Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

作为一个法学本科生,人工智能小白,我可以从那些角度去深入学习人工智能,以达到可以参加人工智能开发的地步

Answer

对于法学本科生且人工智能小白的您,想要达到可以参加人工智能开发的地步,可以从以下角度深入学习人工智能:

  1. 了解 AI 基本概念:
    • 阅读「从这里启程」部分,熟悉 AI 的术语和基础概念,包括人工智能的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。
    • 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。
  2. 开始 AI 学习之旅:
    • 在「入门:AI 学习路径」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。
    • 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。
  3. 选择感兴趣的模块深入学习:
    • AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。
    • 掌握提示词的技巧,它上手容易且很有用。
  4. 实践和尝试:
    • 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。
    • 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。
  5. 体验 AI 产品:
    • 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。

如果希望继续精进,对于 AI,可以尝试了解以下作为基础的内容:

  1. AI 背景知识:
    • 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。
    • 历史发展:简要回顾 AI 的发展历程和重要里程碑。
  2. 数学基础:
    • 统计学基础:熟悉均值、中位数、方差等统计概念。
    • 线性代数:了解向量、矩阵等线性代数基本概念。
    • 概率论:基础的概率论知识,如条件概率、贝叶斯定理。
  3. 算法和模型:
    • 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。
    • 无监督学习:熟悉聚类、降维等算法。
    • 强化学习:简介强化学习的基本概念。
  4. 评估和调优:
    • 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。
    • 模型调优:学习如何使用网格搜索等技术优化模型参数。
  5. 神经网络基础:
    • 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。
    • 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。

此外,由于库和框架的支持不断增加,机器学习开始变得越来越流行。但要实现落地 AI 行业,我们必须了解这些代码背后的逻辑。一旦取消了现有框架的支持,了解这些框架背后的数学细节,编写这些算法中包含的复杂模式就会显得非常重要。至少需要了解概率、统计、线性代数、微积分和图论方面的知识。有了具体的数学知识,我们就可以充分利用机器学习的潜力,比如:

  1. 凭借算法背后的内联数学知识,为数据集选择最佳算法。
  2. 利用正则化器背后的数学知识帮助解决模型过拟合或高方差问题。
  3. 利用图论的知识来分析数据特征之间更复杂的关系。
  4. 利用优化器背后的数学知识来设计适当的成本函数。

机器学习需要的数学知识水平相对比较主观,取决于每个人的具体需求。比如正在进行机器学习的底层研究,可能需要具有深厚的数学知识,因为研究要求彻底深入。但对单纯的应用者来说,可能不需要任何高等数学的相关知识,掌握 prompt 的基础框架就可以很好的应用。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:新手如何学习 AI?

了解AI基本概念:首先,建议阅读「[从这里启程](https://waytoagi.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=blkjooAlLFNtvKJ2)」部分,熟悉AI的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍AI的历史、当前的应用和未来的发展趋势。开始AI学习之旅:在「[入门:AI学习路径](https://waytoagi.feishu.cn/wiki/ZYtkwJQSJiLa5rkMF5scEN4Onhd?table=tblWqPFOvA24Jv6X&view=veweFm2l9w)」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式AI等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。选择感兴趣的模块深入学习:AI领域广泛(比如图像、音乐、视频等),你可以根据自己的兴趣选择特定的模块进行深入学习。我建议你一定要掌握提示词的技巧,它上手容易且很有用。实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出你的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎你实践后的分享。体验AI产品:与现有的AI产品进行互动是学习AI的另一种有效方式。尝试使用如ChatGPT、Kimi Chat、智谱、文心一言等AI聊天机器人,了解它们的工作原理和交互方式。通过与这些AI产品的对话,你可以获得对AI在实际应用中表现的第一手体验,并激发你对AI潜力的认识。

