Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

小红书爬虫智能体

Answer

以下是关于小红书爬虫智能体的相关内容:

创建智能体:

  1. 输入人设等信息,放上创建的工作流。
  2. 配置完成后进行测试。

工作流配置及注意事项:

  1. 工作流 2 中【所有视频片段拼接】节点使用的插件 api_token 填的是您的 token,为避免他人调用消耗您的费用,可将 api_token 作为工作流 2 最开始的输入,用户购买后输入 token 再发布。
  2. 对于 Coze 智能体,使用单 Agent 对话流模式,编排对话流时注意配置 cookie 等,使用代码节点进行数据处理,注意代码节点输出的配置格式。测试时找到一篇小红书笔记,试运行对话流,确保成功。发布时选择多维表格,注意输出和输入类型等配置。

智能体示例: 小众打卡地智能体,输入旅游目的地城市可推荐 3 个小众打卡地的小红书类文案及精美配图。其核心价值包括发掘特色景点、提供个性化建议、帮助获取高质量旅行参考信息及提供小红书文案。搭建思路重点包括录入小红书相关文案参考知识库、通过文本模型组成搜索词搜索并提取相关 url、滤除需安全认证网站等、提取小众地点输出及进行图片搜索等。

Content generated by AI large model, please carefully verify (powered by aily)

References

五津: DeepSeek+扣子:1分钟生成小红书爆款单词视频

创建一个智能体,输入人设等信息,放上刚才创建的2个工作流。配置完成后,就可以测试了~[heading1]千万不要直接发布!!![content]工作流2中【所有视频片段拼接】节点使用的插件api_token填的是你的token,其他人调用这个工作流会直接消耗你的money,所以不能直接发布。你可以将api_token作为工作流2最开始的输入,用户自己购买后,输入api_token就可以使用,然后再发布。看到这里,说明你离做出来就差一步行动了,期待看到你的成果!我是五津:C端新闻、视频产品经理,2025 AI春晚节目统筹&共创者,我的微信是:wdwxhs0100,欢迎来聊~我的公众号是【宝藏智能体club】

一枚扣子:Coze应用+多维表格的高速数据分析

第一步,要创建一个智能体,使用单Agent对话流模式,[heading4]编排对话流[content]点击创建一个新的对话流(记得要和智能体关联),编排如下:这个工作流没有什么特别需要注意的地方,两个小红书插件,大家可以在插件市场找到。按着配置,(cookie如何找?教程暴多),在获取笔记详情节点和笔记评论节点,分别配置cookie,note_link使用开始节点的USER_INPUT然后,我们会使用代码节点,将两个插件获取的结果进行一次数据处理(代码节点通常都会在这个场景下出现)。具体代码如下:在这里要注意代码节点输出的配置格式。工作流的结束节点,选择使用代码的返回数据。配置如下[heading4]测试[content]最后一步,测试。找到一篇小红书笔记,然后,试运行对话流,直接在对话窗口输入地址,当你看到数据,那就是成功了。回到智能体的编排页面,同样的方式,也测试一下。确保对话流执行成功。[heading4]发布[content]接下来是最重要的步骤:发布!点发布后,只选择多维表格,然后,点配置点击后,会打开配置页面。1.是输出类型(选文本就行了)2.是输入类型,切记要选择字段选择器1.要去完善上架信息。填个表格。表格本身没什么特点,在选发布范围的时候,可以选仅自己可用,否则审核时间就比较慢!提交上架信息后,返回配置界面会显示已完成!那么,就可以完成最终的提交了。嗯,配置比写工作流还烦!

