Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

哪个agent可以制作图表?

Answer

以下是一些可以制作图表的 agent:

  • Cursor:能够全自动写程序、装依赖、debug 等,为用户生成所需的图表,例如生成谷歌和亚马逊最近五年的股价对比图,以及对图片进行特定形状的处理。
  • E2b 团队:制作了AI Agents 全景图
  • 共建者缱绻怡然:制作了0.从这里启程中的 AI Agent 图谱。
Content generated by AI large model, please carefully verify (powered by aily)

References

[Agentic AI] 搏一搏,$20变$500:一小时魔改Cursor变身Devin

在讨论Agentic AI之前,我想先讲两个小故事。我在网上和别人聊天的时候,想要比较一下亚马逊和谷歌最近五年的股票走势来佐证我的一个观点。我先是上网搜索了有没有现成的比较和工具,发现没有。接着问了ChatGPT,你能不能帮我寻找或者生成一个股价对比图。他说做不到。这时候我已经想着放弃了,因为聊天的过程中,不值当特别花个5分钟去专门做个图出来。最后我死马当活马医,用了Cursor最新的Agent模式,就直接把要求丢给它,让它给我生成一张图,上面有谷歌和亚马逊最近五年的股价,同时把两个股票的起点对齐,这样方便我比较。结果没想到的是,Cursor就开始全自动写程序,装依赖,debug,改程序,重新执行,然后在一分钟之内就给了我想要的图,如下图所示。真是令我大受震撼。It just works。第二个例子是,我在做网页的过程中,需要把我的头像变成圆形,用美工的术语来说是加一个圆形的遮罩。有了上一次的经验,我这次就没有打开Photoshop,或者问ChatGPT应该怎么操作Photoshop,而是直接把图扔给了Cursor,在它的agent mode里面描述了一下我想把图PS成什么样的形状。Cursor吭哧吭哧鼓捣出来一个我看不懂的命令行,然后自己安装依赖,出了一张图。但是它把这个圆形的大小弄错了,所以我跟它提了一下这个反馈,它又自己调用命令行搞清楚了这个图的大小应该是多少,然后就给了我一张正确的图。

2023 年历史更新(归档)

在AI课程目录下新增《[Nijijourney官方的AI绘画课程](https://ywh1bkansf.feishu.cn/record/1sfvuvhOASwSuJlUgZFlZLsYY)》,这门实验性课程将艺术基础与人工智能技术巧妙结合在一起,分为中文、日文、韩文、英文四种语言,非常贴心,强烈建议你读读它的序幕篇章《[美的钻研](https://sizigi.notion.site/84475c5ec41046e1bda9478afcd7b5e4)》;[AI Agents全景图](https://ywh1bkansf.feishu.cn/wiki/KdN2wM9fSiw6RBkTcyWcFrfJnOf?table=ldx5dZFfJiwEevgw)同步更新到1.8版本,该图表由E2b团队制作;翻译了《[什么是AI Agents?深入了解未来的AI界面](https://ywh1bkansf.feishu.cn/wiki/KdN2wM9fSiw6RBkTcyWcFrfJnOf?table=ldxklrmCJhEMQcNG)》这篇文章,由OpenAI开发者关系负责人Logan Kilpatrick所写,介绍Agents是什么,这个领域的发展趋势,以及大量这种早期技术在实践中的精彩示例;

2023 年历史更新(归档)

