Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如何搭建智能体

Answer

搭建智能体的步骤如下:

  1. 创建智能体,输入人设等信息,并放上相关工作流。配置完成后进行测试。但需注意,工作流中如涉及插件 api_token,不能直接发布,可将其作为工作流的输入,让用户购买后自行输入再发布。
  2. 确定智能体的结构:
    • 按照市场营销逻辑组织,如在品牌卖点提炼中,以品牌卖点提炼六步法为核心流程,加入其他分析助手,包括品牌卖点定义与分类助手、STP 市场分析助手、用户画像分析助手、触点收集助手等,同时还可包括用户需求分析的 KANO 助手、营销六层转化漏斗分析、超级转化率六要素等工具。
    • 明确 AI 的能力边界,如 AI 不了解公司的主要产品、独特之处、获得的认可、核心渠道、核心购买人群、营销手段、期望的新渠道结果等。
    • 确定智能体为引导型助手,如在寻找卖点时作为灵感提问助手,提供更多思考维度。
Content generated by AI large model, please carefully verify (powered by aily)

References

五津: DeepSeek+扣子:1分钟生成小红书爆款单词视频

创建一个智能体,输入人设等信息,放上刚才创建的2个工作流。配置完成后,就可以测试了~[heading1]千万不要直接发布!!![content]工作流2中【所有视频片段拼接】节点使用的插件api_token填的是你的token,其他人调用这个工作流会直接消耗你的money,所以不能直接发布。你可以将api_token作为工作流2最开始的输入,用户自己购买后,输入api_token就可以使用,然后再发布。看到这里,说明你离做出来就差一步行动了,期待看到你的成果!我是五津:C端新闻、视频产品经理,2025 AI春晚节目统筹&共创者,我的微信是:wdwxhs0100,欢迎来聊~我的公众号是【宝藏智能体club】

智能体在品牌卖点提炼中的应用

按照上一章节所描述的品牌卖点提炼的步骤,为了提炼出合理的卖点,我们需要按照市场营销的逻辑组织智能体的结构。[heading2]3.3搭建完整智能体[content]在这个工作流中,我们确定了以品牌卖点提炼六步法为核心的流程,而为了最终能够到达第六步应用,我们需要将其他的分析助手加入工作流中,为我们找到更有效的结论,所以这些结构包括:1.品牌卖点定义与分类助手:让智能体理解独特性卖点、通用性卖点、保障性卖点在我们的营销场景中的定义,用提问的方式帮助我们先划定品牌所处的生态位。1.品牌卖点提炼六步法:按照我们所提出的六步法,将探索、排列、抽取、收敛、确认、应用流程提供给智能体。2.STP市场分析助手:让智能体回到市场洞察中,使用STP营销分析对应的市场细分、目标市场和定位。1.用户画像分析助手:目标用户是品牌卖点的核心,如果公司对用户画像没有进行过细致的分析,可以借助智能体去获得精准的用户画像。2.触点收集助手:协助卖点在线上、线下、人员等不同场景中的触点,协助卖点的应用落地。同时还包括一些结构中没有体现,但是在我们后续的品牌卖点应用过程中有效的分析工具:1.用户需求分析的KANO助手:详细分析顾客需求所属的类型,KANO模型将用户需求划分为基本型需求(Must-be Attributes)、期望型需求(Performance Attributes)、魅力型需求(Attractive Attributes)、无差异型需求(Indifferent Attributes)、反向型需求(Reverse Attributes)。2.营销六层转化漏斗分析:曝光层面、点击层面、访问层面、咨询层面、成交层面、复购层面。3.超级转化率六要素:互惠、承诺与兑现、信任状、畅销好评、痛点刺激、稀缺。

