Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

langgraph教程

Answer

LangGraph 是一个用于低代码构建 LLM 应用的新库,具有以下特点和功能:

  1. 提供了更多自定义和循环行为的可能性。
  2. 提供了可视化工具,用于展示和控制语言代理的图,以及查看和分析语言代理的输入和输出。
  3. 是 LangChain 的一个强大扩展,能支持更多 LLM 应用场景和需求,且是独立库,可与其他 Python 库和工具结合使用。 其详细介绍和使用方法可参考官方文档和教程。

LangChain 0.1.0 的发布是重要里程碑和新起点,团队未来计划包括:

  1. 重写旧的链,使其符合 0.1.0 的架构和规范,并提供更多功能和特性。
  2. 维护稳定分支 0.1.x,用于修复错误和优化性能,保证质量和稳定性。
  3. 增加更多工具和功能,如更多 LLM 和 NLP 任务支持、更多输出解析和检索方法、更多代理技术以及更多 LangSmith 和 LangGraph 功能。

此外,还有关于利用 Langchain、Ollama、RSSHub 实现本地部署资讯问答机器人的内容,包括导入依赖库、从订阅源获取内容、为文档内容生成向量以及实现 RAG 等步骤。

在探索 LangGraph 构建多专家协作模型方面:

  1. 定义图:从节点开始,预填充状态,构建定制工作流程,包含多个节点,如 enter_、助手、_safe_tools、*_sensitive_tools、leave_skill 等,并逐一明确地定义如航班预订助手、租车助手、酒店预订助手、旅行预订助手和主助手等工作流程图。
  2. 对话:在对话轮次列表上运行,减少确认。
Content generated by AI large model, please carefully verify (powered by aily)

References

开发:LangChain第一个稳定版本重磅发布

LangGraph是一个新的库,用于低代码构建LLM应用,提供了更多的自定义和循环行为的可能性。LangGraph还提供了一个可视化的工具,用于展示和控制语言代理的图,以及查看和分析语言代理的输入和输出。LangGraph的发布,为LangChain增加了一个强大的扩展,使得LangChain能够支持更多的LLM应用的场景和需求。LangGraph也是一个独立的库,可以与其他的Python库和工具结合使用,以实现更多的功能和效果。LangGraph的详细介绍和使用方法,可以参考LangGraph的官方文档和教程。[heading2]LangChain的未来计划[content]LangChain 0.1.0的发布,是LangChain项目的一个重要的里程碑,也是LangChain项目的一个新的起点。LangChain团队将继续努力,为LLM应用提供一个更加强大、灵活和易用的框架和工具集。LangChain的下一步目标,包括:重写旧的链,使其符合LangChain 0.1.0的架构和规范,以及提供更多的功能和特性。维护稳定的分支,即LangChain 0.1.x,用于修复错误和优化性能,以保证LangChain的质量和稳定性。增加更多的工具和功能,如更多的LLMs和NLP任务的支持,更多的输出解析和检索的方法,更多的代理的技术,以及更多的LangSmith和LangGraph的功能。🚀

本地部署资讯问答机器人:Langchain+Ollama+RSSHub 实现 RAG

|导入依赖库加载所需的库和模块。其中,feedparse用于解析RSS订阅源ollama用于在python程序中跑大模型,使用前请确保ollama服务已经开启并下载好模型|从订阅源获取内容下面函数用于从指定的RSS订阅url提取内容,这里只是给了一个url,如果需要接收多个url,只要稍微改动即可。然后,通过一个专门的文本拆分器将长文本拆分成较小的块,并附带相关的元数据如标题、发布日期和链接。最终,这些文档被合并成一个列表并返回,可用于进一步的数据处理或信息提取任务。|为文档内容生成向量这里,我们使用文本向量模型bge-m3。https://huggingface.co/BAAI/bge-m3bge-m3是智源研究院发布的新一代通用向量模型,它具有以下特点:支持超过100种语言的语义表示及检索任务,多语言、跨语言能力全面领先(M ulti-Lingual)最高支持8192长度的输入文本,高效实现句子、段落、篇章、文档等不同粒度的检索任务(M ulti-Granularity)同时集成了稠密检索、稀疏检索、多向量检索三大能力,一站式支撑不同语义检索场景(M ulti-Functionality)从hf下载好模型之后,假设放置在某个路径/path/to/bge-m3,通过下面函数,利用FAISS创建一个高效的向量存储。|实现RAG

