Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

什么是AI Agent

Answer

AI Agent 是基于大型语言模型(LLM)和其他技术实现的智能实体,其核心功能在于自主理解、规划决策、执行复杂任务。

它包括以下几个概念:

  1. Chain:通常一个 AI Agent 可能由多个 Chain 组成。一个 Chain 视作是一个步骤,可以接受一些输入变量,产生一些输出变量。大部分的 Chain 是大语言模型完成的 LLM Chain。
  2. Router:可以使用一些判定(甚至可以用 LLM 来判定),然后让 Agent 走向不同的 Chain。例如:如果这是一个图片,则 a;否则 b。
  3. Tool:Agent 上可以进行的一次工具调用。例如,对互联网的一次搜索,对数据库的一次检索。

同时,AI Agent 还需要三个 Agent:

  1. Responser Agent:主 agent,用于回复用户(伪多模态)。
  2. Background Agent:背景 agent,用于推进角色当前状态(例如进入下一个剧本,抽检生成增长的记忆体)。
  3. Daily Agent:每日 agent,用于生成剧本,配套的图片,以及每日朋友圈。

此外,心灵社会理论认为,智能是由许多简单的 Agent(分等级、分功能的计算单元)共同工作和相互作用的结果。这些 Agent 在不同层次上执行不同的功能,通过协作实现复杂的智能行为。心灵社会将智能划分为多个层次,从低层次的感知和反应到高层次的规划和决策,每个层次由多个 Agent 负责。每个 Agent 类似于功能模块,专门处理特定类型的信息或执行特定任务,如视觉处理、语言理解、运动控制等。智能不是集中在单一的核心处理单元,而是通过多个相互关联的 Agent 共同实现。这种分布式智能能够提高系统的灵活性和鲁棒性,应对复杂和多变的环境。同时,在《心灵社会》中,明斯基还详细描述了不同类型的 Agent 及其功能,如专家 Agent、管理 Agent、学习 Agent 等。

AI Agent 是一个融合了语言学、心理学、神经学、逻辑学、社会科学、计算机科学等多个学科精髓的综合实体。它不仅拥有实体形态,更蕴含着丰富的概念形态,同时它还具备了许多人类特有的属性。因为这些学科大多以人为研究对象,致力于探索人类内在的本质。

Content generated by AI large model, please carefully verify (powered by aily)

References

皮皮:你的微信虚拟女友 - 李洛云

AI Agent:基于大型语言模型(LLM)和其他技术实现的智能实体,其核心功能在于自主理解、规划决策、执行复杂任务。AI Agent包括下面几个概念:Chain:通常一个AI Agent可能由多个Chain组成。一个Chain视作是一个步骤,可以接受一些输入变量,产生一些输出变量。大部分的Chain是大语言模型完成的LLM Chain。Router:我们可以使用一些判定(甚至可以用LLM来判定),然后让Agent走向不同的Chain。例如:如果这是一个图片,则a;否则b。Tool:Agent上可以进行的一次工具调用。例如,对互联网的一次搜索,对数据库的一次检索。总结下来我们需要三个Agent:Responser Agent:主agent,用于回复用户(伪多模态)Background Agent:背景agent,用于推进角色当前状态(例如进入下一个剧本,抽检生成增长的记忆体)Daily Agent:每日agent,用于生成剧本,配套的图片,以及每日朋友圈Responser AgentDaily AgentBackground Agent每隔一段时间运行一次(默认3分钟)分析期间的历史对话变更人物关系(亲密度,了解度等)变更反感度,如果超标则拉黑用户抽简对话内容,提取人物和用户的信息成为“增长的记忆体”按照时间推进人物剧本有概率主动聊天(与亲密度正相关,跳过夜间时间)[heading1]复杂的东西:中期记忆中的增长记忆体