智能体在品牌卖点提炼中的应用

AI在逻辑推理、数据分析、内容理解和输出上有独特的强项,可以应用在品牌卖点提炼中,为公司寻找品牌卖点的过程中,提供有效的分析和灵感,因此我们可以借助AI智能体,搭建出属于公司品牌的品牌卖点提炼助手,利用和智能体的对话,更有助于我们找到有效的品牌卖点。[heading2]3.1先明确我们的Know-How和AI的能力[content]在搭建智能体之前,我们需要先明确AI的能力边界,因此我们需要明确AI对我们公司以及公司所在的市场不了解的部分。AI不知道我公司的主要产品,以及产品具体解决了用户什么需求。AI不知道我公司产品具体的独特之处。AI不知道我公司是否获得过哪些特别的认可。AI不知道我公司目前所依赖的核心渠道。AI不知道我公司目前产品从售卖数据上体现的核心购买人群。AI不知道我公司在产品售卖中曾使用过的营销手段。AI不知道我公司期望在新的渠道中获得怎样的结果。……你会发现,AI在品牌卖点探索过程中,对你公司的了解程度接近于0,如果你直接期望AI去帮你找到卖点,那基本上只能收获AI的一通瞎回答,比如像下面这样:这样的回答结果,基本无法帮助我们拿到有效的品牌卖点,更无法将卖点制作成真正的落地页。而AI真正的能力是什么:AI能够通过分析数据和信息进行逻辑推理,解决复杂问题。AI擅长快速处理和分析数据,能够从中提取有价值的信息和模式。AI有大量的训练数据,可以输出比人类更全面的相关信息。AI可以理解用户所提供的内容,按照正确的结构梳理有效的输出内容。因此,我们可以确定这样一个智能体,更适合做一个引导型的助手,你不能依赖AI给你从0到1找到公司产品的卖点,也不能依赖于智能体直接从大量数据的分析结果直接得到最终的有效卖点。而引导型的助手,更好的形式是,让它成为一个灵感提问助手,在我们寻找卖点的过程中,在思考路径陷入停滞的情况中,让AI提供更多的思考维度。