探索LangGraph:构建多专家协作模型

现在是我们开始构建图的时候了。和以前一样,我们将从一个节点开始,用用户的当前信息预填充状态。现在,让我们开始构建我们定制的工作流程。每个小工作流程的结构都和我们在第3部分中展示的完整工作流程图非常相似,它们都包含5个节点:1.enter_*:使用你之前定义的create_entry_node工具来创建一个ToolMessage,这个ToolMessage表明新的专业助手已经接管了工作。2.助手:这个由提示和大型语言模型(LLM)组成的模块会根据当前状态来决定是使用一个工具、向用户提问还是结束整个工作流程(返回到主助手)。3.*_safe_tools:这些是助手可以在不需要用户确认的情况下使用的“只读”工具。4.*_sensitive_tools:这些具有“写入”权限的工具需要用户的确认,并且在我们编译工作流程图时,它们会被设置一个interrupt_before。5.leave_skill:通过弹出dialog_state来表示主助手重新掌握了控制权。由于这些工作流程的相似性,我们本可以定义一个工厂函数来生成它们。但因为这是一个教程,我们会逐一明确地定义它们。首先,我们来创建一个航班预订助手,它专门负责管理用户更新和取消预订航班的流程。接下来,创建一个租车助手的工作流程图,它将负责处理所有的租车需求。然后,创建一个酒店预订的工作流程。之后,定义一个旅行预订助手。最后,创建一个主助手。这里是一个图片链接[heading3]对话[content]那真是很多内容!让我们在下面的对话轮次列表上运行它。这次,我们将有更少的确认。