AI-Agent系列(一):智能体起源探究

核心思想:心灵社会理论认为,智能是由许多简单的Agent(分等级、分功能的计算单元)共同工作和相互作用的结果。这些Agent在不同层次上执行不同的功能,通过协作实现复杂的智能行为。多重层次:心灵社会将智能划分为多个层次,从低层次的感知和反应到高层次的规划和决策,每个层次由多个Agent负责。功能模块:每个Agent类似于功能模块,专门处理特定类型的信息或执行特定任务,如视觉处理、语言理解、运动控制等。分布式智能:智能不是集中在单一的核心处理单元,而是通过多个相互关联的Agent共同实现。这种分布式智能能够提高系统的灵活性和鲁棒性,应对复杂和多变的环境。同时,在《心灵社会》中,明斯基还详细描述了不同类型的Agent及其功能:专家Agent:拥有特定领域知识和技能的Agent,负责处理复杂的任务和解决特定问题。管理Agent:协调和控制其他Agent的活动,确保整体系统协调一致地运行。学习Agent:通过经验和交互,不断调整和优化自身行为,提高系统在不断变化环境中的适应能力。从达特茅斯会议开始讨论人工智能(Artificial Intelligence),到马文·明斯基引入“Agent”概念,到这里,“AI”和“Agent”就彻底聚齐了。往后,我们都将其称之为AI Agent。

AI-Agent系列(一):智能体起源探究

更系列文章合集请访问:[蓝衣剑客-AIGC思维火花](https://waytoagi.feishu.cn/wiki/IYtowrzONiysdTkeA5QcEraxntc)[heading2]一、前言[content]本文主要向大家讲述智能体的概念、渊源和发展历史,帮助大家对智能体这一概念奠定一个正确认知。[heading2]二、很多人其实并不知道AI Agent是什么[content]打开浏览器,搜索"什么是AI Agent",我们将会得到如下结果:图2.1.1在Bing上搜索“什么是AI Agent”行吧,我们再来问问Kimi什么是AI Agent:图2.1.2问问Kimi"什么是AI Agent?"我耗费了2分钟,却仿佛在寻找一场空欢喜。这就是所谓的AI Agent吗?......罢了,我还是自己寻找答案吧。通过必应和Kimi的搜索,我们发现网络上对AI Agent的介绍往往显得晦涩难懂,仿佛AI Agent是从石头缝儿里蹦出来的一样,神秘莫测。AI Agent的自主性、学习能力、推理能力等核心概念,以及它们如何规划和执行任务,如何理解并处理信息,这些内容似乎都笼罩在一层神秘的面纱之下。这种神秘感让我们仿佛置身于一个赛博朋克的世界,让我们不禁怀疑,是否我们已经生活在了一个充满未来科技的时代?未来是否真的已经到来?在深入探讨AI agent之前,我们首先需要对其进行定义和总结。AI Agent是一个融合了语言学、心理学、神经学、逻辑学、社会科学、计算机科学等多个学科精髓的综合实体。它不仅拥有实体形态,更蕴含着丰富的概念形态,同时它还具备了许多人类特有的属性。因为这些学科大多以人为研究对象,致力于探索人类内在的本质。

