Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI和AGI的区别

Answer

AI(人工智能)分为 ANI(弱人工智能)和 AGI(通用人工智能)。

ANI(artificial narrow intelligence)是弱人工智能,它只能完成特定的单一任务,例如智能音箱、网站搜索、自动驾驶、工厂与农场的应用等。

AGI(artificial general intelligence)则是通用人工智能,能够像人类一样思考、学习和执行多种任务。

例如,ChatGPT 掀起的革命中,AGI 被视为“大脑”,与以往作为“工具”的 AI 有本质区别。OpenAI 一直致力于将世界上所有的知识压缩到模型里,使其成为“世界模型”,GPT 从一开始就以此为目标。但目前大众和政府还未准备好迎接 AGI 的降临。

Content generated by AI large model, please carefully verify (powered by aily)

References

学习笔记:AI for everyone吴恩达

AI分为ANI和AGI,ANI得到巨大发展但是AGI还没有取得巨大进展。ANI,artificial narrow intelligence弱人工智能。这种人工智能只可做一件事,如智能音箱,网站搜索,自动驾驶,工厂与农场的应用等。AGI,artificial general intelligence,做任何人类可以做的事[heading5]机器学习[content]监督学习,从A到B,从输入到输出。为什么近期监督学习会快速发展,因为现有的数据快速增长,神经网络规模发展以及算力快速发展。[heading5]什么是数据?[content]数据集,又称为资料集、数据集合或资料集合,是一种由数据所组成的集合。Data set(或dataset)是一个数据的集合,通常以表格形式出现。每一列代表一个特定变量。每一行都对应于某一成员的数据集的问题。它列出的价值观为每一个变量,如身高和体重的一个物体或价值的随机数。每个数值被称为数据资料。对应于行数,该数据集的数据可能包括一个或多个成员。如何获取数据,一,手动标注,二,观察行为,三,网络下载。使用数据的方法,如果开始搜集数据,可以马上将数据展示或者喂给某个AI团队,因为大多数AI团队可以反馈给IT团队,说明那种类型数据需要收集,以及应该继续构建那种类型的IT基础框架。数据不一定多就有用,可以尝试聘用AI团队要协助梳理数据。有时数据中会出现,不正确,缺少的数据,这就需要有效处理数据。数据同时分为结构化数据与非结构化数据。结构化数据可以放在巨大的表格中,人们理解图片,视频,文本很简单,但是这种非结构化数据机器处理起来更难一些。

AIGC常见名词解释(字典篇)

作者:小鱼干了发布时间:2023-06-29 23:45原文地址:https://mp.weixin.qq.com/s/ycDWZ8W46DrsyeNShC1-wA微信扫一扫关注该公众号[heading1]先热个身[content]chatGPT:是由致力于AGI的公司OpenAI研发的一款AI技术驱动的NLP聊天工具,于2022年11月30日发布,目前使用的是GPT-4的LLM。额!~chatGPT我听过,也知道是啥,但你这个解释我直接给我干懵了,套娃呢,解释藏我不认识的单词是不!~AI:人工智能(Artificial Intelligence)AGI:通用人工智能(Artificial General Intelligence)能够像人类一样思考、学习和执行多种任务的人工智能系统NLP:自然语言处理(Natural Language Processing),就是说人话LLM:大型语言模型(Large Language Model),数据规模很大,没钱你搞不出来的,大烧钱模型。这段解释chatGPT的释义,一句话就把关于AIGC的几个常见名词都涵盖了,不愧是去年火到我卖地瓜的二姨都知道的“鸡屁屉”。一个字!绝!

AGI万字长文(上)| 2023回顾与反思

世界模型:狼真的来了。本次由ChatGPT掀起的革命与之前的"AI热"有着本质区别。如果说之前的AI都是“工具”,那么这次的AGI就是“大脑”。这个区别不仅来自于模型的目的,也来自于底层数据量。OpenAI一直主张的都是数据量和计算量的“暴力美学”,GPT从一开始就是要成为“世界模型”的,也就是说把世界上所有的知识压缩到模型里,达到“全知全能”。连“之所以使用视频和图像数据的原因”都是“仅仅因为有更多数据”--Ilya Sutskever(OpenAI前首席科学家,GPT之父)从数据量级的角度来看,大模型正在接近全人类所有数据的量级。坊间传闻的GPT5应该在2024年就会出现,它应该就是"接近AGI"的存在了。但GPT5,不管是它的真正能力还是问世的时间,应该都会隔着“政治正确”的一层,因为不管是大众还是政府都还没有准备好欢迎AGI的降临。数据来源:https://arxiv.org/pdf/2211.04325.pdfhttps://lifearchitect.ai/gpt-5/