小众打卡地——优秀创作者奖

作者:Larkspur[heading2]智能体基本信息[content]名称:小众打卡地链接:https://tbox.alipay.com/pro/share/202412APCyNn00194489?platform=WebService基本功能介绍:小众打卡地推荐,输入一个旅游目的地地点城市,给你推荐3个小众打卡地小红书类文案,适合分享或旅游参考,还有精美的旅行地配图。[heading2]智能体核心价值[content]1.为用户发掘非大众化的特色景点,避开人流2.提供个性化的旅行建议,并且有目的地的图片参考3.帮助用户快速获取高质量的旅行参考信息4.提供小红书文案,也适合发小红书[heading2]智能体效果[content]1.输入一个目的地后,等待一小段时间,即可获得带图文案,效果如下:1.从手机支付宝小程序更加方便,可以一键复制后获取:[heading2]智能体搭建思路重点[content]1.录入了小红书的相关文案参考知识库1.通过文本模型组成搜索词进行搜索,从搜索到的所有网页链接中,通过代码节点提取相关的url:Note:用代码节点滤除需要安全认证的网站,包括挑选一些非周边城市攻略推荐,并且尽量检查'小众'或'冷门':1.通过url网页正文后,提取相关的小众地点输出,同时通过代码进行打卡点的字符串输出用于后续节点运用1.根据需要搜索的小众旅行地进行图片搜索Note:此处代码节点随机提取一条图片的url,注意此处在调试过程中发现有些图片搜索后的url打卡图片会失效,代码节点将部分失效的网站进行了过滤:1.最后的文案输出,非常适合小红书文案和旅行发布参考最后大模型的提示词参考:

Others are asking
帮我找一点生成小红书的 Ai 提示词测试一下看看
以下是为您提供的一些生成小红书的 AI 提示词示例: 1. 五津:DeepSeek+扣子:1 分钟生成小红书爆款单词视频 角色:您是一个专业的单词生成助手,擅长围绕各种主题挖掘相关英语单词,为用户提供精准且实用的单词、中文、美式音标内容。 技能:当用户输入主题{{zhuti}}时,分析主题内涵,运用专业知识,输出{{shuliang}}个与该主题紧密关联的英语单词、中文翻译、美式音标,将该单词用于一句英文中(不超过 15 个单词),并将这句英文句子翻译成中文句子,并以数组形式呈现。 限制:仅围绕用户输入主题输出相关英语单词、中文翻译、美式音标,不涉及其他领域内容。输出必须为符合要求的数组形式,英文单词对应变量 yingwen,中文翻译对应变量 zhongwen,美式音标对应变量 yinbiao,英文句子对应变量 juzi_yingwen,中文句子翻译对应变量 juzi_zhongwen,不得有其他格式偏差。 2. 夙愿:用 AI 化繁为简,解决复杂问题的指南 提示词链:一个月前,通过逐步构建和不断优化提示词,最终迭代出一个小红书视频标题生成助手。收集高质量的标题示例作为后续分析的基础(纯人类),询问 GPT 分析标题特点的维度(人机协同),让 GPT 根据这些维度分析标题特点(人机协同),编写提示词(纯人类),测试提示词(人机协同),迭代提示词(人机协同)。 3. 一泽 Eze:样例驱动的渐进式引导法——利用 AI 高效设计提示词,生成预期内容 引言:一个精彩的 Prompt 是驱动 AI Agent 稳定运作的核心。例如常见的“小红书爆文生成 AI”提示词,包含精确、巧妙的提示。高质量的 Prompt 极度依赖用户通过逻辑思考,从知识经验中抽象表达出关键方法与要求。
2025-03-14
飞书多维表格生成小红书图文笔记
以下是关于使用飞书多维表格生成小红书图文笔记的相关内容: 一、Coze 应用+多维表格的高速数据分析 1. 动手实践 Coze 应用 创建应用:打开 Coze,可选择 PC 模式,需要几个参数,包括多维表格地址、数据表名、小红书博主首页地址,界面设计为三个输入框和一个按钮。 开发工作流:包括读取博主笔记列表的工作流,工作流实际上只有三步,读取、转换、写入。开始节点设置三个参数,分别代表多维表格地址,表名称,博主首页地址。第二步的节点需要把数据转换为符合多维表格插件接收的数据格式,需添加一个代码节点并复制代码。在插件市场搜索官方的多维表格插件,选择 add_records 并分配配置参数。结束节点配置一个值即可。 Coze 智能体(字段捷径)获取笔记+评论信息 创建智能体:使用单 Agent 对话流模式。 编排对话流:创建新的对话流并与智能体关联,配置两个小红书插件,在获取笔记详情节点和笔记评论节点分别配置 cookie,使用代码节点进行数据处理,注意代码节点输出的配置格式。 测试:找到一篇小红书笔记,试运行对话流,在对话窗口输入地址查看数据,回到智能体的编排页面同样测试,确保对话流执行成功。 发布:点发布后选择多维表格,进行配置,包括输出类型选文本、输入类型选字段选择器,完善上架信息,选发布范围,提交上架信息。 二、办公提效神器:飞书多维表格字段插件 1. 工作紧任务重 第一步,用 AI 插件理解图片:上传参考的海报图片,用 AI 内容生成插件理解。创建表格列时,选择字段捷径,在 AI 中心找到智谱 AI 的内容生成插件,配置提示文本、上传图片所在列和模型。 第二步,生成视频的指令:用飞书自带的插件总结宣语,生成视频的 prompt 指令。自定义总结要求,生成宣传语后再使用飞书自带的自定义 AI 插件生成视频所需的 prompt 指令。
2025-03-13
我指的是用AI来辅助小红书内容的优化方面,我应该在WaytoAGI中学习什么内容?
在 WaytoAGI 中,您可以学习以下与用 AI 辅助小红书内容优化相关的内容: 1. 智能纪要中的数据转化与创作提示词工具:包括从数据到模型的转化过程,以及基于 AGI 特调的生成 MJ 和 SD 提示词的工具扣子,还有利用这些工具生成山海经神兽等创作提示词的方法和迭代优化方式。 2. 人文数据转化的不同层面:了解数据转化成模型的结构过程和情感层面的结构,以及人类世界人文价值对齐翻译对 AI 发展的重要性。 3. 关于神兽提示词创作及相关工具的交流:如社区建立种子群收集知识库,推荐表现力好的提示词组等。 4. 相关社区及平台的介绍:例如嘟嘟社区的现状,以及在队友平台上跑效果图等。 5. 开展的创作挑战活动:如 10 分钟神兽提示词创作挑战,包括挑战方式、成果检验和配方获取等。 6. 第 11 期 Video Battle AI 视频挑战活动:包括选题参考,如 AI 视频领域国内外近期热点话题事件、技术工作流拆解等;话题要求,如小红书内容文案需附特定字样和带特定标签;大赛主题和创意支持,以及视频工具建议等。 希望以上内容对您有所帮助。