Others are asking
Langgraph
LangGraph 是一个用于低代码构建 LLM 应用的新库,具有以下特点和发展情况: 1. 提供了更多自定义和循环行为的可能性,还有可视化工具用于展示和控制语言代理的图,以及查看和分析输入输出。 2. 是 LangChain 的一个强大扩展,能支持更多 LLM 应用场景和需求,且是独立库,可与其他 Python 库和工具结合使用。 3. 随着其发布,应用开发者能在应用层随心搭建自己的多专家模型。 4. 在 LangChain v0.2 中,LangGraph 正在成为构建代理的推荐方式,增加了预构建的 LangGraph 对象,更容易定制和修改。 LangChain 团队未来计划包括: 1. 重写旧的链,使其符合 LangChain 0.1.0 的架构和规范,并提供更多功能和特性。 2. 维护稳定分支,用于修复错误和优化性能,保证质量和稳定性。 3. 增加更多工具和功能,如更多的 LLMs 和 NLP 任务支持、更多输出解析和检索方法、更多代理技术以及更多 LangSmith 和 LangGraph 的功能。 详细介绍和使用方法可参考 LangGraph 的官方文档和教程。
2025-03-23
langgraph
LangGraph 是一个用于低代码构建 LLM 应用的新库,具有以下特点和发展: 1. 提供了更多自定义和循环行为的可能性,还有可视化工具用于展示和控制语言代理的图,以及查看和分析输入输出。 2. 是 LangChain 的强大扩展,能支持更多 LLM 应用场景和需求,且是独立库,可与其他 Python 库和工具结合使用。 3. 随着发布,众多应用开发者能在应用层随心搭建自己的多专家模型。 4. 解决了 LangChain 中定制预构建链和代理内部结构困难的问题,增加了轻松定义循环和内置内存功能等重要组件。在 LangChain v0.2 中,LangGraph 正成为构建代理的推荐方式,有预构建的 LangGraph 对象,更易定制和修改。其详细介绍和使用方法可参考官方文档和教程。LangChain 团队未来计划包括重写旧链、维护稳定分支、增加更多工具和功能等。
2025-03-10
给个使用langgraph的例子
LangGraph 是一个用于支持包含循环的 LLM 工作流创建的新包,它提供了 Python 和 JS 版本。以下是使用 LangGraph 的一个例子: 假设我们要开发一个客户支持机器人,它能够处理多种任务。我们可以使用 LangGraph 的核心功能来设计和构建这个机器人。 首先,我们需要确定机器人的多个独立代理,例如: 问题理解代理:负责理解客户提出的问题。 解决方案查找代理:根据问题查找相应的解决方案。 回答生成代理:生成回答并提供给客户。 然后,我们可以使用 LangGraph 将这些代理连接起来,形成一个多代理工作流。例如,问题理解代理可以将问题传递给解决方案查找代理,解决方案查找代理找到解决方案后再传递给回答生成代理,最后回答生成代理生成回答并提供给客户。 在这个过程中,每个代理都可以拥有自己的提示、LLM、工具和其他自定义代码,以便与其他代理最好地协作。 通过使用 LangGraph,我们可以更轻松地构建和管理复杂的多代理工作流,提高应用程序的灵活性和可扩展性。
2024-06-21
文章风格提取&文风转移教程
以下是关于文章风格提取和文风转移的教程: 该提示词可用于抽取不同风格文章的核心要素,抽取到的字段能作为 prompt,结合指定主题进行风格迁移。整体创作思路见文末 PDF。 具体使用方法为:拷贝文章风格提取提示词,输入给任意大模型,随后提供要抽取的文本。 已抽取的一些风格参考包括万维钢风格、史铁生《我与地坛》的文风、李娟《我的阿勒泰》的文风、许倬云《说中国》的文风、鲁迅《狂人日记》的文风、王小波《万寿寺》的文风、飞书多维表格工作流自动化抽取等。 在实践中,文章润色要想始终保持特定风格较困难,关键在于稳定模型的记忆功能以确保写作一致性。首先建立数据库存储文章风格,对不同文本进行风格提取并存储。使用时可根据需求选择和应用不同风格。 文章润色规划流程清晰地分为两部分:第一部分是润色内容的提取,上传文字时模型会识别和提取风格的关键要素并保存到写作风格库;第二部分是润色本身,先提取所需风格,提供文章内容,可选择逐段或整篇润色,以达到最佳写作效果。
2025-03-26
关于提示词工程的教程
以下是关于提示词工程的教程: 1. 提示词工程教程:为帮助大型语言模型更好地理解任务,提供了在线教程。任务可分解为两步,第一步模型检查当前提示词和样本,第二步编写改进的提示词。 2. 逐步推理模板:指导提案模型回答一系列问题,如输出是否正确、提示词是否准确描述任务等,以鼓励模型仔细检查示例并反思提示词局限性。 3. 上下文规定:提示词插入输入序列的位置灵活,可能在输入文本之前或之后,元提示词中应明确提示词和输入的相互作用。 4. 基础提示词:简单提示词能获得结果,但结果质量与提供信息的数量和完善度有关。提示词可包含指令、问题、上下文、输入或示例等元素。使用 OpenAI 聊天模型时,有 system、user 和 assistant 三种角色,本指南示例通常仅使用 user 消息作为 prompt。通过改进提示词可获得更好结果,提示工程探讨如何设计最佳提示词以高效完成任务。 5. 无需微调,仅用提示词工程让 LLM 获得 tool calling 功能:主要由提示词注入和工具结果回传两部分代码组成。提示词注入将工具信息及使用提示添加到系统提示中,包含 TOOL_EAXMPLE、tools_instructions、REUTRN_FORMAT 三个部分。工具结果回传解析 tool calling 输出,并将工具返回内容嵌入 LLM,利用正则表达式抓取相关参数,对于不同工具和 LLM 接口有不同处理方式。
2025-03-26
我要学习提示词工程哪些教程最好