[0.从这里启程](https://waytoagi.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=tblyh76bHrCi4PXq&view=vewUunvDn1)增加了AI Agent图谱,由共建者缱绻怡然制作;[2.精选:AI Agents文章](https://waytoagi.feishu.cn/wiki/DaUTwIF1aiMPXlkAZsNcPJJgnsg?chunked=false&table=tbl8Uhyj3PcMAHHT&view=vew3yNtR1O)新增《[谈复杂Agent策略框架的设计(2)【2023Q4】](https://waytoagi.feishu.cn/record/CeKeroG9beoLslcO2mScRNXrnrf)》,作者孔某人,主要讨论基于LLM的复杂Agent的实现;《[Essential AI获得5700万美元融资!谷歌、英伟达、AMD以及Thrive都投了](https://waytoagi.feishu.cn/record/S9pRrcMczeqxrVcogrecb3OqnLh)》,来自有新Newin,Essential AI由两位谷歌重要研究论文的作者Ashish Vaswani和Niki Parmar创立,2017年在谷歌工作时与他人一起共同撰写了具有重要影响力的论文《Attention Is All You Need》。Essential AI正在开发全栈AI产品,这些产品具备快速学习能力,能够通过自动化繁琐且耗时的工作流程来提高生产力;Tesla发布Optimus Gen2机器人,现在拥有更加精致的外观,并且比5月份特斯拉展示Optimus Gen1时的速度快了30%,[跳转这里看视频](https://waytoagi.feishu.cn/record/U6NzrvPxweQa1icg4rGc12GRnge):

Others are asking
multi agents讲解
多智能体(MultiAgent)是由多个自主、独立的智能体(Agent)组成的系统。每个智能体都能感知环境、决策并执行任务,且它们之间能信息共享、任务协调与协同行动以实现整体目标。 随着大型语言模型(LLM)的出现,以 LLM 为核心构建的 Agent 系统受广泛关注。目前常见框架集中在单 Agent 场景,其核心是 LLM 与工具协同配合,可能需与用户多轮交互。而多 Agent 场景为不同 Agent 分配角色,通过协作完成复杂任务,与用户交互可能减少。 构建多 Agent 框架主要组成部分包括: 1. 环境:所有 Agent 处于同一环境,包含全局状态信息,Agent 与环境有信息交互与更新。 2. 阶段:采用 SOP 思想将复杂任务分解为多个子任务。 3. 控制器:可以是 LLM 或预先定义好的规则,负责环境在不同 Agent 和阶段间切换。 4. 记忆:因 Agent 数量增多,消息数量及每条消息的记录字段增加。 此外,吴恩达最新演讲提到四种 Agent 设计范式,Reflection 和 Tool Use 相对经典且广泛使用,Planning 和 Multiagent 较新颖有前景。Reflection 类似于 AI 自我纠错和迭代,如让 AI 写代码并自我检查修改。Tool Use 指大语言模型调用插件拓展能力。在一些场景中,Reflection 可用两个 Agent,一个写代码,一个 Debug。
2025-03-14
哪里可以找到开源的ai agent
以下是一些可以找到开源 AI Agent 的途径和相关信息: AutoGPT 和 BabyAGI 是最早实现让 LLM 自己做自动化多步骤推理的开源智能代理,在去年 GPT4 刚发布时风靡全球科技圈。 智谱·AI 开源了一些包含 Agent 能力的模型,如 AgentLM7B、AgentLM13B、AgentLM70B 等,相关信息和代码链接可在相应的平台获取。 Andrej 的 LLM OS 中包含了相关模块。 OpenAI 的研究主管 Lilian Weng 曾写过一篇博客《LLM Powered Autonomous Agents》介绍了 Agent 的设计框架。
2025-03-13
什么是AI Agent
AI Agent 是基于大型语言模型(LLM)和其他技术实现的智能实体,其核心功能在于自主理解、规划决策、执行复杂任务。 它包括以下几个概念: 1. Chain:通常一个 AI Agent 可能由多个 Chain 组成。一个 Chain 视作是一个步骤,可以接受一些输入变量,产生一些输出变量。大部分的 Chain 是大语言模型完成的 LLM Chain。 2. Router:可以使用一些判定(甚至可以用 LLM 来判定),然后让 Agent 走向不同的 Chain。例如:如果这是一个图片,则 a;否则 b。 3. Tool:Agent 上可以进行的一次工具调用。