2025-03-07
有没有好用的小红书爆款笔记从选题到爆款笔记生成的ai工具
以下是一些好用的从选题到生成小红书爆款笔记的 AI 工具: DeepSeek:可用于脑爆活动方案、会议纪要总结、分析总结复盘内容、生成专业软件使用过程、写绘画提示词、创作小红书笔记、做私有模型等。 赛博发型师:基于 AI 技术的个性化发型设计服务,能通过分析用户面部特征等生成发型设计方案和效果图,设计报告可存档至飞书文档供专业发型师复核评估。 营销文案创作专家深度版:专为企业营销团队等设计,提供从文案框架创作到生成的一站式服务,还提供营销数据分析服务。 小红书账号文案、表情包、爆款名片生成等个性化小工具:例如小红书爆款文案生成。
2025-03-03
小红书AI赛道从0到1
以下是关于小红书 AI 赛道从 0 到 1 的相关信息: 社区共学方面:包括 COZE 相关、magicarena 共学、阿里 deepseek 专题共学等,提供了飞书会议地址、共学详细内容等信息。 对话 AIGC 艺术家土豆人 tudou_man: 提到小红书用户和受众主要来自一二线城市,是很好的辐射渠道。 指出小红书对 AIGC 内容的接受度有阶段性变化,去年初期有流量红利,下半年下滑,今年开始官方扶持。 表明想把巨熊软糖做成 IP,但存在不稳定性问题。 去年同期有很多创作者,但很多因内容变现问题坚持不下去,现在又有新创作者涌入,与市场对 AIGC 内容的付费接纳有关。 强调全身心投入创作,为 AIGC 作品注入价值,并定期做行业分享。 解释选择小红书作为主要分享平台的原因。
2025-02-27
快速生成小红书风格的图片推荐用什么软件
以下是一些可以快速生成小红书风格图片的软件和相关步骤: 1. DeepSeek+扣子: 生成单词:输入单词主题、图片风格、单词数量等,选择 deepseekr1 模型生成单词数组。 生成视频 1: 循环:包括将数组变量打散为单个变量、进入生图工作流、裁剪(将图片 url 转图片)、将图片放到背景上。 制作固定元素:如背景图和结尾图,可使用百度图片或即梦生成,并用 ps 或美图秀秀调整尺寸并添加元素。 2. 提示词: 角色:作为专业的单词生成助手,围绕主题挖掘相关英语单词,提供精准实用的单词、中文、美式音标内容。 技能:输出关联英语单词,并以数组形式呈现。 限制:仅围绕用户输入主题输出相关内容,以符合要求的数组形式呈现。
2025-02-22
使用llm的爬虫工具推荐下,开源免费
以下是为您推荐的开源免费的使用 LLM 的爬虫工具: 1. Jina 开源的网页内容爬取工具:Reader API 能从网址提取出核心内容,并将其转化为干净、易于大语言模型处理的文本,确保为您的 AI 智能体及 RAG 系统提供高品质的数据输入。 2. Scrapy 库(Python 语言):在 crawlab 可以做到分布式爬取,非常高效。 3. GPT Crawler:主要运用 typescript 进行数据爬取。 4. 在开源的项目中,为实现对含有 JavaScript 内容的网页抓取,不使用 Python 自己的 request 库,而是使用 playwright 之类的浏览器,并将网页内容按照一定规则转化成 markdown 格式,方便 LLM 后续的理解和抓取。 同时,对于爬虫工具的选择,还需根据您的具体需求和技术熟悉程度来决定。
2025-03-06
ai爬虫
以下是关于 AI 爬虫的相关信息: Firecrawl Extract 是一款只需文字提示就能爬取任意网络数据的工具。它具有以下特点: 1. 通过自然语言提示,能轻松将网页内容转换为结构化数据,无需手动写脚本。 2. 支持复杂数据提取,例如联系人信息、任务描述、动态价格等。 3. 兼容多语言与国际网站,能够抓取 JavaScript 渲染的动态页面内容。 4. 提供 API 集成,支持大规模数据处理,可提取数千个结果,解决上下文限制问题。 相关链接: 另外,对于不会代码的人,也可以尝试使用 Python 和 AI 来完成爬虫应用。例如,可以让 ChatGPT 帮忙写抓取特定文章(如地址为 https://mp.weixin.qq.com/s/KUnXlDlgRs_6D5RFpQbnQ )正文内容的程序,然后在 Colab 里运行。
2025-02-08
免费的网页爬虫相关Ai工具
以下是一些免费的网页爬虫相关 AI 工具: Hexomatic:https://hexomatic.com/ WebscrapeAI:https://webscrapeai.com/ Kadoa:https://www.kadoa.com/ GPT Crawler:https://github.com/BuilderIO/gptcrawler 能够利用爬虫,自动抓取与整合指定 URL 地址中的各种信息,并生成一个 output.json 的数据文件。将其喂给 ChatGPT,便可快速定制您的专属 GPT,打造个人知识库或者智能助理。 此外,在开源项目方面: 在里有用 Cursor 做的网页浏览工具的参考实现。其中为实现对含有 JavaScript 内容的网页抓取,使用 playwright 之类的浏览器而非 Python 自己的 request 库,同时为方便 LLM 理解和抓取,将网页内容按规则转化成 markdown 格式保留细节基础信息。 对于搜索工具,duckduckgo 的免费 API 被用于参考实现,因其搜索质量优于 Bing 和 Google 的 API。
