题,点击开始生成,自动产生大纲。 3. 选择模版并生成 PPT:点击生成 PPT,应用模版,生成中,生成后点击编辑。 4. 导出 三、MindShow 1. 网址:国内网站,不需要魔法。地址:https://www.mindshow.fun//home 2. 输入大纲和要点 导入大纲和要点:准备好大纲进行导入。 输入主题自动生成大纲和要求:输入主题,AI 生成大纲,扩写部分章节,得到扩写后的内容。 3. 选择模版并生成 PPT 4. 导出
2024-10-03
LLM的原理
LLM(大语言模型)的工作原理如下: 以“我今天吃了狮子头和蔬菜”这句话为例,在 Transformer 中,会由 Attention 层对其加入更多信息补充,如“狮子头是一道菜”“今天是星期六”等,这些补充信息作为输入给到下一个 Attention 层,层与层之间,哪些信息补充、保留、传递,由模型自主学习,最终模型把海量数据以关系网形式“消化”并保留重要相关性。 形象地说,就像人阅读文章时的连贯性注意力过程,在阅读理解时,脑子里会消化吸收记忆,记忆的不是点状知识,而是网状经验。 大模型以词向量和 Transformer 模型学习海量知识,把知识作为向量空间中的关系网存储,接受输入时通过向量空间中的匹配进行输出。 观察大模型回复,是一个字一个字流式输出的,因为大模型确实在一个字一个字地推理生成内容。比如输入法输入联想,根据输入的单个字推测下一个字,加入上下文能帮助模型理解下一个字。但存在两个问题:一是全量数据计算算力吃不消,二是仅算字的概率易被不相干信息干扰,此时词向量机制和 Transformer 模型中的 Attention 自注意力机制解决了难题。 另外,RAG 对大语言模型的作用就像开卷考试对学生,事实性知识与 LLM 的推理能力相分离,被存储在容易访问和及时更新的外部知识源中,分为参数化知识(模型训练中学习得到,隐式储存在神经网络权重中)和非参数化知识(存储在外部知识源,如向量数据库中)。
2025-03-25
我想学习ai视频ai生图的相关技能,并且我不想速成,我想了解其中的底层原理以便可以更好的控制生成的内容,我应该如何学习
以下是关于学习 AI 视频和生图相关技能的一些建议: 一、基础概念 1. 模型 Checkpoint:生图必需的基础模型,任何生图操作必须选定一个才能开始。 Lora:低阶自适应模型,可视为 Checkpoint 的小插件,用于精细控制面部、材质、物品等细节。 VAE:编码器,功能类似于滤镜,可调整生图的饱和度,一般选择 840000 这个。 2. 提示词 Prompt 提示词:想要 AI 生成的内容,需要花费功夫学习,可从照抄别人开始。 负向提示词 Negative Prompt:想要 AI 避免产生的内容,同样需要学习,可从照抄开始。 3. 其他概念 ControlNet:控制图片中特定图像,如人物姿态、特定文字、艺术化二维码等,属于高阶技能,可后续学习。 ADetailer:面部修复插件,用于治愈脸部崩坏,是高阶技能。 二、参数设置 1. 迭代步数:AI 调整图片内容的次数。步数越多,调整越精密,出图效果理论上更好,但耗时越长,且并非越多越好。 2. 尺寸:图片生成的尺寸大小,需适中选择,太小生成内容有限,太大 AI 可能放飞自我。 3. 生成批次和每批数量:决定重复生成图的批次和每批次同时生成的图片数量。 4. 提示词引导系数:指图像与 prompt 的匹配程度,数字增大图像更接近提示,但过高会使图像质量下降。 5. 随机数种子:固定后可对图片进行“控制变量”操作,首次生成图时无需关注。 6. 重绘幅度:图生图时用到,幅度越大,输出图与输入图差别越大。 在学习过程中,您可以先从熟悉基础模型、提示词和常见参数设置入手,通过实践和参考他人的经验不断积累知识,逐步掌握更高级的技能和工具。
2025-03-24
AI发展背后是哪些技术进步推动的,原理是什么?
