LangGraph 是一个用于低代码构建 LLM 应用的新库,具有以下特点和发展:
LangGraph是一个新的库,用于低代码构建LLM应用,提供了更多的自定义和循环行为的可能性。LangGraph还提供了一个可视化的工具,用于展示和控制语言代理的图,以及查看和分析语言代理的输入和输出。LangGraph的发布,为LangChain增加了一个强大的扩展,使得LangChain能够支持更多的LLM应用的场景和需求。LangGraph也是一个独立的库,可以与其他的Python库和工具结合使用,以实现更多的功能和效果。LangGraph的详细介绍和使用方法,可以参考LangGraph的官方文档和教程。[heading2]LangChain的未来计划[content]LangChain 0.1.0的发布,是LangChain项目的一个重要的里程碑,也是LangChain项目的一个新的起点。LangChain团队将继续努力,为LLM应用提供一个更加强大、灵活和易用的框架和工具集。LangChain的下一步目标,包括:重写旧的链,使其符合LangChain 0.1.0的架构和规范,以及提供更多的功能和特性。维护稳定的分支,即LangChain 0.1.x,用于修复错误和优化性能,以保证LangChain的质量和稳定性。增加更多的工具和功能,如更多的LLMs和NLP任务的支持,更多的输出解析和检索的方法,更多的代理的技术,以及更多的LangSmith和LangGraph的功能。🚀
原创AI小智AI小智2024-01-25 08:31发表于湖北本文译自LangGraph:Multi-Agent Workflows一文,Mixtral 8x7B让AI圈见识到了混合专家模型的威力,那么随着LangGraph的发布,众多应用开发者也能在应用层随心搭建自己的多专家模型了。上周,我们重点介绍了LangGraph-一个新的包(同时提供Python和JS版本),用于更好地支持包含循环的LLM工作流的创建,循环是大多数代理运行时的关键组成部分。作为发布的一部分,我们强调了两个简单的运行时:一个等效于LangChain中的AgentExecutor,另一个是针对消息传递和聊天模型的该版本。今天,我们很高兴强调LangGraph的第二组用例-多代理工作流。在这篇博客中,我们将介绍:“多代理”是什么意思?为什么“多代理”工作流很有趣?使用LangGraph进行多代理工作流的三个具体示例基于LangGraph使用多代理工作流构建的两个第三方应用程序示例(GPT-Newspaper和CrewAI)与其他框架(Autogen和CrewAI)的比较
从LangChain的早期开始,社区最大的反馈之一就是定制预构建链和代理的内部结构非常困难。为了解决这个问题,我们去年夏天引入了LCEL,使得创建任意可组合序列变得容易。直到现在,LangChain中的代理都是基于AgentExecutor这个单一的类,它有固定的逻辑来运行代理。为了支持越来越高级的代理,我们不断地为这个类添加了更多的参数,但它仍然不是真正的可组合。几个月前,我们推出了LangGraph,这是LangChain的一个扩展,专门用于创建代理工作负载。你可以把它看作是“代理的LCEL”。它在LCEL的基础上增加了两个重要的组件:能够轻松定义循环(这对于代理来说很重要,但对于链来说不是必需的)和内置的内存功能。在langchain v0.2中,我们保留了旧的AgentExecutor,但LangGraph正在成为构建代理的推荐方式。我们增加了一个预构建的LangGraph对象,它相当于AgentExecutor,由于它是基于LangGraph构建的,因此更容易定制和修改。想要了解如何迁移的详细信息,可以查看这里。