例如,对互联网的一次搜索,对数据库的一次检索。 同时,AI Agent 还需要三个 Agent: 1. Responser Agent:主 agent,用于回复用户(伪多模态)。 2. Background Agent:背景 agent,用于推进角色当前状态(例如进入下一个剧本,抽检生成增长的记忆体)。 3. Daily Agent:每日 agent,用于生成剧本,配套的图片,以及每日朋友圈。 此外,心灵社会理论认为,智能是由许多简单的 Agent(分等级、分功能的计算单元)共同工作和相互作用的结果。这些 Agent 在不同层次上执行不同的功能,通过协作实现复杂的智能行为。心灵社会将智能划分为多个层次,从低层次的感知和反应到高层次的规划和决策,每个层次由多个 Agent 负责。每个 Agent 类似于功能模块,专门处理特定类型的信息或执行特定任务,如视觉处理、语言理解、运动控制等。智能不是集中在单一的核心处理单元,而是通过多个相互关联的 Agent 共同实现。这种分布式智能能够提高系统的灵活性和鲁棒性,应对复杂和多变的环境。同时,在《心灵社会》中,明斯基还详细描述了不同类型的 Agent 及其功能,如专家 Agent、管理 Agent、学习 Agent 等。 AI Agent 是一个融合了语言学、心理学、神经学、逻辑学、社会科学、计算机科学等多个学科精髓的综合实体。它不仅拥有实体形态,更蕴含着丰富的概念形态,同时它还具备了许多人类特有的属性。因为这些学科大多以人为研究对象,致力于探索人类内在的本质。
2025-03-13
OpenAl 发布 Agent 工具包
OpenAI 刚发布了全新的 Agent 工具包,这标志着 AI 智能体进入了新时代。新推出的 Responses API 及相关工具,简化了开发者构建多功能 AI Agent 的流程,实现了自动化任务处理。其中,网络搜索、文件搜索及计算机使用工具相结合,使 AI 不仅能获取实时信息,还能执行复杂操作。这不仅是对 Assistants API 的全面升级,也意味着智能体进入统一接口、标准化开发的新阶段。OpenAI 表示,2025 年将是 Agent 的元年,让 AI 超越聊天框,成为工作中的“数字助理”与“数字同事”。开发智能体不再需要拼凑繁杂代码,只需 4 行代码即可实现。
2025-03-13
agent和agi的区别
Agent 和 AGI 的区别主要体现在以下几个方面: Agent(智能体): 是执行特定任务的 AI 实体。 拥有复杂的工作流程,可以自我对话,无需人类驱动每一部分的交互。 由大型语言模型、记忆、任务规划以及工具使用等部分组成。 例如在斯坦福 25 人小镇案例中有所应用。 AGI(人工通用智能): 强调的是具备像人类一样广泛和通用的智能能力。 追求能够在各种不同的任务和领域中表现出高度智能的水平。 总的来说,Agent 更侧重于特定任务的执行和特定功能的实现,而 AGI 则是一个更宏观和全面的概念,旨在实现广泛的通用智能。
2025-03-12
agent和workflow的区别
智能体(Agent)和工作流(Workflow)的区别主要体现在以下几个方面: 1. 定义和功能: 智能体是由 LLM 动态指导自身流程和工具使用的系统,能够自主控制任务完成方式。 工作流是通过预定义代码路径来编排 LLM 和工具的系统。 2. 运行方式: 智能体可以长期独立运行,是全自动的系统,能使用各种工具完成复杂任务。 工作流中的子任务是人为编排的,属于手动编排。 3. 组成和特点: 工作流中的每个组块可以看成是一个函数,包括传统函数、调用第三方服务的函数和基于 LLM 的函数。由这三类函数组合而成的工作流被称为超函数,它不同于传统函数,形式上是用自然语言编写的程序,功能上可以模拟人的高阶思维。 智能体在架构上与工作流有所区分,其更强调自主性和动态性。 在实际应用中,工作流的灵活性和可控性能够将智能体能力的天花板往上顶一大截,例如可以在流程中加入人类 Knowhow、进行专家测试试跑、引入图的概念灵活组织节点等。评价一个 Agent 平台好不好用,可以从基座模型的 function calling 能力、workflow 的灵活性以及平台创作者的 workflow 编写水平等方面考量。
2025-03-12
AI生成图表