Others are asking
在开会时实现AI识别语音成文档
目前在开会时实现 AI 识别语音成文档的技术已经较为成熟。常见的实现方式有使用专门的语音识别软件或服务,例如科大讯飞、百度语音等。这些工具通常可以实时将会议中的语音转换为文字,并生成相应的文档。在使用时,需要确保有良好的录音设备以获取清晰的语音输入,同时要注意对识别结果进行适当的校对和修正,以提高文档的准确性。
2025-03-13
我正在找工作,需要写简历和准备面试,什么AI软件可以对我现在的情况起到辅助作用呢?
以下是一些可以在您找工作写简历和准备面试时提供辅助的 AI 软件: 1. 写简历方面: Kickresume 的 AI 简历写作器:使用 OpenAI 的 GPT4 语言模型自动生成简历,能为简历摘要、工作经验和教育等专业部分编写内容,并保持一致语调。 Rezi:受到超过 200 万用户信任的领先 AI 简历构建平台,使用先进的 AI 技术自动化创建可雇佣简历的每个方面,包括写作、编辑、格式化和优化。 Huntr 的 AI 简历构建器:提供免费的简历模板,以及 AI 生成的总结/技能/成就生成器和 AI 驱动的简历工作匹配。 更多 AI 简历产品,还可以查看这里:https://www.waytoagi.com/category/79 2. 面试准备方面: Applicant AI:人工智能面试系统,通过 AI 视频聊天快速筛选求职者,匹配招聘标准,自动推送合适候选人至下一阶段,减少人工干预,可安排面试流程,提高招聘效率。 用友大易 AI 面试产品:具有强大的技术底座、高度的场景贴合度、招聘全环节集成的解决方案、先进的防作弊技术以及严密的数据安全保障,能帮助企业完成面试,借助人岗匹配模型,自主完成初筛,并对符合企业要求的候选人自动发送面试邀约。 海纳 AI 面试:通过在线方式、无需人为干预完成自动面试、自动评估,精准度高达 98%,面试效率比人工方式提升 5 倍以上。同时候选人体验也得到改善、到面率比之前提升最高达 30%。 InterviewAI:在线平台,提供与面试职位相关的问题和由 AI 生成的推荐答案。候选人可以使用设备上的麦克风回答每个问题,每个问题最多回答三次。对于每个答案,候选人将收到评估、建议和得分。 需要注意的是,使用这些产品时,要考虑到数据安全性和隐私保护的问题。
2025-03-13
你帮我找找能够生成提示词的提示词,不要是那个ai会话的,是文本生成的
以下是一些关于生成文本生成提示词的相关信息: OpenAI API 可应用于多种自然语言、代码或图像生成任务,提供不同能力级别的模型,可微调自定义模型,模型通过将文本分解为标记(Token)来理解和处理文本。 设计提示词本质上是对模型进行“编程”,可通过提供指令或示例完成,适用于内容或代码生成、摘要、扩展、对话、创意写作、风格转换等任务。 在 OpenAI Playground 中,有可选的模型、提示词结构、温度等参数。提示词结构区分了 SYSTEM 和 USER 对话框,SYSTEM 可用于控制角色设定。温度控制生成文本的随机性,取值 0 到 2 之间,0 时结果确定无聊,过高则可能输出乱码。 关于生成提示词的工具,推荐顺序为 chatGPT 4.0、kimichat、智谱清言 4 等。对于文本纠错,可使用飞书文档自带纠错功能或通过 prompt 让大模型检查并改正。对于国产大模型,智谱和文心等可以文生图。
2025-03-13
AI、AIGC、大模型这三者之间有什么关系
AI(人工智能)是一种让机器展现智慧的目标。AIGC(人工智能生成内容)是利用人工智能技术生成包括文本、图像、音频和视频等内容的新型生产方式。大模型如大语言模型(LLM)是具有大量参数的“深度学习”模型。 生成式 AI 是一种让机器产生复杂有结构内容的目标。机器学习是让机器自动从资料中找公式的手段,深度学习是更厉害的类神经网络且有大量参数的手段。 AIGC 技术可用于多种应用,如自动撰写新闻文章、生成艺术画作等。ChatGPT 是 AIGC 技术在文本生成领域的一个应用实例,它是基于大型语言模型(LLM)的对话机器人,能根据用户输入生成连贯且相关的文本回复。 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它基于自注意力机制处理序列数据,不依赖循环神经网络(RNN)或卷积神经网络(CNN)。
2025-03-13
帮我编程一个AI实时翻唱的软件