Others are asking
agi是什么
AGI 即通用人工智能(Artificial General Intelligence),指的是能够像人类一样思考、学习和执行多种任务的人工智能系统。 OpenAI 在其内部会议上分享了 AGI 的五个发展等级: 1. 聊天机器人(Chatbots):具备基本对话能力,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 推理者(Reasoners):具备人类推理水平,能够解决复杂问题,如 ChatGPT,能根据上下文和文件提供详细分析和意见。 3. 智能体(Agents):不仅具备推理能力,还能执行全自动化业务,但目前许多 AI Agent 产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。 4. 创新者(Innovators):能够协助人类完成新发明,如谷歌 DeepMind 的 AlphaFold 模型,可预测蛋白质结构,加速科学研究和新药发现。 5. 组织(Organizations):最高级别的 AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。 此外,OpenAI 通用人工智能(AGI)的计划曾因埃隆·马斯克的诉讼而受到影响。GPT3 及其半步后继者 GPT3.5 在某种程度上是朝着 AGI 迈出的巨大一步,而早期的模型则不是这样。ChatGPT 是由致力于 AGI 的公司 OpenAI 研发的一款 AI 技术驱动的 NLP 聊天工具。
2025-03-17
AGI 是什么英语单词缩写
AGI 是通用人工智能(Artificial General Intelligence)的缩写。通常来说,它指一种能够在许多领域内以人类水平应对日益复杂的问题的系统,能够像人类一样思考、学习和执行多种任务。 OpenAI 在其内部会议上分享了 AGI 的五个发展等级,分别为: 1. 聊天机器人(Chatbots):具备基本对话能力,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 推理者(Reasoners):具备人类推理水平,能够解决复杂问题,如 ChatGPT,能根据上下文和文件提供详细分析和意见。 3. 智能体(Agents):不仅具备推理能力,还能执行全自动化业务,但目前许多产品在执行任务后仍需人类参与。 4. 创新者(Innovators):能够协助人类完成新发明,如谷歌 DeepMind 的 AlphaFold 模型,可预测蛋白质结构,加速科学研究和新药发现。 5. 组织(Organizations):最高级别的 AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。
2025-03-17
什么是AGI
AGI 即人工通用智能,通常指能够完成任何聪明人类所能完成的智力任务的人工智能,其能力不局限于特定领域。例如,能够在许多领域内以人类水平应对日益复杂的问题。GPT3 及其半步后继者 GPT3.5 在某种程度上是朝着 AGI 迈出的巨大一步。当 AGI 真正实现并可能迅速发展为超人工智能(ASI)时,人类社会将在随后的二十年里经历深刻变革,如社会结构、价值观、权力格局、人类角色等方面。OpenAI 曾有关于 AGI 的相关计划,如原计划在 2026 年发布的 GPT7 因埃隆·马斯克的诉讼而暂停,计划在 2027 年发布的 Q2025(GPT8)将实现完全的 AGI。Sam Altman 认为确保 AGI 造福全人类是使命,且 AGI 是人类进步脚手架上的另一个工具。
2025-03-17
未来AGI新职业有哪些