Others are asking
AI知识库搭建工具都有哪些
以下是一些常见的 AI 知识库搭建工具: 数据工具 多维表格:适用于 Excel 重度使用者、手动数据处理使用者、文件工作者,可用表格+AI 进行信息整理、提效、打标签,满足 80%数据处理需求。 编程工具 Cursor:适用于 0 编程经验、觉得编程离我们很遥远的小白,通过 AI 工具对编程祛魅,降低技术壁垒。 音乐工具 Suno:适用于 0 乐理知识、觉得作词作曲和我们毫不相关成本巨大的小白,AI 赋能音乐创作,无需乐理知识即可参与音乐制作。 提示词工具 现成好用的 Prompt:适用于完全没有 AI 使用经验,只下载过 kimi、豆包、chatgpt 一类对话软件的小白,可直接拿好用的提示词拿来用用,有很多完整结构的优秀 prompt 案例。 智能体工具 Coze:适用于完全没有编程基础,但对 AI 已有一点概念的小白,为纯粹小白补的分享 AI AGENT 搭建平台,30 分钟就能开始使用。 绘图工具 现在主流的 AI 绘图工具网站:适用于完全没接触过 AI 出图、只是听说过的小伙伴,为纯粹的小白提供一个工具列表和扫盲。 此外,还有像大圣讲解的 Coze 等工具也可用于搭建 AI 知识库。
2025-03-16
想在comfyui搭建一个音频节奏生成ai抽象粒子视觉效果的工作流,应该使用哪些模型节点?如何搭建?
在 ComfyUI 搭建音频节奏生成 AI 抽象粒子视觉效果的工作流,您可以参考以下内容: 1. 大模型节点: 您可以根据自己的风格选择不同的大模型,推荐使用: AWPainting,链接:https://civitai.com/models/84476/awpainting primemixanything,链接:https://civitai.com/models/75089/primemixanything xxmix9realistic v40,链接:https://civitai.com/models/47274/xxmix9realistic 2. 关键词节点: 可以使用工作流内的关键词,也可以输入自己的正负面关键词。 3. Lora 节点: 可根据自己风格搭配进行选择,如需多个 Lora 可进行串联。 4. ControlNet 节点: 选用 qrcode_monster V2 版本,相比于 V1 版本 V2 版本识别性更强。下载需要魔法,没有魔法的同学文末领取模型。下载链接:https://huggingface.co/monsterlabs/control_v1p_sd15_qrcode_monster/tree/main/v2 5. 采样器节点: 所有生图的老演员了,Step 要选择高步数,35 50 即可。采样器默认的 euler a /dpmpp 2m sde 基础节点介绍: 1. Checkpoint 基础模型(大模型/底模型)节点: 属于预调模型,决定了 AI 图片的主要风格。输出连接:Model 连接 KSampler 采样器的 Model;Clip 连接终止层数的 Clip;Vae 连接 VaeDecode 的 Vae。 2. Clip 终止层数(clip skip)节点: ComfyUI 的是负数的,webUI 的是正数。输出入点:Clip 连接 Checkpoint 基础模型的 Clip。输出节点:Clip 连接 Prompt 节点的 Clip。正向提示词和负面提示词各一个。 3. Prompt 节点: 输出入点:Clip 连接 Clip 终止层数节点的 Clip。输出节点:正向提示词和负面提示词各连接一个。 4. KSampler 采样器: 输出入点:Model 连接 Checkpoint 基础模型;Positive 连接正向提示词;negative 连接负面提示词;latent_imageL 连接 Empty Latent Image 潜空间图像的 Latent。输出节点:Latent 连接一个 VAE 的 Samples。 5. Empty Latent Image 潜空间图像: 设置出图尺寸,例如 10241024。输出入点:Latent 连接 KSampler 采样器的 Latent。 此外,还有一些根据插件整理的工作流,您可以先随便选择一个“文生图”中的“基础+自定 VAE”。选好之后,点击“替换节点树”。界面中就会出现已经连接好的工作流节点(如果没看到,就按一下 home 键),包括大模型、clip、vae、正反提示词、尺寸,采样器等所有在 webUI 中熟悉的参数,而且全都是中文面板。打开模型节点,可以看到 webUI 中的模型全部都在。这次先不更改参数,点击“运行节点树”,直接生成。此时会提醒您是否启用 ComfyUI,点击确定即可。等待一会,就能在最后一个节点预览图中看到生成的图片。点击这里就可以打开后台,看到出图时间。
2025-03-15
comfyui工作流搭建基础