以下是为您整理的关于 AI 生成图表的相关内容: Napkin:这是一款能够生成多样风格图表的 AI 工具。它可以将选中文本转换为 mermaid 格式图表,支持 SVG 渲染,交互流畅且模板丰富。后台可能使用轻量模型(如 GPT4 mini),自动选择图标,生成多套模板供选择。当前免费,适合需要快速生成图表的用户。相关链接: 创建项目管理流程图(Lucidchart): 1. 注册并登录: 2. 选择模板:在模板库中搜索“项目管理流程图”。 3. 编辑图表:根据项目需求添加和编辑图形和流程步骤。 4. 优化布局:利用 AI 自动布局功能,优化图表的外观。 5. 保存和分享:保存图表并与团队成员分享,或导出为 PDF、PNG 等格式。 Liblibai 文生图简易上手教程: 1. 定主题:确定生成图片的主题、风格和表达的信息。 2. 选择 Checkpoint:根据主题选择内容贴近的 checkpoint,如麦橘、墨幽的系列模型。 3. 选择 lora:寻找内容重叠的 lora 以控制图片效果及质量。 4. 设置 VAE:选择 840000 那一串。 5. CLIP 跳过层:设成 2。 6. Prompt 提示词:用英文写生成需求,使用单词和短语组合,用英文半角逗号隔开。 7. 负向提示词 Negative Prompt:用英文写避免产生的内容,单词和短语组合,用英文半角逗号隔开。 8. 采样方法:一般选 DPM++2M Karras,也可参考 checkpoint 详情页中模型作者推荐的采样器。 9. 迭代步数:选 DPM++2M Karras 时,一般在 30 40 之间。 10. 尺寸:根据个人喜好和需求选择。 11. 生成批次:默认 1 批。
2025-03-12
根据论文题目:"基于机器学习的中国股市波动率预测与美股市场对比分析",列出详细框架列出框架,每条框架要明确具体方向内容及数据图表要求
以下是为您提供的关于“基于机器学习的中国股市波动率预测与美股市场对比分析”的论文框架: 一、引言 1. 研究背景和意义 阐述机器学习在金融领域的应用现状 强调股市波动率预测的重要性 说明中、美股市对比的价值 2. 研究目的和问题 明确预测股市波动率的具体目标 提出中、美股市对比的关键问题 3. 研究方法和数据来源 介绍所采用的机器学习算法 说明中国股市和美股市场的数据获取途径 二、相关理论与文献综述 1. 机器学习在股市预测中的应用 列举常见的机器学习模型及其在股市预测中的效果 分析其优缺点 2. 股市波动率的理论和测量方法 解释波动率的概念和计算方法 介绍常用的波动率模型 3. 中、美股市的特点和差异 对比两国股市的交易制度、投资者结构等方面 总结已有研究中关于中、美股市波动率的差异 三、数据预处理与特征工程 1. 数据收集与清洗 详细描述中国股市和美股市场的数据收集范围和时间跨度 处理缺失值、异常值等数据问题 2. 特征选择与构建 确定影响股市波动率的关键特征 构建新的特征变量 3. 数据标准化与归一化 说明对数据进行标准化和归一化的方法和目的 四、模型构建与训练 1. 选择合适的机器学习模型 比较不同模型(如随机森林、支持向量机、神经网络等)的适用性 确定最终选用的模型 2. 模型训练与优化 描述训练过程中的参数调整和优化方法 展示模型的性能评估指标 3. 模型验证与比较 使用交叉验证等方法验证模型的准确性 对比不同模型的预测效果 五、中国股市波动率预测结果与分析 1. 预测结果展示 以图表形式呈现中国股市波动率的预测值 与实际波动率进行对比 2. 结果分析与讨论 分析预测结果的准确性和可靠性 探讨影响预测效果的因素 3. 敏感性分析 研究模型参数和输入特征对预测结果的敏感性 六、美股市场波动率预测结果与分析 1. 预测结果展示 以图表形式呈现美股市场波动率的预测值 与实际波动率进行对比 2. 结果分析与讨论 分析美股市场预测结果的特点和差异 对比中、美股市预测结果的异同 3. 影响因素分析 探讨美股市场特有的影响波动率的因素 七、中、美股市波动率对比分析 1. 波动率特征对比 比较中、美股市波动率的均值、方差、峰度等统计特征 分析波动率的周期性和趋势性 2. 影响因素对比 对比两国股市中影响波动率的宏观经济因素、政策因素等 讨论投资者行为对波动率的影响差异 3. 风险评估与管理对比 评估中、美股市的风险水平 对比风险管理制度和策略 八、结论与展望 1. 研究结论总结 概括中、美股市波动率预测的主要成果 总结对比分析的关键发现 2. 研究的局限性 指出研究过程中存在的不足之处 3. 未来研究方向 提出进一步改进模型和拓展研究的方向 对中、美股市波动率研究的展望 数据图表要求: 1. 中、美股市历史波动率的折线图 2. 不同机器学习模型预测效果的对比柱状图 3. 中、美股市波动率特征的统计表格 4. 影响中、美股市波动率的因素的相关性矩阵图 5. 中、美股市风险评估的雷达图