未来 AGI 可能催生以下新职业: 1. 与 AGI 技术安全和伦理相关的工作,如负责确保 AGI 可控性和与人类价值对齐的专业人员。 2. 参与公共政策制定和全球合作的“政策顾问”和“外交官”,协助制定 AGI 相关的规则和标准。 3. 由于 AGI 对劳动力市场的冲击,可能会出现帮助劳动者快速适应职业转换、学习新技能的职业培训师和指导顾问。 同时,AGI 的广泛应用将对劳动力市场产生巨大冲击,许多传统职业可能被取代,但历史经验表明,每次技术革命虽淘汰旧岗位,但也会创造全新岗位。例如汽车取代马车夫催生了汽车产业的新工作,AGI 时代也有望出现我们今日难以想象的新职业,整体上有望维持就业的动态平衡。不过在调整过渡期,许多劳动者将面临前所未有的职业转换压力,需要快速适应并学习新技能,转向机器不能完全胜任的任务。
2025-03-17
transformer是通往AGI的必经之路吗?什么是世界模型,当前有哪些进展
Transformer 并非通往 AGI 的必经之路。在已知的 token space 中,Transformer 符合一些条件,但在更通用的场景中不太符合。AI 本质包含一堆 scaling law,一个值得被 scale up 的架构是基础,且架构要支持不断加入更多数据。当前在数据方面,如限定问题的数据生成有进展,但通用问题还没有完全的解法。 世界模型方面,目前的研究正在以指数级别的速度增长。对于语言这种有结构、有规则的指令系统,其逻辑受指向描述变化,如早期语言模型建模中用到的 RNN、LSTM 及当前 LLM 的 Transformer 模型结构,都是对语言序列性所体现逻辑结构的适配。同时也在思考是否存在其他形式的符号化表征及相应的建模结构,以及对于非碳基生物语言的使用情况等。未来通往 AGI 的道路并非简单,需要探寻 RL 与 LLM 的本质普遍性。
2025-03-16
agi是什么
AGI 即通用人工智能(Artificial General Intelligence),指的是一种能够完成任何聪明人类所能完成的智力任务的人工智能。 OpenAI 在其内部会议上分享了 AGI 的五个发展等级: 1. 聊天机器人(Chatbots):具备基本对话能力,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 推理者(Reasoners):具备人类推理水平,能够解决复杂问题,如 ChatGPT,能根据上下文和文件提供详细分析和意见。 3. 智能体(Agents):不仅具备推理能力,还能执行全自动化业务,但目前许多 AI Agent 产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。 4. 创新者(Innovators):能够协助人类完成新发明,如谷歌 DeepMind 的 AlphaFold 模型,可预测蛋白质结构,加速科学研究和新药发现。 5. 组织(Organizations):最高级别的 AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。 此外,OpenAI 通用人工智能(AGI)的计划曾因埃隆·马斯克的诉讼而受到影响。GPT3 及其半步后继者 GPT3.5 在某种程度上是朝着 AGI 迈出的巨大一步,而早期的模型则不是这样。ChatGPT 是由致力于 AGI 的公司 OpenAI 研发的一款 AI 技术驱动的 NLP 聊天工具。
2025-03-16
AI发展大事记与 时间线
以下是 AI 发展的大事记与时间线: 2022 年 11 月 30 日,OpenAI 发布基于 GPT 3.5 的 ChatGPT。 2024 年 3 月,AI 发展持续升温,潞晨科技发布 OpenSora,Suno 发布 V3 版本爆火。 2024 年 4 月,英伟达发布硬件股价飙升。 2024 年 5 月,苹果发布 AI 芯片,张吕敏发布 IC light,AI 竞争白热化,伊莉雅离开 OpenAI 并成立新公司,估值超五亿美金。 2024 年 7 月,快手开源 LivePortrait 模型,表情迁移。 2024 年 8 月,StabilityAI 老板成立新公司发布 flux 大模型。 2024 年 9 月,阿里云发布模型,海螺 AI 参战,Google 发布 GameGen 实时生成游戏,通义千问 2.5 系列全家桶开源,华为发布 cloud matrix 云计算基础设施,GPT 高级语音模式上线,Meta 发布 AI 眼镜 Orion,AI 代码编辑器 cursor 爆火。 