写给不会代码的你:20分钟上手 Python + AI

[heading3]如果希望继续精进...对于AI,可以尝试了解以下内容,作为基础AI背景知识基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。历史发展:简要回顾AI的发展历程和重要里程碑。数学基础统计学基础:熟悉均值、中位数、方差等统计概念。线性代数:了解向量、矩阵等线性代数基本概念。概率论:基础的概率论知识,如条件概率、贝叶斯定理。算法和模型监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。无监督学习:熟悉聚类、降维等算法。强化学习:简介强化学习的基本概念。评估和调优性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。模型调优:学习如何使用网格搜索等技术优化模型参数。神经网络基础网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。激活函数:了解常用的激活函数,如ReLU、Sigmoid、Tanh。

[算法学习]机器学习必备技能 - 数学基础

由于库和框架的支持不断增加,机器学习开始变得越来越流行。我们现在很容易在所有领域找到人工智能和机器学习的应用。然而,通过库和框架使用人工智能,并不足以让我们成为机器学习领域的所谓”专业人士“。有编码框架的支持直接套用固然很方便,但要实现落地AI行业;我们必须了解这些代码背后的逻辑。一旦我们取消了现有框架的支持,了解这些框架背后的数学细节,编写这些算法中包含的复杂模式就会显得非常重要。可以参照上面的图例,我们至少需要了解概率、统计、线性代数、微积分和图论方面的知识。[heading1]如何利用数学成为机器学习领域的专家[content]有了具体的数学知识,我们就可以充分利用机器学习的潜力,在我们感兴趣的所有领域内构建各种各样有趣的应用程序。比如:凭借算法背后的内联数学知识,为数据集选择最佳算法。利用正则化器背后的数学知识帮助解决模型过拟合或高方差问题。利用图论的知识来分析数据特征之间更复杂的关系。利用优化器背后的数学知识来设计适当的成本函数。[heading1]机器学习需要什么水平的数学知识?[content]这个问题的答案相对比较主观,取决于每个人的具体需求。比如我们正在进行机器学习的底层研究,可能需要具有深厚的数学知识,因为研究要求彻底深入。但对单纯的应用者来说,我们可能不需要任何高等数学的相关知识,掌握prompt的基础框架就可以很好的应用。