2025-03-11
所有最新的AI工具图表
以下是一些最新的可用于绘制逻辑视图、功能视图、部署视图等的 AI 工具: 1. Lucidchart:流行的在线绘图工具,支持多种视图创建,有拖放界面方便操作。 2. Visual Paradigm:全面的 UML 工具,提供多种架构视图创建功能。 3. ArchiMate:开源建模语言,与 Archi 工具配合可创建逻辑视图。 4. Enterprise Architect:强大的建模、设计和生成代码工具,支持多种视图。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,有丰富模板。 6. draw.io(diagrams.net):免费在线图表软件,支持多种类型图表创建。 7. PlantUML:文本到 UML 转换工具,可通过描述生成相关视图。 8. Gliffy:基于云的绘图工具,提供架构图创建功能。 9. Archi:免费开源工具,支持逻辑视图创建。 10. Rational Rose:IBM 的 UML 工具,支持多种视图创建。 以下是基于 2022 年 9 月至 2023 年 8 月访问量的 10 个最佳人工智能工具: 1. ChatGPT:访问量达 146 亿次,在美国使用率最高,男性用户占 74.16%,多数通过移动设备访问,每次会话平均参与时间近 10 分钟。 2. Character AI 3. QuillBot 4. Midjourney:图像生成器,访问量 5.004 亿次,每次访问时间约 11 分 43 秒,桌面和移动用户流量分布接近,男性用户占 92.19%。 5. Hugging Face:数据科学领域受欢迎,访问量 3.166 亿,每次访问平均 11 分 2 秒,桌面和移动端流量竞争激烈,男性用户占 84.48%。 6. Google Bard:2023 年 3 月推出,访问量 2.416 亿次,每次会话时间 10 分钟,67%通过移动设备访问,男性用户占 69.14%。 7. NovelAI 8. CapCut 9. JanitorAI 10. Civitai
2025-03-10
有没有可以在网上查找小米销量数据并制作图表的ai工具?
以下是一些可以在网上查找小米销量数据并制作图表的 AI 工具: 1. Creately:这是一个在线绘图和协作平台,利用 AI 功能简化图表创建过程,适合绘制流程图、组织图、思维导图等。它具有智能绘图功能,可以自动连接和排列图形,还有丰富的模板库和预定义形状,支持实时协作,官网:https://creately.com/ 2. Whimsical:这是一个专注于用户体验和快速绘图的工具,适合创建线框图、流程图、思维导图等。它具有直观的用户界面,易于上手,支持拖放操作,快速绘制和修改图表,提供多种协作功能,适合团队工作,官网:https://whimsical.com/ 3. Miro:这是一个在线白板平台,结合 AI 功能,适用于团队协作和各种示意图绘制,如思维导图、用户流程图等。它支持无缝协作,支持远程团队实时编辑,有丰富的图表模板和工具,还支持与其他项目管理工具(如 Jira、Trello)集成,官网:https://miro.com/ 使用这些 AI 工具绘制图表的一般步骤如下: 1. 选择工具:根据您的具体需求选择合适的 AI 绘图工具。 2. 创建账户:注册并登录该平台。 3. 选择模板:利用平台提供的模板库,选择一个适合您需求的模板。 4. 添加内容:根据您的需求,添加并编辑图形和文字。利用 AI 自动布局功能优化图表布局。 5. 协作和分享:如果需要团队协作,可以邀请团队成员一起编辑。完成后导出并分享图表。
2025-03-10
有没有可以查找数据并制作图表的ai工具?