以下是 ComfyUI 工作流搭建的基础步骤: 1. 准备加载大模型的节点(load 节点):在工作区鼠标右键点击,选择“Add Node”,然后依次选择“loaders”和“Load Checkpoint”,接着选择对应的模型,点击“Ckpt_name”下拉选择对应的模型。 2. 加载 Conditioning(条件):在工作区鼠标右键点击,选择“Add Node”,然后选择“Conditioning”,再选择“CLIP TEXT Encode”。这里需要输入正向和反向提示词,相同节点可使用快捷键 Ctrl+C 和 Ctrl+V 复制粘贴。 3. 添加采样器:这部分和 WEB_UI 的设置类似,包括采样器、迭代步数、CFG 等。需要注意的是,seed 值只有固定、随机、每次增加、每次减少这四个选项,采样器和调度器是分开的。 4. 加载 Latent:可以设置图片的宽、高和批次,设置方式与 WEB_UI 相同。 5. 加载 VAE:操作与 WEB_UI 加载 VAE 相同。 6. 加载保存图片的节点。 7. 串联节点:节点分为起始节点、最终输出节点和过程执行节点。首先,checkpoint 加载器中模型选择好可直接使用,CLIP 对应链接需要的两个条件(正向提示词/负向提示词),VAE 直接连接对应的 VAE。然后将正向提示词、负向提示词链接到对应的采样器节点,latent 直接链接空 Latent。串联完毕后即得到最简单的 ComfyUI 工作流。 此外,ComfyUI 共学快闪的飞书学习群中有众多关于 ComfyUI 的学习内容,如王蓉的基础搭建和转绘、唯有葵花向日晴的基础教程、工作流开发和实际应用场景等。
2025-03-15
如何搭建一个你这样的知识库智能问答机器人,有相关的流程教程吗?
搭建一个知识库智能问答机器人通常包括以下流程: 1. 基于 RAG 机制: RAG 机制全称为“检索增强生成”,是一种结合检索和生成的自然语言处理技术。它先从大型数据集中检索与问题相关的信息,再利用这些信息生成回答。 要实现知识库问答功能,需创建包含大量文章和资料的知识库,例如有关 AI 启蒙和信息来源的知识库,并通过手工录入方式上传文章内容。 2. 利用 Coze 搭建: 收集知识:确认知识库支持的数据类型,通过企业或个人沉淀的 Word、PDF 等文档、云文档(通过链接访问)、互联网公开内容(可安装 Coze 提供的插件采集)等方式收集。 创建知识库。 创建数据库用以存储每次的问答。 创建工作流: 思考整个流程,包括用户输入问题、大模型通过知识库搜索答案、大模型根据知识库内容生成答案、数据库存储用户问题和答案、将答案展示给用户。 Start 节点:每个工作流默认都有的节点,是工作流的开始,可定义输入变量,如 question,由 Bot 从外部获取信息传递过来。 知识库节点:输入为用户的查询 Query,输出为从知识库中查询出来的匹配片段。注意查询策略,如混合查询、语义查询、全文索引等概念。 变量节点:具有设置变量给 Bot 和从 Bot 中获取变量的能力。 编写 Bot 的提示词。 预览调试与发布。 海外官方文档:https://www.coze.com/docs/zh_cn/knowledge.html 国内官方文档:https://www.coze.cn/docs/guides/use_knowledge
2025-03-14
学习智能体搭建应该从哪里开始?
学习智能体搭建可以从以下几个方面开始: 1. 利用相关平台:例如 Coze、Dify 等 AI 智能体编排平台,它们降低了制作智能体的门槛。 2. 输入人设等信息:创建智能体时,输入相关人设等基础信息,并配置相关工作流。 3. 体验常见工具:对于没有编程基础但对 AI 有一定概念的小白,可以从工具入门篇开始,如 Agent 工具 小白的 Coze 之旅。 4. 参考优秀案例:可以获取现成好用的 Prompt 案例,直接复制、粘贴使用。 5. 了解相关教程:如阅读等详细讲解搭建步骤的文章。
2025-03-13
如何做本地知识库的搭建
以下是关于本地知识库搭建的详细步骤和相关知识: 一、RAG 技术 利用大模型的能力搭建知识库本身就是一个 RAG 技术的应用。在进行本地知识库的搭建实操之前,需要先对 RAG 有大概的了解。 大模型的训练数据有截止日期,当需要依靠不包含在训练集中的数据时,主要通过检索增强生成 RAG(Retrieval Augmented Generation)来实现。这个过程包括以下 5 个步骤: 1. 文档加载:从多种不同来源加载文档,LangChain 提供了 100 多种不同的文档加载器,包括 PDF 在内的非结构化数据、SQL 在内的结构化数据,以及 Python、Java 之类的代码等。 2. 文本分割:文本分割器把 Documents 切分为指定大小的块,称为“文档块”或者“文档片”。 3. 存储:涉及将切分好的文档块进行嵌入转换成向量的形式,并将 Embedding 后的向量数据存储到向量数据库。 