Others are asking
我想跟大概40岁左右的科研从业者科普人工智能和大模型的相关知识,挑选合适的内容作为提纲。
以下是为您挑选的向 40 岁左右科研从业者科普人工智能和大模型的提纲内容: 一、AI 大模型的基本概念 1. 生成式 AI 生成的内容称为 AIGC 2. 相关技术名词 AI:人工智能 机器学习:电脑找规律学习,包括监督学习、无监督学习、强化学习 监督学习:有标签的训练数据,学习输入和输出之间的映射关系,包括分类和回归 无监督学习:学习的数据没有标签,算法自主发现规律,经典任务如聚类 强化学习:从反馈里学习,最大化奖励或最小化损失,类似训小狗 深度学习:参照人脑有神经网络和神经元,因层数多称为深度,神经网络可用于多种学习方式 生成式 AI:可以生成文本、图片、音频、视频等内容形式 LLM:大语言模型,生成图像的扩散模型不是大语言模型,大语言模型的生成只是处理任务之一,如谷歌的 BERT 模型可用于语义理解 二、AI 大模型的技术里程碑 1. 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出 Transformer 模型,完全基于自注意力机制处理序列数据,不依赖循环神经网络或卷积神经网络 三、AI 模型及相关进展 1. 包括视频生成模型、相关论文,以及 AI 在诺奖和蛋白质研究领域的应用等 2. 人工智能发展历程:从图灵测试、早期的图灵机器人和 ELISA,到 IBM 的语音控制打印机、完全由人工智能创作的小说、微软的同声传译系统,再到 OpenAI 发布 ChatGPT 模型,经历了萌芽、积累沉淀到如今大模型和多模态模型百花齐放的阶段 3. 大模型的基石:由数据、算法、算力构成,算法有技术架构的迭代,如英伟达的显卡辅助模型训练,数据质量对生成理想的大模型至关重要 4. 针对弱智 8 的问题对大模型进行测试,开展让大模型回复问题并找出真人回复的活动,且国内大模型的回答能力有很大改进 5. 大语言模型的特点:早期回复缺乏情感,如今有所改进,后续将体验几个大模型的回复场景
2025-03-13
什么是人工智能
人工智能(Artificial Intelligence,简称 AI)是一门令人兴奋的科学,旨在使计算机表现出智能行为,例如做一些人类所擅长的事情。 最初,查尔斯·巴贝奇发明了计算机,用于按照明确的程序(即算法)进行数字运算。现代计算机虽更先进,但仍遵循相同的受控计算理念。若知道实现目标的每一步骤及顺序,就能编写程序让计算机执行。 然而,有些任务无法明确编程,如根据照片判断人的年龄。我们能做是因为见过很多不同年龄的人,但无法明确大脑完成此任务的具体步骤,所以这类任务是 AI 感兴趣的。 对于三年级的孩子,可以用能理解的语言解释:AI 就是让计算机或机器能像人类一样思考和学习的技术。 AI 分为 ANI(artificial narrow intelligence 弱人工智能)和 AGI(artificial general intelligence)。ANI 得到巨大发展,只能做一件事,如智能音箱、网站搜索、自动驾驶、工厂与农场的应用等;AGI 则能做任何人类可以做的事。
2025-03-13
如何利用人工智能破解无人机通信协议
目前没有关于如何利用人工智能破解无人机通信协议的相关内容。破解无人机通信协议是不合法且不符合道德规范的行为,可能会导致严重的法律后果。在合法和合规的前提下,人工智能可以用于优化无人机的通信效率、增强通信安全性等方面。
2025-03-13
人工智能发展历史
人工智能的发展历史如下: 起源于二十世纪中叶,最初符号推理流行,带来了专家系统等重要进展,但因方法局限性和成本问题,20 世纪 70 年代出现“人工智能寒冬”。 随着计算资源变便宜和数据增多,神经网络方法在计算机视觉、语音理解等领域展现出色性能,过去十年中“人工智能”常被视为“神经网络”的同义词。 1943 年,心理学家麦卡洛克和数学家皮特斯提出机器的神经元模型,为神经网络奠定基础。 1950 年,图灵最早提出图灵测试作为判别机器是否具备智能的标准。 1956 年,在美国达特茅斯学院召开的会议上,“人工智能”一词被正式提出并确立为一门学科。此后近 70 年,AI 的发展起起落落。 