以下是一些可以查找数据并制作图表的 AI 工具: 1. Lucidchart:流行的在线绘图工具,支持多种图表创建,包括逻辑视图、功能视图和部署视图,用户可通过拖放界面轻松创建架构图。 2. Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能,如逻辑视图(类图、组件图)、功能视图(用例图)和部署视图(部署图)。 3. ArchiMate:开源的建模语言,专门用于企业架构,支持逻辑视图的创建,可与 Archi 工具配合使用,该工具提供图形化界面创建模型。 4. Enterprise Architect:强大的建模、设计和生成代码的工具,支持创建多种架构视图,包括逻辑、功能和部署视图。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富模板用于创建逻辑视图、功能视图和部署视图等。 6. draw.io(现称为 diagrams.net):免费的在线图表软件,允许创建各种类型的图表,包括逻辑视图和部署视图。 7. PlantUML:文本到 UML 的转换工具,通过编写描述性文本自动生成序列图、用例图、类图等,帮助创建逻辑视图。 8. Gliffy:基于云的绘图工具,提供创建各种架构图的功能,包括逻辑视图和部署视图。 9. Archi:免费开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图的创建。 10. Rational Rose:IBM 的 UML 工具,支持创建多种视图,包括逻辑视图和部署视图。 此外,在数据处理和报告撰写方面,您可以: 1. 信息收集:利用 AI 搜索与权威网站结合获取关键数据,AI 可辅助提取结构化表格数据或编写抓取程序。 2. 内容拆分:针对报告需求将内容拆分,避免 AI 单次处理任务过长。 3. 数据处理:借助传统工具如 Excel,结合 AI 指导高效操作数据筛选与图表生成。 4. 分析与撰写:通过整理数据,利用 AI 辅助分析后撰写报告初稿,可指定风格并校验数据与结论准确性。但需注意,AI 仅作辅助,最终内容需人工主导校验,避免误导性结论。
2025-03-10
1.根据论文题目:"基于机器学习的中国股市波动率预测与美股市场对比分析",列出详细框架列出框架,每条框架要明确具体方向内容及数据图表要求。
很抱歉,暂时没有关于“基于机器学习的中国股市波动率预测与美股市场对比分析”这一论文题目的详细框架相关内容。但我可以为您提供一个大致的框架思路供您参考: 一、引言 1. 研究背景和意义 阐述中国股市和美股市场的重要性 说明波动率预测的价值 2. 研究目的和问题 明确对比分析的主要目标 提出具体的研究问题 二、文献综述 1. 机器学习在股市波动率预测中的应用 总结相关方法和模型 分析其优缺点 2. 中国股市和美股市场波动率的特征 回顾已有研究成果 指出研究空白 三、理论基础与方法 1. 机器学习算法介绍 如随机森林、支持向量机等 解释其原理和适用场景 2. 数据来源和预处理 说明中国股市和美股市场的数据来源 描述数据清洗和预处理的步骤 3. 波动率计算方法 介绍常用的波动率计算指标 四、实证分析 1. 模型构建与训练 运用所选机器学习算法构建预测模型 展示训练过程和参数调整 2. 结果评估与比较 评估中国股市和美股市场预测结果的准确性 进行对比分析 数据图表要求:绘制预测结果与实际波动率的对比图 3. 影响因素分析 探讨可能影响波动率预测的因素 数据图表要求:绘制影响因素与波动率的关系图 五、结论与展望 1. 研究结论总结 概括中国股市和美股市场波动率预测的成果 对比分析的主要发现 2. 研究的局限性 指出研究中存在的不足 3. 未来研究方向 提出进一步研究的建议和方向 以上框架仅供参考,您可以根据实际研究需求进行调整和完善。
2025-03-10
AI制作视频的工具