AI 发展背后主要由以下技术进步推动: 1. 核心架构:Transformer 和 Diffusion 这两种架构分别在数据转换和数据向图像转换方面发挥了关键作用,构成了当前 AI 技术的基石。 2. 算力提升:自 2010 年以来,GPU 等计算资源的快速发展使算力得到空前爆发,为 AI 技术进步提供强大支持。 3. 人才网络:AI 领域的关键人才大多源自 Google 及其相关实验室和收购的公司,形成强大人才网络,推动了技术发展,并培养了一批领军人物,人才在不同公司间的流动和合作促进了 AI 技术的快速进步。 其原理在于:这些技术的协同作用使得 AI 能够更高效地处理和分析大量数据,实现更复杂的任务和功能。例如,强大的算力能够支持大规模的数据训练和模型优化,优秀的架构能够提高数据处理和模型表达能力,而人才的创新和合作则不断推动技术的突破和应用拓展。
2025-03-24
我是一名硬件工程师 如何让ai快速理解我的原理图并优化
以下是关于让 AI 理解原理图并优化的相关知识: 1. 在 AI 硬件发展方面,存算一体的方式是未来的趋势。对比人脑,其能耗低,使用存算一体的芯片有望诞生全新算法,运行几百亿参数的大模型的最佳架构也是存算一体,因其避免了数据搬运。 2. 大模型在通用知识方面较强,但对专业领域知识了解不足。将大模型与私域知识结合有 5 种方法:重新训练(拿私域数据重新训练大模型)、微调(拿私有数据 finetuning 大模型)、RAG(将知识库里的知识搜索送进大模型)、关键词工程(写好提示词)、加长 Context(当 Context 能无限长时,可将知识和记忆 prefill 到 Context 里)。学术界中,做深度学习的人偏向于用 RAG,做过搜索的人偏向于用 Long Context。 3. 在 Trae 优化代码方面,当请求“帮我把当前的代码给优化一下”时,请求先到 Trae 自己的服务器,服务器再请求对应模型返回数据。不会发送本地代码文件,只发送“文件名”加“问题”,且在最开始 Trae 打开项目进行索引构建时,已在云端构建好项目文件。 对于您作为硬件工程师让 AI 快速理解原理图并优化的需求,目前可能需要进一步探索如何将原理图的特征和相关信息转化为适合 AI 处理和理解的形式,或许可以借鉴上述将专业知识与大模型结合的方法,以及利用高效的数据库和模型架构来提高处理效率。
2025-03-23
Stable Diffusion 是 Diffusion Model 的优化版本,引入了潜在空间(Latent Space)技术,这个潜在空间(Latent Space)是什么意思,它的实现原理是什么?
在 Stable Diffusion 模型中,潜在空间(Latent Space)指的是图像的潜在分布,它包含了与图像相关的所有信息。 图像被映射到潜在空间后,扩散过程在这个空间中进行。ComfyUI 中的许多操作都在潜在空间中进行,如 KSampler 节点就是在这个空间中执行采样过程。在潜在空间中,通过节点调整对潜在空间的操作,如噪声添加、去噪步数等,这部分通常由潜在空间操作模块来实现。 在 Stable Diffusion 模型中,图像的潜在分布是通过一个编码器解码器结构来学习的。编码器将图像映射到潜在空间,而解码器则将潜在空间中的向量映射回图像空间。通过这种方式,模型可以学习到图像的潜在分布,从而实现图像生成、编辑和操作。 在采样过程中,Stable Diffusion 模型通过逐步降低噪声水平来生成图像。在这个过程中,模型根据当前的噪声水平预测图像的潜在分布,然后根据这个分布生成一个新的图像。这个过程重复进行,直到生成一个高质量的图像。 与之对应的是像素空间(Pixel Space),像素空间指的是图像中每个像素的原始颜色或强度值所组成的空间。图像可以看作是一个二维或三维的矩阵,其中每个元素代表一个像素。在像素空间中,图像的表示是密集的,且包含了大量的细节信息。
2025-03-21
简述manus的原理
Manus 是一款由中国团队研发的全球首款通用型 AI 代理工具,于 2025 年 3 月 5 日正式发布。 其原理包括以下方面: 1. 技术架构: 基于多智能体(Multiple Agent)架构,运行在独立的虚拟机中。 核心功能由多个独立模型共同完成,分别专注于不同的任务或领域,如自然语言处理、数据分析、推理等。 关键组件包括虚拟机、计算资源、生成物、内置多个 agents 等。 采用“少结构,多智能体”的设计哲学,在数据质量高、模型强大、架构灵活的情况下,自然涌现 AI 的能力。 2. 工作流程: 意图识别:从用户输入中提取关键词和任务类型,引导用户补充信息以明确需求。 任务初始化:创建任务文件夹并启动隔离环境(Docker 容器),为任务执行提供独立的运行空间。 步骤规划:利用推理模型将任务拆解为具体步骤,将步骤信息写入 todo.md 文件进行跟踪。 任务执行:通过 function call 调度专用智能体执行具体任务,各智能体将执行结果写入任务文件夹,主线程负责更新任务状态并调度下一步骤。 