4. 检索:通过某种检索算法找到与输入问题相似的嵌入片。 5. 输出:把问题以及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示生成更加合理的答案。 二、本地知识库进阶 如果想要对知识库进行更加灵活的掌控,需要一个额外的软件:AnythingLLM。这个软件包含了所有 Open WebUI 的能力,并且额外支持了以下能力: 1. 选择文本嵌入模型。 2. 选择向量数据库。 安装地址:https://useanything.com/download 。安装完成后,进入配置页面,主要分为三步: 1. 第一步:选择大模型。 2. 第二步:选择文本嵌入模型。 3. 第三步:选择向量数据库。 在 AnythingLLM 中有一个 Workspace 的概念,可以创建自己独有的 Workspace 跟其他的项目数据进行隔离。搭建过程如下: 1. 首先创建一个工作空间。 2. 上传文档并且在工作空间中进行文本嵌入。 3. 选择对话模式。AnythingLLM 提供了两种对话模式: Chat 模式:大模型会根据自己的训练数据和上传的文档数据综合给出答案。 Query 模式:大模型仅仅会依靠文档中的数据给出答案。 配置完成之后,就可以跟大模型进行对话了。 三、硬件要求 运行大模型需要很高的机器配置,个人玩家大多负担不起。生成文字大模型的最低配置为 8G RAM + 4G VRAM,建议配置为 16G RAM + 8G VRAM,理想配置为 32G RAM + 24G VRAM(如果要跑 GPT3.5 差不多性能的大模型)。生成图片大模型(比如跑 SD)的最低配置为 16G RAM + 4G VRAM,建议配置为 32G RAM + 12G VRAM。生成音频大模型的最低配置为 8G VRAM。 如果想要私滑的体验知识库,可以参考文章: 。
2025-03-13
PPT智能生成AI
以下是关于 PPT 智能生成 AI 的相关内容: AI 生成 PPT 带来了课件制作与微课生成的颠覆性变革,几分钟就能搞定 60 分初稿。其原理和作用包括减轻排版工作压力、生成打底内容以减轻人工撰写的工作量。例如文章生成 PPT 时,让 AI 帮忙摘要内容并生成大纲列表;主题生成 PPT 时,让 AI 根据主题扩充成大纲列表乃至具体内容。在特定场景下可直接使用,如学生快速为小组展示配 PPT。 AI 辅助 PPT 的流程通常为:用户输入→AI 输出→通过排版网站选择适合的组件。有的网站配图也由 GenAI 根据页面内容生成。用户对生成的 PPT 结果不满意可自行选择模板。 以下为几款 PPT 生成工具(网站): https://zhiwen.xfyun.cn/ 讯飞智文 http://Mindshow.fun 支持 Markdown 导入 http://kimi.ai 选 PPT 助手暂时免费效果好 http://Tome.app AI 配图效果好 http://Chatppt.com 自动化程度高 https://wenku.baidu.com 付费效果好 此外,制作 PPT 的流程还可以是先让 GPT4 生成 PPT 大纲,然后把大纲导入到 WPS 当中,启用 WPS AI 一键生成 PPT,再让 chatPPT 添加动画,最后手动修改细节。 目前市面上大多数 AI 生成 PPT 按照如下思路完成设计和制作: 1. AI 生成 PPT 大纲 2. 手动优化大纲 3. 导入工具生成 PPT 4. 优化整体结构 推荐 2 篇市场分析的文章供参考: 《》 《》 相似问题包括:有没有生成 PPT 的应用推荐,不用翻墙的;免费生成 PPT 的网站有哪些;推荐一款文字生成 ppt 的工具;免费 ai 制作 ppt 软件;推荐 3 款好用的 AI 制作 ppt 工具。请注意内容由 AI 大模型生成,请仔细甄别。
2025-03-16
作为一个法学本科生,人工智能小白,我可以从那些角度去深入学习人工智能,以达到可以参加人工智能开发的地步
对于法学本科生且人工智能小白的您,想要达到可以参加人工智能开发的地步,可以从以下角度深入学习人工智能: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 如果希望继续精进,对于 AI,可以尝试了解以下作为基础的内容: 1. AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 4. 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 此外,由于库和框架的支持不断增加,机器学习开始变得越来越流行。但要实现落地 AI 行业,我们必须了解这些代码背后的逻辑。一旦取消了现有框架的支持,了解这些框架背后的数学细节,编写这些算法中包含的复杂模式就会显得非常重要。至少需要了解概率、统计、线性代数、微积分和图论方面的知识。有了具体的数学知识,我们就可以充分利用机器学习的潜力,比如: 1. 凭借算法背后的内联数学知识,为数据集选择最佳算法。 2. 利用正则化器背后的数学知识帮助解决模型过拟合或高方差问题。 3. 利用图论的知识来分析数据特征之间更复杂的关系。 4. 利用优化器背后的数学知识来设计适当的成本函数。 机器学习需要的数学知识水平相对比较主观,取决于每个人的具体需求。比如正在进行机器学习的底层研究,可能需要具有深厚的数学知识,因为研究要求彻底深入。但对单纯的应用者来说,可能不需要任何高等数学的相关知识,掌握 prompt 的基础框架就可以很好的应用。