以下是一些可用于将小说制作成视频的 AI 工具及制作流程: AI 工具: 1. Stable Diffusion(SD):一种 AI 图像生成模型,可基于文本描述生成图像。网址:https://github.com/StabilityAI 2. Midjourney(MJ):适用于创建小说中的场景和角色图像。网址:https://www.midjourney.com 3. Adobe Firefly:Adobe 的 AI 创意工具,能生成图像和设计模板。网址:https://www.adobe.com/products/firefly.html 4. Pika AI:文本生成视频的 AI 工具,适合动画制作。网址:https://pika.art/waitlist 5. Clipfly:一站式 AI 视频生成和剪辑平台。网址:https://www.aihub.cn/tools/video/clipfly/ 6. VEED.IO:在线视频编辑工具,具有 AI 视频生成器功能。网址:https://www.veed.io/zhCN/tools/aivideo 7. 极虎漫剪:结合 Stable Diffusion 技术的小说推文视频创作提效工具。网址:https://tiger.easyartx.com/landing 8. 故事 AI 绘图:小说转视频的 AI 工具。网址:https://www.aihub.cn/tools/video/gushiai/ 制作流程: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 2. 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。 另外,以“AI 特效挑战 001 杯子里的鲸鱼”为例,选用视频制作工具时,如使用可灵 AI,可参考以下步骤: 1. 打开可灵 AI,网址:https://klingai.kuaishou.com/ ,点击图生视频,上传第一张图片。输入提示词时一定需要加“固定镜头”。 2. 按照上述做法制作第二张图片的动态效果,得到两段视频。 视频剪辑方面(以 PC 端为例): 1. 右上方点击抠像按钮。 2. 鼠标选中要处理的素材。 3. 把带绿幕的素材先放入下面主视频轨道。 4. 打开剪映,导入需要的三段素材。 5. 把带绿幕的素材和下方黑色咖啡的素材合成一个片段。 6. 点击新建的复合片段,调整对应的参数,最后完成。
2025-03-14
听音乐制作画面的AI
以下是关于听音乐制作画面的 AI 的相关内容: 1. 工具使用: 生成音乐:Suno 能够根据用户对音乐的具体描述生成音乐作品,为视频增添独特音乐元素,提升艺术性和观赏性。 人物对白配音:即开即用的 ondoku,输入文字可快速得到配音文件。 后期合成:主要使用剪映,对 AI 生成的视频进行截取和补充,合成时可进行画面匹配并调整音乐协调性。 视频轨道层包括台词层、效果层(关键帧、蒙版)、视频画面(AI 生成的视频画面加闭幕)、人声台词、音效、背景音乐。 2. 分镜创作: 歌曲创作完成后出分镜脚本,因 AI 视频制作特殊性,分镜直接决定最终视频呈现效果。 画面生成分为三类:有歌词部分用 midjourney 生成;无歌词部分如前奏用 SD 制作字体设计;转场用 deforum 制作。 让 gpt 按每段歌词生成 mj 提示词,作为画面参考并调整编写。 如开篇构思通过弹古筝女子引入,通过多种工具调整构图。 3. 其他方面: AI 抠图:可直接抠图或在 PS 里操作,图片上传即可,用于制作素材和氛围动画。 声音素材: 背景音乐:Aive 尝试制作背景音乐,部分团队成员用工具生成,因要求高,还利用分离人声的 AI 软件处理音乐。 旁白:使用微软 AI 语音,其声音库支持 147 种语言,还有定制声音选择。
2025-03-14
听音乐制作画面
以下是关于听音乐制作画面的相关内容: 在《AI 你·南京》AIGC 城市宣传 MV 全流程制作中,歌曲创作完成后进行分镜脚本创作。由于 AI 视频制作的特殊性,分镜直接决定最终视频呈现效果。根据音乐生成画面分为三类:有歌词部分用 midjourney 生成,无歌词部分如前奏用 SD 制作字体设计,转场用 deforum 制作。同时,让 gpt 按每段歌词生成 mj 提示词,虽只是大概参考,仍需调整编写。如开篇构思融入古筝和弹古筝女子,通过多种方式解决画面生成中的问题。 在 KEEN 的离谱村系列 2 音乐制作中,影片作者为 KEEN,配乐的主要 Prompt 设计由 GPT4 完成,音乐制作由 Suno 负责。提供了相关历史记录、操作指北及配乐的链接。 在桂大羊的 AI 视频短片制作中,使用 Suno 生成音乐,共生成 30 首歌曲并挑选符合视频节奏的背景音乐。人物对白选择用 ondoku 配音,后期合成主要用剪映,会根据情况重新生成画面视频补充,视频轨道层包括台词层、效果层、视频画面、人声台词、音效、背景音乐等。