以下是一些学习提示词工程的优质教程推荐: 1. 小七姐的“Prompt Engineering a Prompt Engineer 精读翻译”: 提供了提示词工程的在线教程。 将提示词工程的任务分解为两个步骤,并在元提示词中明确这两个步骤,提前传达期望。 为鼓励模型仔细检查示例,指导提案模型回答一系列问题。 明确提示词在不同上下文中与输入的相互作用。 2. 歸藏翻译的“简单易懂,强烈推荐 Codesignal 提示工程教程1”: 通俗易懂,给出丰富实践经验。 课程地址:https://learn.codesignal.com/preview/coursepaths/16/promptengineeringforeveryone 。 3. “GPT1 到 Deepseek R1 所有公开论文 The 2025 AI Engineer Reading List”中的第 3 节: 推荐了 Lilian Weng、Eugene Yan、Anthropic 的《提示工程教程》和《人工智能工程师工作坊》。
2025-03-25
Coze 智能体 教程
以下是关于 Coze 智能体的教程: 一泽 Eze 的教程:可能是全网最好的 Coze 教程之一,一次性入门 Coze 工作流。即使是非技术出身的爱好者也能上手跟学,包括通过实际案例演示构建能稳定生成结构化内容的 AI Agent、开源 AI Agent 从设计到落地的全过程思路、10+项常用的 Coze 工作流配置细节、常见问题与解决方法等。适合玩过 AI 对话产品的一般用户和对 AI Agent 工作流配置感兴趣的爱好者。注:本文不单独讲解案例所涉及 Prompt 的撰写方法,文末「拓展阅读」中有相关 Prompt 通用入门教程、Coze 其他使用技巧等内容。 12.Agent 相关比赛中的 Coze 教程: 基础教程: 大圣:胎教级教程:万字长文带你使用 Coze 打造企业级知识库 大聪明:保姆级教程:Coze 打工你躺平 安仔:Coze 全方位入门剖析免费打造自己的 AI Agent 基础教程:Coze“图像流”抢先体验 YoYo:Coze 图像流小技巧:探索视觉艺术的隐藏宝藏 【智能体】让 Coze 智能体机器人连上微信和微信群详细配置文档 Coze 变现模板全新升级: 超级管理员和普通用户的角色定义:超级管理员拥有管理整个系统的最高权限,普通用户没有项目配置权限和进入管理后台页的权限。 智能体配置模式: 模式 A:Zion 默认智能体,适用于测试,系统自动填充相关信息,项目自动创建完成,后续可在“管理后台”修改。 模式 B:你的 Coze 智能体,需要在“管理后台”页自行配置在 Coze 平台上获取的相关信息。
2025-03-24
claude教程
以下是关于 Claude 的教程: 1. 提示简介:Claude 经过训练成为一个乐于助人、诚实可靠、无害的助手,习惯于进行对话。您可用常规自然语言请求指示它,指示质量对其输出质量影响大,尤其对于复杂任务。 2. Project 功能: 打造真正的个人 AI 助理。 打开 Claude,在左侧菜单栏点击“Projects”。 点击“Create Project”。 填写项目名称并点击“Create Project”。 在“Project Knowledge”下面,点击“Set custom instructions”,填写系统提示词。建议使用 Claude 3.5 Sonnet,逻辑能力更强。打开聊天窗口输入复盘内容,AI 会给出优化建议。 3. 17 岁高中生写的神级 Prompt:将 Claude 强化成满血 o1,如用 Prompt 把 o1 级别的思维链复刻到 Claude 3.5 里,思考逻辑更详细、更像人。Prompt 名为 Thinking Claude,作者是 17 岁的高中生涂津豪,其 Github 地址为:https://github.com/richards199999/ThinkingClaude/tree/main 。
2025-03-24
coze bot小白教程
以下是关于 Coze Bot 的小白教程: 1. 搭建您的第一个 AI Bot: 设定 Bot 的人设与回复逻辑后,为 Bot 配置对应的技能,以保证其可以按照预期完成目标任务。以获取 AI 新闻的 Bot 为例,需要为它添加一个搜索新闻的接口来获取 AI 相关的新闻。 在 Bot 编排页面的技能区域,单击插件功能对应的“+”图标。 在添加插件页面,选择阅读新闻>头条新闻>getToutiaoNews,然后单击新增。 修改人设与回复逻辑,指示 Bot 使用 getToutiaoNews 插件来搜索 AI 新闻。 (可选)为 Bot 添加开场白,让用户更好地了解 Bot 的功能。开场白功能目前支持豆包、微信公众号(服务号)。 2. 测试您的 Bot:配置好 Bot 后,在预览与调试区域中测试 Bot 是否符合预期。可单击清除图标清除对话记录。 3. 发布您的 Bot: 在 Bot 的编排页面右上角,单击发布。 在发布页面输入发布记录,并勾选发布渠道。 单击发布。 更多内容,请访问 Coze 官方文档: 英文版:https://www.coze.com/docs/welcome.html 中文版:https://www.coze.cn/docs/guides/welcome 此外,还有以下相关教程: 1. 张梦飞:【保姆级教程】这可能是你在地球上能白嫖到的,能力最强的超级微信机器人!一步一图,小白友好 二、注册 COZE:点击去注册账号:https://www.coze.com/ 。注册完成后登录,点击 Creat bot 进行后续操作。 三、注册 Discode:先注册:https://discord.com/ 。注册后登录,按照一系列步骤进行操作,注意保存 Coze_bot1 和 Coze_bot2 的:APPLICATION ID、TOKEN。 2. 大聪明:保姆级教程:Coze 打工你躺平 如何使用就是一把梭:先创建第一个 bot,然后不断精进,直到做出特定效果。 Step0:先跑起来,创建一个 Coze Bot,帮您查阅 Hacker News,并中文返回。打开 coze.cn/home,点创建 Bot,引入联网插件 WebPilot 后尝试联网询问新闻。
2025-03-23