AI 技术发展历程包括早期阶段(1950s 1960s)的专家系统、博弈论、机器学习初步理论;知识驱动时期(1970s 1980s)的专家系统、知识表示、自动推理;统计学习时期(1990s 2000s)的机器学习算法(决策树、支持向量机、贝叶斯方法等);深度学习时期(2010s 至今)的深度神经网络、卷积神经网络、循环神经网络等。 当前 AI 前沿技术点包括大模型(如 GPT、PaLM 等)、多模态 AI(视觉 语言模型、多模态融合)、自监督学习(自监督预训练、对比学习、掩码语言模型等)、小样本学习(元学习、一次学习、提示学习等)、可解释 AI(模型可解释性、因果推理、符号推理等)、机器人学(强化学习、运动规划、人机交互等)、量子 AI(量子机器学习、量子神经网络等)、AI 芯片和硬件加速。
2025-03-10
人工智能简史
人工智能作为一个领域始于二十世纪中叶。最初,符号推理流行,带来了如专家系统等重要进展,但因从专家提取知识并以计算机可读形式表现及保持知识库准确的复杂性和高成本,20 世纪 70 年代出现“人工智能寒冬”。 随着时间推移,计算资源更便宜,数据更多,神经网络方法在计算机视觉、语音理解等领域展现出卓越性能,过去十年中“人工智能”常被视为“神经网络”的同义词。 在国际象棋对弈程序方面,早期以搜索为基础,发展出阿尔法贝塔剪枝搜索算法,后来采用基于案例的推理,而现代能战胜人类棋手的程序基于神经网络和强化学习。 在创建“会说话的程序”方面,早期如 Eliza 基于简单语法规则,现代助手如 Cortana、Siri 或谷歌助手是混合系统,未来有望出现完整基于神经网络的模型处理对话,如 GPT 和 TuringNLG 系列神经网络已取得巨大成功。 最初查尔斯·巴贝奇发明计算机用于按明确程序运算,现代计算机仍遵循相同理念。但有些任务如根据照片判断人的年龄无法明确编程,这正是人工智能感兴趣的。 译者:Miranda,原文见 https://microsoft.github.io/AIForBeginners/lessons/1Intro/README.md 。
2025-03-10
可以帮我输出一张图,解释人工智能的工作原理?
以下是关于人工智能工作原理的解释: 在音频生成方面,以谷歌的 V2A 系统为例: 首先,将视频输入编码为压缩表示。 然后,基于扩散模型从随机噪声中迭代改进音频,这一过程由视觉输入和自然语言提示引导,以生成与提示紧密配合的同步逼真音频。 最后,对音频输出进行解码,转化为音频波形,并与视频数据相结合。 在生成式人工智能的整体领域中: 监督学习用于标记事物,一直占据较大比例。 生成式 AI 由监督学习技术搭建,2010 2020 年是大规模监督学习的十年,为现代人工智能奠定了基础。 以生成文本为例,大语言模型通过使用监督学习不断预测下一个词语来生成新的文本内容,这需要千亿甚至万亿级别的单词数据库。 此外,大语言模型在写作、修改文本、翻译等方面有应用,但也存在编造故事产生错误信息的问题,需要鉴别信息准确性。人工智能作为一种通用技术,有大量的运用空间,如基于网络界面应用和基于软件程序应用等。
2025-03-10
我想写一篇本科生论文,利用ai工具来帮我更好完善,需要用到那些常用指令
在本科生论文写作中,以下是一些常用的 AI 指令和相关工具: 1. 内容生成和辅助写作: 指令示例:“根据以下关于我的信息,写一篇四段的大学申请论文:我来自西班牙巴塞罗那。尽管我的童年经历了一些创伤性事件,比如我 6 岁时父亲去世,但我仍然认为我有一个相当快乐的童年。在我的童年时期,我经常换学校,从公立学校到非常宗教的私立学校。我做过的最‘异国情调’的事情之一是在爱达荷州的双子瀑布与我的大家庭一起度过六年级。我很早就开始工作了。我的第一份工作是 13 岁时的英语老师。在那之后,以及在我的学习过程中,我做过老师、服务员,甚至建筑工人。” 工具:Grammarly ,通过 AI 技术提供文本校对、语法修正和写作风格建议,帮助提高论文的语言质量;Quillbot ,一个基于 AI 的重写和摘要工具,可以帮助研究人员精简和优化论文内容。 2. 文献管理和搜索: 工具:Zotero ,结合 AI 技术,可以自动提取文献信息,帮助研究人员管理和整理参考文献;Semantic Scholar ,一个由 AI 驱动的学术搜索引擎,能够提供相关的文献推荐和引用分析。 3. 