2024 年 10 月,Pika 发布 1.5 模型,诺奖颁发给 AI 奠基人,特斯拉发布机器人,Adobe 发布 Illustrator+Al 生成矢量图,智谱 AI 发布 autoGLM,腾讯混元开源 3D 模型。 在更早的时间: 1943 年,心理学家麦卡洛克和数学家皮特斯提出了机器的神经元模型,为后续的神经网络奠定了基础。 1950 年,伟大的计算机先驱图灵最早提出了图灵测试,做为判别机器是否具备智能的标准。 1956 年,在美国一个小镇的达特茅斯学院中,马文·明斯基和约翰·麦凯西拉着香农大佬站台背书,共同发起召开了著名的达特茅斯会议,在这次会议上,人工智能 Artifical Intelligence 一词被正式提出,并做为一门学科被确立下来。 2024 年的其他进展: 2 月,OpenAI 发布视频生成模型 Sora,首次实现高质量文本生成视频,开创 AI 视频生成新纪元。 3 月,Suno 发布 V3 版本,AI 音乐生成方向进入生产力可用状态。 4 月,Meta 发布高性能开源大模型 Llama3,降低了 AI 技术的准入门槛。 5 月,GPT4 发布,RayBan 与 Meta 合作的智能眼镜销量突破百万,字节上线即梦 AI。 6 月,快手发布可灵。 9 月,OpenAI 发布 o1 预览版。 10 月,Rosetta 和 AlphaFold 算法的研发者因在蛋白质结构设计和预测中的突破性贡献获得诺贝尔化学奖,约翰·霍普菲尔德和杰弗里·辛顿因人工神经网络和深度学习的开创性贡献获诺贝尔物理学奖,Anthropic 大模型 Claude 3.5 Sonnet 获得“computer use”功能。 12 月,OpenAI 发布 o3 系列模型。
2025-03-17
AI 搜索中用户查询理解
Perplexity AI 是一家专注于开发新一代 AI 搜索引擎的公司,由前 OpenAI 研究科学家 Aravind Srinivas 与前 Meta 研究科学家 Denis Yarats(Perplexity CTO)等合伙人于 2022 年 8 月共同创办。 其优势包括: 1. 理解能力强,能够深入理解查询的语义,而非仅仅匹配关键词,从而提供更准确和相关的结果。 2. 生成式回答,可生成通顺的自然语言回答,而非简单返回网页链接和片段,使结果更易于理解和使用。 3. 个性化和上下文感知,能根据用户的历史查询和偏好个性化结果,提供更贴合需求的答复。 劣势有: 1. 训练成本高,训练大型 LLM 模型需要大量计算资源和高质量训练数据。 2. 可解释性差,LLM 的工作原理较为黑箱,难以解释为何给出某个结果,缺乏透明度。 3. 潜在的偏差和不当内容,由于训练数据的局限性,LLM 可能产生偏见或不当内容。 独特之处在于将 LLM 技术应用于搜索引擎领域,试图颠覆传统基于关键词匹配的搜索范式,为用户提供更自然和智能的搜索体验,还融合了个性化和上下文感知等功能,努力成为新一代的“智能助手”。 总的来说,Perplexity 凭借 LLM 的强大语义理解能力,为搜索引擎带来了新的可能性,但也面临着一些技术和伦理挑战。 在搜索领域,推荐算法存在精确推荐提高用户黏性和平台广告收益的优点,但也有导致信息茧房和信息过载等负面影响。搜索引擎采用以用户查询为导向的“拉取式”信息获取模式,极大改变了人们获取信息的方式,搜索广告因用户搜索往往携带着明确意图,点击转化率通常高于泛泛的推荐广告,在数字广告市场中长期占据重要份额。 AI 智能体中的检索增强生成(RAG)是当今大多数现代人工智能应用程序的标准架构。以 Sana 的企业搜索用例为例,其过程始于应用程序加载和转换无结构文件,将其转换为 LLM 可查询格式,分块成更小的文本块并作为向量嵌入存储在数据库中。当用户提出问题时,系统检索语义上最相关的上下文块,折叠到“元提示”中与检索到的信息一起馈送给 LLM,LLM 合成答复返回给用户。在生产中,AI 应用程序具有更复杂的流程,包含多个检索步骤和提示链,将结果综合生成最终输出。例如 Eve 法律研究的共同驾驭员,会将查询分解为独立提示链,运行每个提示链生成中间输出,并综合编写最终备忘录。