目前要编程一个 AI 实时翻唱的软件是一项非常复杂的任务,涉及到多个领域的知识和技术,包括语音合成、音频处理、机器学习、深度学习等。 首先,需要收集大量的原唱音频数据用于训练模型。然后,利用深度学习算法,如循环神经网络(RNN)、长短时记忆网络(LSTM)或 Transformer 架构,来学习原唱的特征和模式。 在语音合成方面,可能会用到诸如 WaveNet、Tacotron 等技术,以生成逼真的歌声。 音频处理则用于对生成的歌声进行优化和调整,例如去除噪音、增强音质等。 然而,要实现这样一个复杂的软件,需要具备深厚的编程和算法知识,以及大量的计算资源和时间来进行模型的训练和优化。
2025-03-13
ai科技教育
以下是关于 AI 科技教育的相关内容: 北京市新英才学校的师生在 AI 教育方面进行了积极探索。跨学科项目老师带着学生用 AIGC 做学校地图桌游,英语老师借助 AIGC 备课和授课,生物和信息科技老师合作带着学生训练 AI 模型以识别植物。数字与科学中心 EdTech 跨学科小组组长魏一然深入参与其中,学校领导层重视并给予自由空间,目前处于探索初级阶段但有一定经验成果。同时,魏一然发现学生对 AIGC 的认知和理解差异较大。 教育领域迎来了 AI 技术的春风,如个性化学习平台和自动评估系统等,但教育体系与 AI 发展速度存在不匹配。传统教学方式和评估方法未及时更新,教学内容也未能反映新职业和技能需求,导致学生毕业时可能落后于行业需求,对社会经济结构和生产力构成挑战,构建能跟上技术步伐的教育系统是必须面对的课题。 人们对 AI 时代的教育怀有期待,因为长期以来的应试教育体系存在诸多弊端,如题海战术、考试制度等。以刷题为核心的应试教育体系不可动摇,导致学生创造性和创新性思维较差,对学习丧失兴趣,学习能力未明显跃升,且对于三四五六线城市的学生选择有限。
2025-03-13
OpenAl 发布 Agent 工具包
OpenAI 刚发布了全新的 Agent 工具包,这标志着 AI 智能体进入了新时代。新推出的 Responses API 及相关工具,简化了开发者构建多功能 AI Agent 的流程,实现了自动化任务处理。其中,网络搜索、文件搜索及计算机使用工具相结合,使 AI 不仅能获取实时信息,还能执行复杂操作。这不仅是对 Assistants API 的全面升级,也意味着智能体进入统一接口、标准化开发的新阶段。OpenAI 表示,2025 年将是 Agent 的元年,让 AI 超越聊天框,成为工作中的“数字助理”与“数字同事”。开发智能体不再需要拼凑繁杂代码,只需 4 行代码即可实现。
2025-03-13
agent和agi的区别
Agent 和 AGI 的区别主要体现在以下几个方面: Agent(智能体): 是执行特定任务的 AI 实体。 拥有复杂的工作流程,可以自我对话,无需人类驱动每一部分的交互。 由大型语言模型、记忆、任务规划以及工具使用等部分组成。 例如在斯坦福 25 人小镇案例中有所应用。 AGI(人工通用智能): 强调的是具备像人类一样广泛和通用的智能能力。 追求能够在各种不同的任务和领域中表现出高度智能的水平。 总的来说,Agent 更侧重于特定任务的执行和特定功能的实现,而 AGI 则是一个更宏观和全面的概念,旨在实现广泛的通用智能。
2025-03-12
agent和workflow的区别
智能体(Agent)和工作流(Workflow)的区别主要体现在以下几个方面: 1. 定义和功能: 智能体是由 LLM 动态指导自身流程和工具使用的系统,能够自主控制任务完成方式。 工作流是通过预定义代码路径来编排 LLM 和工具的系统。 2. 运行方式: 智能体可以长期独立运行,是全自动的系统,能使用各种工具完成复杂任务。 工作流中的子任务是人为编排的,属于手动编排。 3. 组成和特点: 工作流中的每个组块可以看成是一个函数,包括传统函数、调用第三方服务的函数和基于 LLM 的函数。由这三类函数组合而成的工作流被称为超函数,它不同于传统函数,形式上是用自然语言编写的程序,功能上可以模拟人的高阶思维。 智能体在架构上与工作流有所区分,其更强调自主性和动态性。 在实际应用中,工作流的灵活性和可控性能够将智能体能力的天花板往上顶一大截,例如可以在流程中加入人类 Knowhow、进行专家测试试跑、引入图的概念灵活组织节点等。评价一个 Agent 平台好不好用,可以从基座模型的 function calling 能力、workflow 的灵活性以及平台创作者的 workflow 编写水平等方面考量。