研究和数据分析: 工具:Google Colab ,提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于进行数据分析和可视化;Knitro ,一个用于数学建模和优化的软件,可以帮助研究人员进行复杂的数据分析和模型构建。 4. 论文结构和格式: 工具:LaTeX ,虽然不是纯粹的 AI 工具,但结合了自动化和模板,可以高效地处理论文格式和数学公式;Overleaf ,一个在线 LaTeX 编辑器,提供丰富的模板库和协作功能,简化论文编写过程。 5. 研究伦理和抄袭检测: 工具:Turnitin ,一个广泛使用的抄袭检测工具,帮助确保论文的原创性;Crossref Similarity Check ,通过与已发表作品的比较,检测潜在的抄袭问题。 需要注意的是,使用这些 AI 工具时,要结合自己的写作风格和需求,选择最合适的辅助工具,同时要确保使用方式符合学术道德和规范。
2025-03-15
请给我本科生写毕业论文向AI发送的指令
以下是一些本科生写毕业论文时向 AI 发送的指令示例: 1. “根据以下关于我的信息,写一篇四段的大学申请论文:我来自西班牙巴塞罗那。尽管我的童年经历了一些创伤性事件,比如我 6 岁时父亲去世,但我仍然认为我有一个相当快乐的童年。在我的童年时期,我经常换学校,从公立学校到非常宗教的私立学校。我做过的最‘异国情调’的事情之一是在爱达荷州的双子瀑布与我的大家庭一起度过六年级。我很早就开始工作了。我的第一份工作是 13 岁时的英语老师。在那之后,以及在我的学习过程中,我做过老师、服务员,甚至建筑工人。” 2. 请基于以下案例情况,给我推荐 5 个类似案例:某公司员工在公司内部网络中发布了一篇批评公司管理的文章,引起了公司高层的不满。公司以员工违反了公司的规章制度为由,将其解雇。员工认为公司的行为侵犯了他的权利,将公司告上法庭。 3. 【提炼的案例事实(也可以让 AI 先提炼总结)or 直接把案例直接发给 AI,让 AI 基于以上事实推荐类似案例】 4. 根据以下材料内容回答我的问题【每个材料内容都以数字序号+文件名开头】你需要尽可能的参考材料内容:【文档 1 内容】+【文档 2 内容】+...+【文档 n 内容】
2025-03-12
我是一个小白ai,我想学习有关ai写作方面的知识。
以下是关于 AI 写作方面的知识: 1. 陈财猫的观点: AI+内容创作是现阶段最好的赛道,具有完美的产品模型匹配和产品市场匹配,且天花板高。 AI 写作的实践成果包括营销和小说、短剧创作,开发了智能营销矩阵平台,参与喜马拉雅短故事和短剧写作课程,捣鼓出小财鼠程序版 agent。 好文字能引起人的生理共鸣与情绪,AI 因预训练数据量大能学会引发共鸣,从而写出好文字。 用 AI 写出好文字的方法包括选好模型,评估模型的文风和语言能力等;克服平庸,平衡“控制”与“松绑”;显式归纳想要的文本特征,通过 prompt 中的描述与词语映射到预训练数据中的特定类型文本,往 prompt 里塞例子。 对 AI 创作的看法是 AI 创作的内容有灵魂,只要读者有灵魂,文本就有灵魂;有人讨厌 AI 是因其未改变多数人生活,或自身是受害者。作者期望 AI 能力进一步提升,改变每个人的生活。 2. 利用 AI 写课题的步骤和建议: 确定课题主题,明确研究兴趣和目标,选择具有研究价值和创新性的主题。 收集背景资料,使用 AI 工具如学术搜索引擎和文献管理软件来搜集相关研究文献和资料。 分析和总结信息,利用 AI 文本分析工具提取关键信息和主要观点。 生成大纲,使用 AI 写作助手生成包括引言、文献综述、方法论、结果和讨论等部分的大纲。 撰写文献综述,利用 AI 工具确保内容的准确性和完整性。 构建方法论,根据研究需求利用 AI 建议的方法和技术设计研究方法。 数据分析,如果课题涉及数据收集和分析,使用 AI 数据分析工具处理和解释数据。 撰写和编辑,利用 AI 写作工具撰写课题各部分,并进行语法和风格检查。 生成参考文献,使用 AI 文献管理工具生成正确的参考文献格式。 审阅和修改,利用 AI 审阅工具检查课题的逻辑性和一致性,并根据反馈修改。 提交前的检查,使用 AI 抄袭检测工具确保课题的原创性,并进行最后的格式调整。需要注意的是,AI 工具只是辅助,不能完全替代研究者的专业判断和创造性思维,应保持批判性思维,并确保研究的质量和学术诚信。 