2025-03-14
可以制作手工古董串珠的Ai
目前尚未有专门用于制作手工古董串珠的 AI 工具。但在 AI 领域,可能会有一些相关的设计辅助软件或应用,能够为串珠的设计提供灵感和创意,不过它们并非直接制作手工古董串珠。
2025-03-13
我是一名短视频创作者,我自身有自己写的现代诗歌,但是因为自己的声音不好,所以想自己制作一个利用网络音频和AI视频来展示我创作的诗歌的coze工作流,但是我对于ai的提示词有很多不明白的地方,您能够给我帮助吗
以下是为您提供的关于利用网络音频和 AI 视频展示诗歌的 Coze 工作流的相关指导: 1. 整体结构和参数配置: 工作流通常包括开始模块、Get_Video 模块、LinkReaderPlugin 模块、标题大模型、内容大模型、图片 Prompt 大模型、文生图 ImageToolPro 模块和输出结果模块等。 每个模块都有其特定的参数配置,例如在开始模块中选择源语言和目标语言等。 2. 标题大模型参数配置: 您需要作为小红书爆款写作专家,根据输入内容产出 3 个标题,采用二极管标题法创作,并善于使用吸引人的特点和爆款关键词,同时要符合小红书平台的标题特性和创作规则。 3. 内容大模型参数配置: 作为小红书爆款写作专家,根据输入内容产出 1 篇正文,每段话包含适当的 emoji 表情,文末有合适的 tag 标签。写作时要注意风格、开篇方法、文本结构、互动引导方法、一些小技巧、爆炸词等,文章尽量口语化、简短,在 200 字左右。 4. 图片 Prompt 大模型参数配置: 作为绘图 Prompt 大师,将输入内容转成 AI 更容易理解的绘画 Prompt。 5. 工作流创建步骤: 点击工作流后面的“+”添加工作流,然后创建工作流。 给工作流起名字和描述,名字只能用字母、数字和下划线,描述要清晰。 初始化工作流后,会生成开始模块和结束模块,左边有各种插件和搭建 Agent 的工具,可根据需要添加和使用。 希望以上内容对您有所帮助,如果您在具体操作过程中还有其他疑问,请随时向我咨询。
2025-03-12
我是一名短视频创作者,我自身有自己写的现代诗歌,但是因为自己的声音不好,所以想自己制作一个利用网络音频和AI视频来展示我创作的诗歌的coze工作流,但是我对于ai的提示词有很多不明白的地方,您能够给我帮助吗
以下是为您提供的关于利用网络音频和 AI 视频展示诗歌的 Coze 工作流的相关指导: 1. 整体结构和参数配置: 工作流通常包括开始模块、Get_Video 模块、LinkReaderPlugin 模块、标题大模型、内容大模型、图片 Prompt 大模型、文生图 ImageToolPro 模块和输出结果模块等。 每个模块都有其特定的参数配置,例如在开始模块中选择源语言和目标语言等。 2. 标题大模型参数配置: 您需要作为小红书爆款写作专家,根据输入内容产出 3 个标题,采用二极管标题法创作,并善于使用吸引人的特点和爆款关键词,同时要符合小红书平台的标题特性和创作规则。 3. 内容大模型参数配置: 作为小红书爆款写作专家,根据输入内容产出 1 篇正文,每段话包含适当的 emoji 表情,文末有合适的 tag 标签。写作时要注意风格、开篇方法、文本结构、互动引导方法、一些小技巧、爆炸词等,文章尽量口语化、简短,在 200 字左右。 4. 图片 Prompt 大模型参数配置: 作为绘图 Prompt 大师,将输入内容转成 AI 更容易理解的绘画 Prompt。 5. 工作流创建步骤: 点击工作流后面的“+”添加工作流,然后创建工作流。 给工作流起名字和描述,名字只能用字母、数字和下划线,描述要清晰。 初始化工作流后,会生成开始模块和结束模块,左边有各种插件和搭建 Agent 的工具,可根据需要添加和使用。 希望以上内容对您有所帮助,如果您在具体操作过程中还有其他疑问,请随时向我咨询。
2025-03-12