2025-03-17
目前支持上下文长度最长的是什么AI
目前支持上下文长度较长的 AI 有以下几种: Kimi:是国内最早支持 20 万字无损上下文的 AI,现在已提升到 200 万字,对长文理解表现出色,适合处理长文本或大量信息的任务,但在文字生成和语义理解、文字生成质量方面可能不如国内其他产品,且不支持用户自定义智能体。 http://X.AI 发布的 Grok1.5:支持 128k 上下文长度,性能翻倍,在 MATH、HumanEval、GSM8K、MMLU 测试中表现出色。 AI21 发布的 Jamba:创新的 SSMTransformer 架构,支持 256K 上下文长度,结合 Joint Attention 和 Mamba 技术,提升长上下文吞吐量。
2025-03-17
检索有关AI入门必读书籍
以下是为您推荐的 AI 入门必读书籍: 1. 「」,有助于熟悉 AI 的术语和基础概念。 2. 「」,其中包含为初学者设计的课程。 3. GPT1 到 Deepseek R1 所有公开论文 The 2025 AI Engineer Reading List:涉及人工智能工程的 10 个领域,包括 LLMs、基准、提示、RAG、代理、CodeGen、视觉、语音、扩散、微调。如果您想从零开始,可以从此处开始。 4. 入门经典必读:作者为 ,原文地址:https://a16z.com/2023/05/25/aicanon/ 。文中分享了一份用于更深入了解现代 AI 的精选资源列表。
2025-03-17
AI应用分类
AI 的应用场景非常广泛,主要包括以下几类: 1. 医疗保健: 医学影像分析:用于分析医学图像辅助诊断疾病。 药物研发:加速药物研发过程,识别潜在药物候选物和设计新治疗方法。 个性化医疗:分析患者数据提供个性化治疗方案。 机器人辅助手术:控制手术机器人提高手术精度和安全性。 2. 金融服务: 风控和反欺诈:识别和阻止欺诈行为,降低金融机构风险。 信用评估:评估借款人信用风险,帮助做出贷款决策。 投资分析:分析市场数据辅助投资决策。 客户服务:提供 24/7 服务并回答常见问题。 3. 零售和电子商务: 产品推荐:分析客户数据推荐可能感兴趣的产品。 搜索和个性化:改善搜索结果提供个性化购物体验。 动态定价:根据市场需求调整产品价格。 聊天机器人:回答客户问题并解决问题。 4. 制造业: 预测性维护:预测机器故障避免停机。 质量控制:检测产品缺陷提高质量。 供应链管理:优化供应链提高效率和降低成本。 机器人自动化:控制工业机器人提高生产效率。 5. 交通运输:(未给出具体应用场景) 此外,还有众多具体的 AI 应用产品,例如: 1. 辅助创作与学习:AI 智能写作助手、语言学习助手、诗歌创作助手、书法字体生成器、漫画生成器等。 2. 推荐与规划:AI 图像识别商品推荐、美食推荐平台、旅游行程规划器、时尚穿搭建议平台、智能投资顾问等。 3. 监控与预警:AI 宠物健康监测设备、家居安全监控系统、天气预报预警系统、医疗诊断辅助系统等。 4. 优化与管理:办公自动化工具、物流路径优化工具、家居清洁机器人调度系统、金融风险评估工具等。 5. 销售与交易:AI 艺术作品生成器、书法作品销售平台、摄影作品销售平台、汽车销售平台、房地产交易平台等。 具体如: AI 摄影参数调整助手:利用图像识别、数据分析技术,在一些摄影 APP 中根据场景自动调整摄影参数。 AI 音乐情感分析平台:通过机器学习、音频处理技术,有相关音乐情感分析软件可判断音乐的情感倾向。 AI 家居智能照明系统:结合物联网技术、机器学习,像小米智能照明系统可根据用户习惯和环境变化自动调整灯光。 AI 金融风险预警平台:运用数据分析、机器学习,金融风险预警软件能提前预警金融风险。 AI 旅游路线优化平台:借助数据分析、自然语言处理,马蜂窝可根据用户需求优化旅游路线。
2025-03-17
写自媒体文章,哪个AI软件好