3. 吴恩达关于生成式 AI 的观点: 生成式 AI 由监督学习技术搭建,2010 2020 年是大规模监督学习的十年,为现代人工智能奠定了基础。生成文本会使用到大语言模型,其通过不断预测下一个词语来生成新的文本内容。 大语言模型是思考的朋友,运用大语言模型写故事、修改文本非常有用,但大语言模型会编造故事产生错误信息,需要鉴别信息准确。 人工智能是一种通用技术,有大量运用空间,如基于网络界面应用和基于软件程序应用。 使用 LLM 来写作,集思广益、头脑风暴将非常有用。使用网页版的聊天信息时,提供更多的信息。翻译也可以使用 LLM,翻译效果可能比机器翻译更好,但网络文本较少时效果不太好,可以让 LLM 将内容翻译成为海盗英语进行测试翻译准确度。
2025-03-15
我是一个纯小白如何学习AI具体罗列一个过程
以下是为纯小白学习 AI 罗列的一个过程: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库查看大家实践后的作品、文章分享,并分享自己实践后的成果。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 另外,对于中学生学习 AI,建议: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 需要注意的是,以上内容部分由 AI 大模型生成,请仔细甄别。同时,像《雪梅 May 的 AI 学习日记》中提到的,如果您是纯小白,还可以参考其学习模式,即输入→模仿→自发创造,并且根据自己的时间和兴趣进行学习,学习资源大多是免费开源的。
2025-03-14
你是一名DEEPSEEK专家,请用大白话交给小白掌握deepseek的使用,举例说明
DeepSeek 的使用对于小白来说可能有点复杂,但我尽量用大白话给您解释清楚。 比如说,您想让 DeepSeek 帮您生成“玄武门之变结束的当天,李世民在深夜写下一段独白,你觉得他会写什么?”这样的内容。 DeepSeek 会这样来处理: 1. 先回顾玄武门之变的历史背景,比如这场政变发生在 626 年,李世民杀了兄弟,逼父亲退位等。 2. 思考李世民当晚的心理,可能有释然、愧疚、恐惧、自责等多种复杂情绪,还要考虑他是被迫还是早有预谋。 3. 要让生成的独白不仅符合历史事实,还要有文学性,体现人性的复杂。比如要平衡他的野心与自责,对未来的抱负与对过去的悔恨。 4. 考虑当时的文化背景,像儒家思想对孝悌的重视,李世民的行为违背了这些伦理,他可能会内心挣扎,还可能为自己的行为找正当理由。 5. 按照您的需求,给独白加上一些文学修辞,像比喻、对仗、意象等,增强画面感。 另外,DeepSeek 还有个很厉害的地方,就是它能在独白文本中“自作主张”地加入括号里的场景描述,让整个输出更有画面感。比如“(夜风掀动案头《韩非子》,停在‘夫妻者,非有骨肉之恩也’那页)”、“(墨迹在‘弑’字上晕开一团)”、“(忽然扔笔,抓起铜镜)”这些句子,很难相信是 AI 写的。 总之,使用 DeepSeek 时要考虑很多方面的因素,它能根据您的提示词和需求,生成很精彩的内容。
2025-03-13
我是小白,想做一个自媒体全媒体一键管理AI,帮助自媒体创业者一键管理全媒体平台的数据,内容,客户以及产品,怎么实现
要实现自媒体全媒体一键管理 AI 帮助自媒体创业者管理全媒体平台的数据、内容、客户以及产品,可以参考以下思路: 首先,对于将 PDF 一键变成能玩的可视化网页,整体思路来自于归藏。在藏师傅的基础上稍作修改的 prompt,目前在 Claude 3.7 Sonnet 效果最佳,其他大模型生成的审美可能稍差。可以将 prompt 用于 Claude 自己的官网、trea 海外版、cursor 等能使用 Claude 3.7 的产品。 使用时,prompt 整体基本可复制,但细节部分需修改: 1. 作者信息部分改成自己的内容。 2. 媒体资源部分,可加上自己特定要出现的图片/视频。不需要的直接删掉这一块。若使用网上现成的图片,直接右键复制图像链接;若是自己的图片,可使用图床服务(如 https://sm.ms/)托管图片生成公链,然后用 Markdown 格式贴到媒体资源处。注意文档上传时,图片不要跟着文档一起上传,可能会有显示错误,尽量用公链。 虽然上述是关于将 PDF 变成可视化网页的方法,但其中的思路和技术或许能为您实现自媒体全媒体一键管理 AI 提供一些启发和借鉴。