2025-03-12
agent
智能体(Agent)在人工智能和计算机科学领域是一个重要概念,指能够感知环境并采取行动以实现特定目标的实体,既可以是软件程序,也可以是硬件设备。 在 LLM 支持的自主 Agent 系统中,LLM 充当 Agents 的大脑,并具有以下关键组成部分: 1. 规划:包括子目标和分解,将大型任务分解为更小、可管理的子目标,以有效处理复杂任务。 2. 反思和完善:能够对过去的行为进行自我批评和反思,从错误中吸取教训,完善未来步骤,提高最终结果质量。 3. 记忆:包含短期记忆,用于所有的上下文学习;长期记忆,通过利用外部向量存储和快速检索,为 Agents 提供长时间保留和回忆(无限)信息的能力。 4. 工具使用:Agents 学习调用外部 API 来获取模型权重中缺失的额外信息,包括当前信息、代码执行能力、对专有信息源的访问等。 以下是一些关于智能体 Agent 的相关目录: 1. 2. 3. 4. 5. 6. 从产品角度思考 Agent 设计: 1. Agent 可以是一个历史新闻探索向导。 身份:历史新闻探索向导 性格:知识渊博、温暖亲切、富有同情心 角色:主导新闻解析和历史背景分析 为使角色更生动,可为其设计简短背景故事,如曾是一位历史学家,对重大历史事件了如指掌,充满热情,愿意分享知识。 2. 写好角色个性的方法: 角色背景和身份:编写背景故事,明确起源、经历和动机。 性格和语气:定义性格特点,如友好、幽默、严肃或神秘;确定说话方式和风格。 角色互动方式:设计对话风格,从基本问答到深入讨论。 角色技能:明确核心功能,如提供新闻解析、历史背景分析或心理分析;增加附加功能以提高吸引力和实用性。 正如《》所写:个性化定制的“虚拟伴侣”能得到用户认可,因为精准击中许多年轻人的孤独和焦虑。美国心理学家 Robert Jeffrey Sternberg 提出的“爱情三角理论”认为爱情包含“激情”“亲密”“承诺”三个要素。激情是生理上或情绪上的唤醒;亲密是一种相互依恋的感觉,通过相互联结带来的喜爱和相互沟通分享体现;承诺是决定建立长期稳定关系,融入对方生活,形成互助互惠的关系,代表着一种长相厮守的责任。
2025-03-12
agent是什么
在人工智能和计算机科学领域,“Agent(智能体)”是一个重要概念: 它是一种能够感知环境并采取行动以实现特定目标的实体,可以是软件程序或硬件设备。 从产品角度看,比如作为历史新闻探索向导,具有知识渊博、温暖亲切、富有同情心等性格特点,有明确的身份、角色和背景故事。 在 LLM 支持的自主 Agent 系统中,LLM 充当 Agents 的大脑,并包括规划(将大型任务分解为子目标、反思和完善)、记忆(短期记忆和长期记忆)、工具使用(调用外部 API 获取额外信息)等关键组成部分。 LLM Agent 是结合大型语言模型和自主智能体特性的系统,能够利用大型语言模型的自然语言处理能力进行智能决策和行动。其组成部分包括规划(负责任务分解和策略评估)、记忆(信息存储与回忆,包括短期和长期)、工具(感知环境和执行决策的辅助手段)和行动(将规划和记忆转换为具体输出)。
2025-03-12
agent是什么
在人工智能和计算机科学领域,“Agent(智能体)”是一个重要概念,指能够感知环境并采取行动以实现特定目标的实体,可以是软件程序或硬件设备。 从产品角度来看,Agent 可以有特定的身份、性格和角色。例如,它可以是一个历史新闻探索向导,具有知识渊博、温暖亲切、富有同情心的性格,主导新闻解析和历史背景分析。为使角色更生动,可设计背景故事。写好角色个性需考虑角色背景和身份、性格和语气、角色互动方式以及角色技能等方面。 在 LLM 支持的自主 Agent 系统中,LLM 充当 Agents 的大脑,并辅以规划、子目标和分解、反思和完善、记忆(包括短期记忆和长期记忆)、工具使用等关键组成部分。 LLM Agent 是结合大型语言模型(LLM)和自主智能体(Agent)特性的系统,能够利用大型语言模型的自然语言处理能力,理解用户输入,并进行智能决策和行动。其组成部分包括规划(负责将复杂任务分解成可执行的子任务,并评估执行策略)、记忆(包括短期记忆用于存储对话上下文和长期记忆存储用户特征和业务数据)、工具(如 API 调用、插件扩展等辅助感知环境和执行决策)、行动(将规划和记忆转换为具体输出,包括与外部环境的互动或工具调用)。
2025-03-12