2025-01-25
有与网页爬虫相关的AI工具吗
以下是一些与网页爬虫相关的 AI 工具: Hexomatic:https://hexomatic.com/ WebscrapeAI:https://webscrapeai.com/ Kadoa:https://www.kadoa.com/ GPT Crawler:https://github.com/BuilderIO/gptcrawler 能够利用爬虫,自动抓取与整合指定 URL 地址中的各种信息,并生成一个 output.json 的数据文件。将其喂给 ChatGPT,便可快速定制专属 GPT,打造个人知识库或者智能助理。 此外,在开源项目中也有相关工具,如: 在里有用 Cursor 实现的网页浏览工具参考,其中为实现对含有 JavaScript 内容的网页抓取,使用了 playwright 之类的浏览器,将网页内容转化成 markdown 格式以支持 LLM 后续的爬虫。 对于搜索工具,duckduckgo 的免费 API 可避免一些质量问题。
2025-01-25
python实现网页爬虫
以下是使用 Python 实现网页爬虫的详细步骤: 首先,在 Colab 中抓取网页的正文内容,需要使用 Python 的 requests 库来获取网页的 HTML 源代码,然后使用 BeautifulSoup 库来解析 HTML 并提取所需的正文部分。 在开始之前,要确保已经在 Colab 环境中安装了 beautifulsoup4 和 requests 库。如果没有安装,可以使用以下命令安装: ``` !pip install beautifulsoup4 requests ``` 然后,使用以下代码抓取并解析指定的网页内容: ```python import requests from bs4 import BeautifulSoup def get_webpage_content: response = requests.get soup = BeautifulSoup 这里根据实际网页结构调整提取正文的部分 例如:content = soup.find return content url = 'https://mp.weixin.qq.com/s/KUnXlDlgRs_6D5RFpQbnQ' print ``` 请注意,由于网页的结构随时可能发生变化,所以提取正文内容的部分(即 soup.find 那一行)可能需要根据实际的 HTML 结构进行调整。如果文章有反爬虫机制,可能还需要进一步的处理,比如设置请求头模拟浏览器访问等。 在和 AI 配合写代码的过程中,如果遇到了 Bug,可以直接将问题报给 ChatGPT,然后再把 ChatGPT 给出的结果粘贴回去(如果还不行,就反复调试)。 另外,Python 在自动化方面应用广泛,例如办公软件自动化(pythondocx 用于 Word 文档、openpyxl 或 xlsxwriter 用于 Excel 文件、pythonpptx 用于 PPT、PyPDF2 用于 PDF)、爬虫(requests 用于发送 HTTP 请求、selenium 用于模拟浏览器交互、BeautifulSoup 和 lxml 用于解析 HTML 和 XML 文档)、测试自动化(unittest 和 pytest)、容器与虚拟化自动化(dockerpy 用于 Docker 容器管理)等。
2025-01-02
怎么利用AI实现爬虫
利用 AI 实现爬虫可以参考以下步骤: 1. 在 Colab 中抓取网页的正文内容,需要使用 Python 的 requests 库获取网页的 HTML 源代码,然后使用 BeautifulSoup 库来解析 HTML 并提取所需的正文部分。 2. 首先要确保在 Colab 环境中安装了 beautifulsoup4 和 requests 库。如果未安装,可以使用“!pip install beautifulsoup4 requests”命令进行安装。 3. 然后使用相应的代码抓取并解析指定的网页内容。但需注意,微信公众号文章可能有特殊的反爬措施,代码可能需要根据实际情况调整。比如提取正文内容的部分(即 soup.find 那一行)可能要根据实际的 HTML 结构进行调整。若文章有反爬虫机制,可能还需进一步处理,如设置请求头模拟浏览器访问等。 4. 运行代码时,先复制安装库的命令并运行,然后点击左上方“+代码”按钮,新建一个新的代码块,再复制后面的代码并运行。 5. 在和 AI 配合写代码的过程中,若遇到 Bug,可以直接将问题报给 ChatGPT,然后把 ChatGPT 给出的结果粘贴回去(若还不行,就反复调试)。 另外,在许多情况下,我们只需给 AI 下达明确的命令来完成一次性任务,例如制作一个简单的 Chrome 插件、编写脚本、或创建 Python 爬虫。但当 AI 满足了简单需求并获得正反馈后,期待会提高,此时需要了解 AI 编程的边界和限制。比如优先找线上工具、其次找插件、最后是本地应用;对于 API 功能,先找现成的开源工具,然后考虑付费服务,都找不到现成方案时才考虑自己编程。毕竟,人生苦短,能不编尽量不编。如果真要编写,也要以终为始,抛开技术障碍,聚焦于目标。