2025-03-13
我是AI小白,应该如何浏览了解AI的最新资讯
对于 AI 小白来说,想要浏览了解 AI 的最新资讯,可以参考以下方法: 1. 持续学习和跟进:AI 是一个快速发展的领域,新的研究成果和技术不断涌现。您可以关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。 2. 考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 3. 关注腾讯研究院开发的一系列专业的 AI 资讯产品,如: AI 每日速递,一份高度凝练的日报产品,帮助您用 3 5 分钟快速掌握 AI 领域当日十大关键进展。 AI 每周 50 关键词,作为周报产品,基于 AI 速递内容构建。通过梳理一周热点关键词并制作可交互索引,为研究者提供便捷的“检索增强”工具,助力快速定位所需信息。 科技九宫格,一档短视频栏目,以 3 5 分钟视频形式解读科技热点与关键技术原理。通过可视化呈现,促进您对前沿技术的理解与讨论。 4. 您还可以通过以下友情链接获取最新资讯:
2025-03-11
实现一个简单的 function calling agents ,要求小白可以看懂
以下是一个关于实现简单的 function calling agents 的指导,以便小白能够理解: 实现原理: 提示词工程主要由提示词注入和工具结果回传两部分代码组成。提示词注入用于将工具信息及使用工具的提示词添加到系统提示中,它包含 TOOL_EAXMPLE、tools_instructions 和 REUTRN_FORMAT 三个部分。TOOL_EAXMPLE 用于提示 LLM 如何理解和使用工具,编写时应注意用无关紧要的工具作示例避免混淆。tools_instructions 是将通用工具字典转换成 LLM 可读的工具列表,实际使用时可动态调整。REUTRN_FORMAT 定义了调用 API 的格式。工具结果回传阶段利用正则表达式抓取输出中的“tool”和“parameters”参数,对于 interpreter 工具使用另一种正则表达式提取 LLM 输出的代码,通过识别 LLM 返回的调用工具的字典提取对应值传入工具函数,将工具返回结果以 observation 角色返回给 LLM,对于不接受相关角色的 LLM 接口可改为回传给 user 角色。 实现方式的比较与建议: 1. JSON Output:通过 Prompt 方式让模型输出 JSON 格式内容,但 Prompt 麻烦,输出不稳定,串业务成本高。 2. JSON Mode:官方 JSON Output,与 Tools 适用场景不同,JSON mode 为输出 JSON 存在,Tools 为 Call API 存在。 3. 从可控角度推荐 Function Calling 和 Tools 实现: 放弃 JSON mode,模型输出 JSON 仍可能出错,模型厂家对 Function Calling 有微调优化。 降低 System prompt 依赖,能在 Tools 里写的尽量写在里面。 API Response 增强 Prompt,准确率高。 尽量让模型做选择而非填空,减少 token 输出,提高速度和准确率。 利用 Tools 做 Route,构建 Multi Agent,术业有专攻。 此外,在初级菜鸟学习 Langchain 做简单 RAG 方面: 1. 没有用 Langchain 做 table 和 text 的 RAG: Table 表格:包括读入表格 markdown 格式嵌入 template 和直接使用 function call 两种方法。 Text 文字:包括文字相似度检索过程,涉及读入文字、清洗、切分、向量化、计算相似度等步骤。 2. 用 Langchain 做 table 和 text 的 RAG:包括运用 Agent 和 Chain 等方式。 3. 使用 Agent 把文本多种文档组合起来。 相关代码和示例可参考相应的链接。
2025-03-11
用deepseek写法学本科论文 有哪些指令