以下是一些适合用于写自媒体文章的 AI 软件: 1. Wordvice AI:集校对、改写转述和翻译等功能于一体的 AI 写作助手,基于大型语言模型提供全面的英文论文润色服务。 2. ChatGPT:由 OpenAI 开发的大型语言模型,可用于学生和写作人员的多方面写作辅助。 3. Quillbot:人工智能文本摘要和改写工具,可用于快速筛选和改写文献资料。 4. HyperWrite:基于 AI 的写作助手和大纲生成器,可帮助用户在写作前进行头脑风暴和大纲规划。 5. Wordtune:AI 驱动的文本改写和润色工具,可以帮助用户优化文章的语言表达。 6. Smodin:提供 AI 驱动的论文撰写功能,可以根据输入生成符合要求的学术论文。 利用 AI 不到 30 分钟打造爆款公众号文章的步骤如下: 1. 收集相关资料:明确文章主题后,借助 AI 工具高效完成。例如使用 Perplexity.AI 的强大搜索功能获取信息,输入具体的 Prompt 定位相关资讯,还可使用具备联网搜索功能的工具如微软的 Bing 搜索引擎。 2. 整理资料:收集完资料后,使用月之暗面开发的 Kimi 这个 AI 会话助手进行整理。需注意 Kimi 阅读能力有限,可分批次提供资料确保其有效读取和理解。
2025-03-17
大模型就是指大语言模型吗?有哪些常见的非语言类大模型和小模型,两者的区别和联系是什么?
大模型并非仅指大语言模型。大型模型主要分为两类:一是大型语言模型,专注于处理和生成文本信息;二是大型多模态模型,能够处理包括文本、图片、音频等多种类型的信息。 大型多模态模型与大型语言模型存在以下区别: 1. 处理的信息类型不同:大型语言模型专注于文本信息,而大型多模态模型能处理多种信息类型。 2. 应用场景不同:大型语言模型主要用于自然语言处理任务,如文本翻译、生成、情感分析等;大型多模态模型可应用于图像识别与描述、视频分析、语音识别与生成等更广泛的领域。 3. 数据需求不同:大型语言模型主要依赖大量文本数据训练,大型多模态模型则需要多种类型数据。 当我们提到“小模型”时,是相对大型模型而言,规模较小。这些小模型通常是为完成特定任务而设计,比如最初用于图像分类,只能分辨是或不是某一个东西(如猫、狗)。 “小模型”在特定任务上表现出色,但“大模型”像多功能基础平台,能处理多种任务,应用范围广泛,拥有更多通识知识。 大模型并不拥有无限知识,其知识来源于训练过程中的有限数据,只能回答训练中见过或类似的问题,知识库不会自动更新,在某些特定或专业领域的知识可能不够全面。 大型语言模型的运作机制主要是通过大量数据训练学习语言结构和模式,然后根据输入生成相应文本,类似于词语接龙游戏,永远在猜测下一个字符将要生成什么。
2025-03-16
出图是动漫/真人有什么区别和需要注意的点?
动漫出图和真人出图有以下区别和需要注意的点: 版权和法律意识:对于知名动漫角色的使用,要特别注意版权和法律问题。 模型和文件:LORA 在提炼图片特征方面功能强大,其文件通常有几十上百兆,承载的信息量远大于 Embedding,在还原真人物品时,LORA 的细节精度更高。下载的 LORA 需放在特定文件夹,使用时要注意作者使用的大模型,通常配套使用效果最佳,同时还需加入特定触发词保证正常使用。 提示词:设置文生图提示词时,正向提示词和负向提示词的准确设定对出图效果有重要影响。 参数设置:包括迭代步数、采样方法、尺寸等参数的合理设置,会影响出图的质量和效果。
2025-03-16
大模型和智能体的区别
大模型和智能体的区别主要体现在以下几个方面: 概念定义: 智能体:简单理解就是 AI 机器人小助手,参照移动互联网,类似 APP 应用的概念。可以是面向 C 端,如社交方向,用户注册后先捏一个自己的智能体,然后让其与他人的智能体聊天,两个智能体聊到一起后再真人介入;也可以面向 B 端,帮助 B 端商家搭建智能体。 大模型:是一种技术。 局限性: 大模型具有强大的语言理解和生成能力,但存在一定局限性,例如无法回答私有领域问题(如公司制度、人员信息等),无法及时获取最新信息(如实时天气、比赛结果等),无法准确回答专业问题(如复杂数学计算、图像生成等)。 开发平台: 有众多智能体开发平台,如字节的扣子、Dify.AI 等。 应用场景: 智能体应用基于大模型,通过集成特定的外部能力,能够弥补大模型的不足。