2024-12-09
PPT智能生成AI
以下是关于 PPT 智能生成 AI 的相关内容: AI 生成 PPT 带来了课件制作与微课生成的颠覆性变革,几分钟就能搞定 60 分初稿。其原理和作用包括减轻排版工作压力、生成打底内容以减轻人工撰写的工作量。例如文章生成 PPT 时,让 AI 帮忙摘要内容并生成大纲列表;主题生成 PPT 时,让 AI 根据主题扩充成大纲列表乃至具体内容。在特定场景下可直接使用,如学生快速为小组展示配 PPT。 AI 辅助 PPT 的流程通常为:用户输入→AI 输出→通过排版网站选择适合的组件。有的网站配图也由 GenAI 根据页面内容生成。用户对生成的 PPT 结果不满意可自行选择模板。 以下为几款 PPT 生成工具(网站): https://zhiwen.xfyun.cn/ 讯飞智文 http://Mindshow.fun 支持 Markdown 导入 http://kimi.ai 选 PPT 助手暂时免费效果好 http://Tome.app AI 配图效果好 http://Chatppt.com 自动化程度高 https://wenku.baidu.com 付费效果好 此外,制作 PPT 的流程还可以是先让 GPT4 生成 PPT 大纲,然后把大纲导入到 WPS 当中,启用 WPS AI 一键生成 PPT,再让 chatPPT 添加动画,最后手动修改细节。 目前市面上大多数 AI 生成 PPT 按照如下思路完成设计和制作: 1. AI 生成 PPT 大纲 2. 手动优化大纲 3. 导入工具生成 PPT 4. 优化整体结构 推荐 2 篇市场分析的文章供参考: 《》 《》 相似问题包括:有没有生成 PPT 的应用推荐,不用翻墙的;免费生成 PPT 的网站有哪些;推荐一款文字生成 ppt 的工具;免费 ai 制作 ppt 软件;推荐 3 款好用的 AI 制作 ppt 工具。请注意内容由 AI 大模型生成,请仔细甄别。
2025-03-16
如何搭建智能体
搭建智能体的步骤如下: 1. 创建智能体,输入人设等信息,并放上相关工作流。配置完成后进行测试。但需注意,工作流中如涉及插件 api_token,不能直接发布,可将其作为工作流的输入,让用户购买后自行输入再发布。 2. 确定智能体的结构: 按照市场营销逻辑组织,如在品牌卖点提炼中,以品牌卖点提炼六步法为核心流程,加入其他分析助手,包括品牌卖点定义与分类助手、STP 市场分析助手、用户画像分析助手、触点收集助手等,同时还可包括用户需求分析的 KANO 助手、营销六层转化漏斗分析、超级转化率六要素等工具。 明确 AI 的能力边界,如 AI 不了解公司的主要产品、独特之处、获得的认可、核心渠道、核心购买人群、营销手段、期望的新渠道结果等。 确定智能体为引导型助手,如在寻找卖点时作为灵感提问助手,提供更多思考维度。
2025-03-15
作为一个法学本科生,人工智能小白,我可以从那些角度去深入学习人工智能,以达到可以参加人工智能开发的地步
对于法学本科生且人工智能小白的您,想要达到可以参加人工智能开发的地步,可以从以下角度深入学习人工智能: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 如果希望继续精进,对于 AI,可以尝试了解以下作为基础的内容: 1. AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 4. 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 此外,由于库和框架的支持不断增加,机器学习开始变得越来越流行。但要实现落地 AI 行业,我们必须了解这些代码背后的逻辑。一旦取消了现有框架的支持,了解这些框架背后的数学细节,编写这些算法中包含的复杂模式就会显得非常重要。至少需要了解概率、统计、线性代数、微积分和图论方面的知识。有了具体的数学知识,我们就可以充分利用机器学习的潜力,比如: 1. 凭借算法背后的内联数学知识,为数据集选择最佳算法。 2. 利用正则化器背后的数学知识帮助解决模型过拟合或高方差问题。 3. 利用图论的知识来分析数据特征之间更复杂的关系。 4. 利用优化器背后的数学知识来设计适当的成本函数。 机器学习需要的数学知识水平相对比较主观,取决于每个人的具体需求。比如正在进行机器学习的底层研究,可能需要具有深厚的数学知识,因为研究要求彻底深入。但对单纯的应用者来说,可能不需要任何高等数学的相关知识,掌握 prompt 的基础框架就可以很好的应用。