DeepSeek 可用于法学本科论文写作,以下是一些相关指令和方法: 1. 文风转换矩阵: 作家风格移植:例如“用鲁迅杂文风格写职场 PUA 现象”。 文体杂交:比如“将产品说明书改写成《史记》列传格式”。 学术口语化:“把这篇论文摘要翻译成菜市场大妈能听懂的话”。 2. 领域穿透技术:行业黑话破解,如“解释 Web3 领域的'胖协议瘦应用'理论”。 3. 效能增强技巧: 对话记忆管理:包括上下文锚定(“记住当前讨论的芯片型号是麒麟 9010”)、信息回溯(“请复述之前确认的三个设计原则”)、焦点重置(“回到最初讨论的供应链问题”)。 输出质量控制:针对不同问题类型进行修正,如过度抽象(“请具体说明第三步操作中的温度控制参数”)、信息过载(“用电梯演讲格式重新组织结论”)、风格偏移(“回归商务报告语气,删除比喻修辞”)。 4. 特殊场景解决方案: 长文本创作:采用分段接力法(“先完成故事大纲→逐章扩展→最后进行伏笔校验”)和逻辑粘合剂(“确保新章节与前文的三处细节呼应”)。 需要注意的是,使用 DeepSeek 辅助写作时,仍需您自身对法学知识的深入理解和研究,以确保论文的学术性和专业性。
2025-03-03
帮助精读法学文献的AI
帮助精读法学文献的AI工具可以显著提高法律研究的效率和准确性。以下是一些可以帮助你精读和分析法学文献的AI工具和平台: 1. CaseText 简介:CaseText 是一个法律研究平台,利用AI技术帮助用户查找、阅读和分析法律文献。 功能特点: CARA AI:可以根据上传的法律文档自动推荐相关案例和法律资源。 智能搜索:提供上下文相关的搜索结果,帮助找到最相关的法律文献。 法律分析:分析和总结法律文献中的关键点和判决理由。 2. ROSS Intelligence 简介:ROSS Intelligence 是一个基于AI的法律研究工具,旨在帮助法律专业人士更快地找到相关法律信息。 功能特点: 自然语言搜索:允许用户以自然语言提出法律问题,AI提供相关的法律文献和案例。 判例法分析:快速分析大量判例法,提取关键判决和法律原则。 文档审查:帮助审查法律文档,找出潜在的问题和风险。 3. LexisNexis 简介:LexisNexis 是一个综合性的法律研究平台,提供丰富的法律文献数据库和AI分析工具。 功能特点: Lexis Analytics:利用AI技术分析法律趋势、判决和法规,提供数据驱动的见解。 Shepard's® Citation Service:跟踪和分析案例法的引用,了解判例的法律效力和应用情况。 智能搜索和摘要:提供智能搜索功能,自动生成法律文献的摘要和关键点。 4. Westlaw Edge 简介:Westlaw Edge 是由 Thomson Reuters 提供的法律研究平台,整合了先进的AI技术。 功能特点: WestSearch Plus:使用AI技术进行上下文搜索,提供精准的法律文献结果。 Quick Check:分析和对比法律文档,找出遗漏或不一致之处。 KeyCite:追踪判例和法规的历史和引用,了解其法律地位和适用范围。 5. Judicata 简介:Judicata 是一个专注于法律分析的AI工具,提供深入的法律文献分析。 功能特点: 解析法律文档:细致解析法律文档,提取关键条款和判决理由。 法律图谱:通过图谱展示法律文献之间的关系,帮助理解法律原则的适用。 风险分析:评估法律文档中的风险和潜在问题,提供改进建议。 6. Casemine 简介:Casemine 是一个利用AI技术的法律研究平台,提供智能案例法分析和文献推荐。 功能特点: CaseIQ:智能分析案例法,提供相关的法律文献推荐。 判决理由提取:自动提取和总结判决理由,帮助快速理解案件关键点。 互动式法律研究:通过互动式界面,快速找到相关的法律文献和案例。 使用建议 1. 选择适合的工具:根据你的具体需求(如搜索、分析、审查等),选择最适合的工具。 2. 学习使用功能:熟悉工具提供的各种功能和界面,充分利用其AI分析和搜索能力。 3. 结合人工分析:尽管AI工具可以显著提高效率,仍需结合人工分析,确保对法律文献的理解和应用准确无误。 4. 保持更新:法律和技术都在不断变化,定期更新工具和数据库,确保使用最新的法律文献和AI技术。 通过这些AI工具,你可以更加高效地精读和分析法学文献,提高法律研究的质量和效率。
2024-05-26