适用于有企业官网、钉钉、微信等渠道,期望为客户提供产品咨询服务,缺少技术人员开发大模型问答应用等场景。典型场景包括私有领域知识问答、个性化聊天机器人、智能助手等。 在 Anthropic 的定义中,智能体可以有多种定义,一些客户将其定义为能够长期独立运行的全自动系统,能使用各种工具完成复杂任务;另一些则将其描述为更具规范性、遵循预定义工作流程的系统。Anthropic 将这些变体统称为智能系统,并在架构上区分为工作流和智能体两种类型,工作流是通过预定义代码路径来编排 LLM 和工具的系统,智能体则是由 LLM 动态指导自身流程和工具使用的系统,能够自主控制任务完成方式。
2025-03-14
市面上主流的大模型有什么区别
市面上主流的大模型主要有以下区别: 1. 架构类型: Encoderonly:适用于自然语言理解任务,如分类和情感分析,代表模型是 BERT。 Encoderdecoder:同时结合 Transformer 架构的 encoder 和 decoder 来理解和生成内容,用例包括翻译和摘要,代表是 Google 的 T5。 Decoderonly:更擅长自然语言生成任务,众多 AI 助手采用此结构,如 ChatGPT。 2. 处理信息类型: 大型语言模型:专注于处理和生成文本信息。 大型多模态模型:能够处理包括文本、图片、音频等多种类型的信息。 3. 应用场景: 大型语言模型:主要用于自然语言处理任务,如文本翻译、文本生成、情感分析等。 大型多模态模型:可应用于图像识别与描述、视频分析、语音识别与生成等更广泛的领域。 4. 数据需求: 大型语言模型:主要依赖大量的文本数据进行训练。 大型多模态模型:需要多种类型的数据进行训练,包括文本、图片、音频等。 5. 规模: 大模型的预训练数据非常大,往往来自互联网,包括论文、代码、公开网页等,一般用 TB 级别的数据进行预训练,参数也非常多,如 OpenAI 在 2020 年发布的 GPT3 就已达到 170B 的参数。 6. 优秀模型: GPT4(网页版)、GPT4(API)、智谱清言、通义千问 2.0、AndesGPT(OPPO)、文心一言 4.0(API)、MoonShot(KimiChat)、Claude2、360 智脑、Qwen72BChat、文心一言 4.0(网页版)等。 7. 性能表现:国内外大模型存在差距,如 GPT4 Turbo 总分 90.63 分遥遥领先,国内最好模型文心一言 4.0(API)总分 79.02 分,与 GPT4 Turbo 有一定差距。
2025-03-13
defy对比deepseek有哪些区别和优势
Defy 与 DeepSeek 的区别和优势如下: DeepSeek 的优势: 1. 参数量大(685B),磁盘占用为 687.9 GB,采用混合专家模型(MoE),有 256 个专家,每个 token 使用 8 个专家。 2. 理解能力提升,能准确理解复杂和微妙的查询。 3. 知识更新至 2023 年,提供更及时、更相关的信息。 4. 多语言支持和个性化服务增强。 5. 数据安全和隐私保护加强。 6. 在 BigCodeBenchHard 排名第一。 7. 展示出媲美领先 AI 产品性能的模型,但成本仅为其一小部分,在全球主要市场的 App Store 登顶。 8. 文字能力突出,尤其在中文场景中高度符合日常、写作习惯。 9. 数学能力经过优化,表现不错。 关于 Defy 的相关信息未在提供的内容中提及,无法进行对比。
2025-03-13
agent和agi的区别
Agent 和 AGI 的区别主要体现在以下几个方面: Agent(智能体): 是执行特定任务的 AI 实体。 拥有复杂的工作流程,可以自我对话,无需人类驱动每一部分的交互。 由大型语言模型、记忆、任务规划以及工具使用等部分组成。 例如在斯坦福 25 人小镇案例中有所应用。 AGI(人工通用智能): 强调的是具备像人类一样广泛和通用的智能能力。 追求能够在各种不同的任务和领域中表现出高度智能的水平。 总的来说,Agent 更侧重于特定任务的执行和特定功能的实现,而 AGI 则是一个更宏观和全面的概念,旨在实现广泛的通用智能。
2025-03-12