归纳整理:汇总所有执行结果并针对用户需求整理输出,提供任务产物(文档/代码/图片等)供用户浏览或下载,收集用户反馈。 3. 专用智能体设计: Search Agent:调用搜索 API 获取结果列表,使用无头浏览器模拟网页浏览行为,结合多模态模型提取有效信息,通过点击和滚动操作获取更多内容。 Code/DataAnalysis Agent:根据需求创建并执行代码,保存执行结果,提供预览功能。 Manus 还存在一些改进空间,如使用 DAG 替代线性任务依赖关系、引入自动化测试智能体进行质量控制、实现用户介入与自动执行的混合模式。在技术评估方面,工程实现完善,交互体验优于同类产品,但技术壁垒不高,主要依赖模型能力,Token 消耗较高,成本问题需要解决,任务准确性和用户满意度有待更多案例验证。 当前的 Manus 约等于 AI 操纵着一个没有图形界面的 Linux 虚拟机和浏览器,能感知电脑环境,执行各类操作,如跑各种 linux 下的指令、库、程序(cd、ls 指令、python 等),访问各种网页、获取一些 API 接口的数据,但因无图形界面,无法运行图形程序。访问网页时,阻挠人类使用的各种要素也会打扰到 Manus。Manus 提供了用户可视的命令行视窗、浏览器、vscode 两种选项,方便查看运行指令、接管网页和修改文件。用户还可给 Manus 上传文件,未来也可能对接私有 API。
2025-03-19
AI技术趋势
AI 技术的发展历程和前沿技术点如下: 发展历程: 1. 早期阶段(1950s 1960s):包括专家系统、博弈论、机器学习初步理论。 2. 知识驱动时期(1970s 1980s):有专家系统、知识表示、自动推理。 3. 统计学习时期(1990s 2000s):出现机器学习算法如决策树、支持向量机、贝叶斯方法等。 4. 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等得到广泛应用。 当前前沿技术点: 1. 大模型(Large Language Models):如 GPT、PaLM 等。 2. 多模态 AI:包括视觉 语言模型(CLIP、Stable Diffusion)、多模态融合。 3. 自监督学习:如自监督预训练、对比学习、掩码语言模型等。 4. 小样本学习:例如元学习、一次学习、提示学习等。 5. 可解释 AI:涉及模型可解释性、因果推理、符号推理等。 6. 机器人学:涵盖强化学习、运动规划、人机交互等。 7. 量子 AI:包括量子机器学习、量子神经网络等。 8. AI 芯片和硬件加速。 此外,《2024 年度 AI 十大趋势报告》指出: 1. 大模型创新:架构优化加速涌现,融合迭代大势所趋。 2. Scaling Law 泛化:推理能力成皇冠明珠,倒逼计算和数据变革。 3. AGI 探索:视频生成点燃世界模型,空间智能统⼀虚拟和现实。 4. AI 应用格局:第⼀轮洗牌结束,聚焦 20 赛道 5 大场景。 5. AI 应用竞争:多领域竞速运营大于技术,AI 助手兵家必争。 6. AI 应用增长:AI+X 赋能类产品大干快上,原生 AI 爆款难求。 7. AI 产品趋势:多模态上马,Agent 席卷⼀切,高度个性化呼之欲出。 8. AI 智变千行百业:左手变革生产力,右手重塑行业生态。 9. AI 行业渗透率:数据基础决定初速度,用户需求成为加速度。 10. AI 创投:投融资马太效应明显,国家队出手频率提升。 学习路径方面: 偏向技术研究方向: 1. 数学基础:线性代数、概率论、优化理论等。 2. 机器学习基础:监督学习、无监督学习、强化学习等。 3. 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 4. 自然语言处理:语言模型、文本分类、机器翻译等。 5. 计算机视觉:图像分类、目标检测、语义分割等。 6. 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 7. 科研实践:论文阅读、模型实现、实验设计等。 偏向应用方向: 1. 编程基础:Python、C++等。 2. 机器学习基础:监督学习、无监督学习等。 3. 深度学习框架:TensorFlow、PyTorch 等。 4. 应用领域:自然语言处理、计算机视觉、推荐系统等。 5. 数据处理:数据采集、清洗、特征工程等。 6. 模型部署:模型优化、模型服务等。 7. 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-03-24
1. 利用AI完成技术论文的学习阅读; 2. 结合相关知识体系解读论文,并制作成学习分享PPT。