2025-03-15
小红书爬虫智能体
以下是关于小红书爬虫智能体的相关内容: 创建智能体: 1. 输入人设等信息,放上创建的工作流。 2. 配置完成后进行测试。 工作流配置及注意事项: 1. 工作流 2 中【所有视频片段拼接】节点使用的插件 api_token 填的是您的 token,为避免他人调用消耗您的费用,可将 api_token 作为工作流 2 最开始的输入,用户购买后输入 token 再发布。 2. 对于 Coze 智能体,使用单 Agent 对话流模式,编排对话流时注意配置 cookie 等,使用代码节点进行数据处理,注意代码节点输出的配置格式。测试时找到一篇小红书笔记,试运行对话流,确保成功。发布时选择多维表格,注意输出和输入类型等配置。 智能体示例: 小众打卡地智能体,输入旅游目的地城市可推荐 3 个小众打卡地的小红书类文案及精美配图。其核心价值包括发掘特色景点、提供个性化建议、帮助获取高质量旅行参考信息及提供小红书文案。搭建思路重点包括录入小红书相关文案参考知识库、通过文本模型组成搜索词搜索并提取相关 url、滤除需安全认证网站等、提取小众地点输出及进行图片搜索等。
2025-03-15
智能座舱
以下是关于智能座舱的相关信息: 火山引擎 AI 创造者大赛设置了“AI 座舱”赛道。该大赛由火山引擎携手领克汽车与英特尔联合主办,鼓励开发者及技术爱好者利用豆包大模型和扣子专业版,针对领克汽车的真实业务场景开发具有实际应用价值的智能体解决方案。 在“AI 座舱”赛道中,赛题说明为利用豆包大模型、扣子专业版以及吉利原子化能力,探索 AI 在智能座舱中的多样化应用,通过智能座舱内的智能体开发,满足车主定制化的需求。核心目标是通过扣子专业版的插件调用吉利座舱原子化能力自建车载智能体,利用豆包大模型提升智能体的交互能力和智能水平,开发的解决方案应具备实际应用价值,并能够显著提升用户体验。 2023 年度中文大模型基准测评报告显示,在智能座舱与交互这一维度上,仅有一个中文模型达到了良好表现,说明中文大模型在智能座舱与交互还有不少的进步空间。在汽车场景中,部分中小模型在满足用户需求方面具备良好能力,端侧模型有非常大的潜力。
2025-03-14
智能体
智能体(Agent)在人工智能和计算机科学领域是一个重要概念,指能够感知环境并采取行动以实现特定目标的实体,可以是软件程序或硬件设备。 智能体的定义: 智能体是自主系统,通过感知环境(通常通过传感器)并采取行动(通常通过执行器)来达到目标。在 LLM 支持的自主 Agent 系统中,LLM 充当 Agents 的大脑,并辅以规划、子目标和分解、反思和完善、记忆、工具使用等关键组成部分。 智能体的类型: 1. 简单反应型智能体(Reactive Agents):根据当前感知输入直接采取行动,不维护内部状态,不考虑历史信息。例如温控器。 2. 基于模型的智能体(Modelbased Agents):维护内部状态,对当前和历史感知输入进行建模,能推理未来状态变化并据此行动。例如自动驾驶汽车。 3. 目标导向型智能体(Goalbased Agents):具有明确目标,能根据目标评估不同行动方案并选择最优行动。例如机器人导航系统。 4. 效用型智能体(Utilitybased Agents):不仅有目标,还能量化不同状态的效用值,选择效用最大化的行动,评估行动优劣并权衡利弊。例如金融交易智能体。 5. 学习型智能体(Learning Agents):能够通过与环境交互不断改进其性能,学习模型、行为策略以及目标函数。例如强化学习智能体。 智能体功能实现: 本智能体主要通过一个工作流实现,采用单 Agent(工作流模式)。工作流全景图按照市场分析报告内容划分,分成 7 个分支处理,每个分支调研并生成报告中的一部分,以发挥并行处理的效率。工作流主要节点包括文本处理节点、必应搜索节点、LinkerReader 节点、代码节点、大模型节点和结束节点。文本处理节点将用户输入与报告主题拼装形成关键词句,必应搜索节点根据关键词句搜索相关网络内容,LinkerReader 节点获取网页详细内容,代码节点对搜索到的网页链接信息进行过滤,大模型节点生成报告内容并添加引用链接,结束节点将 7 部分内容拼接并流式输出。
2025-03-14