2025-03-15
如何搭建一个你这样的知识库智能问答机器人,有相关的流程教程吗?
搭建一个知识库智能问答机器人通常包括以下流程: 1. 基于 RAG 机制: RAG 机制全称为“检索增强生成”,是一种结合检索和生成的自然语言处理技术。它先从大型数据集中检索与问题相关的信息,再利用这些信息生成回答。 要实现知识库问答功能,需创建包含大量文章和资料的知识库,例如有关 AI 启蒙和信息来源的知识库,并通过手工录入方式上传文章内容。 2. 利用 Coze 搭建: 收集知识:确认知识库支持的数据类型,通过企业或个人沉淀的 Word、PDF 等文档、云文档(通过链接访问)、互联网公开内容(可安装 Coze 提供的插件采集)等方式收集。 创建知识库。 创建数据库用以存储每次的问答。 创建工作流: 思考整个流程,包括用户输入问题、大模型通过知识库搜索答案、大模型根据知识库内容生成答案、数据库存储用户问题和答案、将答案展示给用户。 Start 节点:每个工作流默认都有的节点,是工作流的开始,可定义输入变量,如 question,由 Bot 从外部获取信息传递过来。 知识库节点:输入为用户的查询 Query,输出为从知识库中查询出来的匹配片段。注意查询策略,如混合查询、语义查询、全文索引等概念。 变量节点:具有设置变量给 Bot 和从 Bot 中获取变量的能力。 编写 Bot 的提示词。 预览调试与发布。 海外官方文档:https://www.coze.com/docs/zh_cn/knowledge.html 国内官方文档:https://www.coze.cn/docs/guides/use_knowledge
2025-03-14
智能座舱
以下是关于智能座舱的相关信息: 火山引擎 AI 创造者大赛设置了“AI 座舱”赛道。该大赛由火山引擎携手领克汽车与英特尔联合主办,鼓励开发者及技术爱好者利用豆包大模型和扣子专业版,针对领克汽车的真实业务场景开发具有实际应用价值的智能体解决方案。 在“AI 座舱”赛道中,赛题说明为利用豆包大模型、扣子专业版以及吉利原子化能力,探索 AI 在智能座舱中的多样化应用,通过智能座舱内的智能体开发,满足车主定制化的需求。核心目标是通过扣子专业版的插件调用吉利座舱原子化能力自建车载智能体,利用豆包大模型提升智能体的交互能力和智能水平,开发的解决方案应具备实际应用价值,并能够显著提升用户体验。 2023 年度中文大模型基准测评报告显示,在智能座舱与交互这一维度上,仅有一个中文模型达到了良好表现,说明中文大模型在智能座舱与交互还有不少的进步空间。在汽车场景中,部分中小模型在满足用户需求方面具备良好能力,端侧模型有非常大的潜力。
2025-03-14
智能体
智能体(Agent)在人工智能和计算机科学领域是一个重要概念,指能够感知环境并采取行动以实现特定目标的实体,可以是软件程序或硬件设备。 智能体的定义: 智能体是自主系统,通过感知环境(通常通过传感器)并采取行动(通常通过执行器)来达到目标。在 LLM 支持的自主 Agent 系统中,LLM 充当 Agents 的大脑,并辅以规划、子目标和分解、反思和完善、记忆、工具使用等关键组成部分。 智能体的类型: 1. 简单反应型智能体(Reactive Agents):根据当前感知输入直接采取行动,不维护内部状态,不考虑历史信息。例如温控器。 2. 基于模型的智能体(Modelbased Agents):维护内部状态,对当前和历史感知输入进行建模,能推理未来状态变化并据此行动。例如自动驾驶汽车。 3. 目标导向型智能体(Goalbased Agents):具有明确目标,能根据目标评估不同行动方案并选择最优行动。例如机器人导航系统。 4. 效用型智能体(Utilitybased Agents):不仅有目标,还能量化不同状态的效用值,选择效用最大化的行动,评估行动优劣并权衡利弊。例如金融交易智能体。 5. 学习型智能体(Learning Agents):能够通过与环境交互不断改进其性能,学习模型、行为策略以及目标函数。例如强化学习智能体。 智能体功能实现: 本智能体主要通过一个工作流实现,采用单 Agent(工作流模式)。工作流全景图按照市场分析报告内容划分,分成 7 个分支处理,每个分支调研并生成报告中的一部分,以发挥并行处理的效率。工作流主要节点包括文本处理节点、必应搜索节点、LinkerReader 节点、代码节点、大模型节点和结束节点。文本处理节点将用户输入与报告主题拼装形成关键词句,必应搜索节点根据关键词句搜索相关网络内容,LinkerReader 节点获取网页详细内容,代码节点对搜索到的网页链接信息进行过滤,大模型节点生成报告内容并添加引用链接,结束节点将 7 部分内容拼接并流式输出。
2025-03-14