以下是关于利用 AI 完成技术论文的学习阅读,并结合相关知识体系解读论文制作学习分享 PPT 的一些建议: 在技术论文学习阅读方面: 可以借助 AI 工具,如 Claude 和 Gamma.app。Claude 能够帮助快速寻找符合条件的论文、提取精炼论文中某部分信息。 对于复杂推理,可以利用思维链,谷歌在 2022 年的论文提到其能显著提升大语言模型在复杂推理的能力,即使不用小样本提示,也可在问题后加“请你分步骤思考”。 检索增强生成(RAG)能将外部知识库切分成段落后转成向量,存在向量数据库。用户提问并查找到向量数据库后,段落信息会和原本的问题一块传给 AI,可搭建企业知识库和个人知识库。 程序辅助语言模型(PAL)在 2022 年的论文中被提出,对于语言模型的计算问题,可借助其他工具如 Python 解释器作为计算工具。 ReAct 框架于 2022 年在《React:在语言模型中协同推理与行动》的论文中提出,即 reason 与 action 结合,让模型动态推理并采取行动与外界环境互动,可借助 LangChain 等框架简化构建流程。 在制作学习分享 PPT 方面: 可以先对论文进行深入理解,提取关键信息,包括摘要描述、研究问题、基本假设、实验方法、实验结论、文章主要结论、研究展望等。 利用 AI 工具获取相关理论的简单介绍。 了解并使用合适的 PPT 制作工具,如 Gamma.app。 需要注意的是,小白直接看技术论文有难度,需要一定的知识储备。同时,Transformer 是仿生算法的阶段性实现,未来 10 年、20 年可能不再被使用。
2025-03-24
一个从来没有接触过AI技术的、电脑方面就会打字的人怎么学习AI及应用
对于从未接触过 AI 技术但会打字的新手,以下是学习 AI 及应用的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库中有很多实践后的作品、文章分享,欢迎实践后分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 此外,如果您想深入了解 AI 的技术历史和发展方向,以及目前最前沿的技术点,有以下学习路径: 1. 偏向技术研究方向: 数学基础:线性代数、概率论、优化理论等。 机器学习基础:监督学习、无监督学习、强化学习等。 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 自然语言处理:语言模型、文本分类、机器翻译等。 计算机视觉:图像分类、目标检测、语义分割等。 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 科研实践:论文阅读、模型实现、实验设计等。 2. 偏向应用方向: 编程基础:Python、C++等。 机器学习基础:监督学习、无监督学习等。 深度学习框架:TensorFlow、PyTorch 等。 应用领域:自然语言处理、计算机视觉、推荐系统等。 数据处理:数据采集、清洗、特征工程等。 模型部署:模型优化、模型服务等。 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。
2025-03-22
ManusAI核心技术解读
Manus AI 的核心技术包括以下几个方面: 1. 代理功能:能够自动完成任务并交付完整结果。最终交付的结果形式多样,如文档、交互网页、播客、视频、图表等,使用户能更直观地获取信息。 2. 充分利用 AI 能力:不仅进行推理和任务规划,还结合代码能力生成最终结果。 3. 云端自动运行:AI 在云端电脑上完成包括数据收集、内容撰写、代码生成等任务。其体验特点是任务运行时间较长,但最终交付的结果超出预期。 您可以通过以下链接获取更多详细信息: 体验报告:
2025-03-22
AI绘画的技术演进历程
AI 绘画的技术演进历程如下: 早期,AI 绘画成果较为简单和粗糙。但随着技术进步,尤其是深度学习算法如卷积神经网络等的应用,AI 绘画能够生成更加复杂、逼真和富有创意的图像。如今,它已涵盖各种风格和题材,从写实到抽象,从风景到人物,并在与人类艺术家的互动和融合中不断创新。 在艺术创作方面,AI 绘画利用机器学习和深度学习等技术,模拟人类创作过程,生成令人惊叹的作品,为艺术家提供新工具,为观众带来新体验。它打破了传统手工绘画技巧的局限,通过编程、算法和数据分析等开拓新创作领域,让缺乏绘画技巧的人也能参与艺术创作,使艺术更具民主化和包容性。 在应用场景上,AI 绘画在广告设计中可快速生成创意概念图,为策划提供灵感和初稿;在游戏开发中用于创建场景和角色形象,提高开发效率;在影视制作中辅助生成特效场景和概念设计;在建筑设计中帮助构想建筑外观和内部布局。 同时,AI 绘画对艺术界的影响是复杂且双面的。它既提供了新的创作工具和可能性,也引发了关于艺术本质、创造性、版权和伦理的重要讨论。艺术界的反馈使 AI 在绘画方面有显著进展,但其在表达情感和创造性意图方面仍存在局限性,也引发了艺术家对版权、原创性和伦理问题的担忧,带来了对文化创意领域从业者职业安全的焦虑以及“侵权”嫌疑的反对之声。尽管存在争议,AI 绘画仍为艺术创作提供了新的可能性,帮助艺术家探索新创意表达方式,提高制作效率,降低制作成本,促进艺术与观众的互动,提供个性化和互动的艺术体验。
2025-03-22