Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

分布式预训练数据并行

Answer

分布式预训练中的数据并行是使用广泛且加速性能良好的并行方法。各个数据切片能完全解耦,只需在每个 mini-batch 结束时进行梯度的 all-reduce。数据并行分为中心化方式(如 pytorch 里的 DataParallel)和无中心化方式(如 pytorch 里的 DistributedDataParallel)。这两种方式最大的区别在于 gradient 和 reduce 计算过程。DataParallel 需在 forward 之后把所有输出 gather 到 0 号卡上,计算完 loss 之后再 scatter 到各个设备上,然后做 backward 独立计算 gradient,最后搜集 gradient 到 0 号卡,forward 和 backward 间需插入一次通信。DistributedDataParallel 则是每张卡独立做 forward 和 backward,然后对各卡的 gradient 做 all-reduce,forward 和 backward 间无需通信。此外,ZeRO 的出发点是优化数据并行中的显存占用,因为在数据并行中,每个 device 上都有完整的权重、梯度和优化器状态信息,较为冗余。

Content generated by AI large model, please carefully verify (powered by aily)

References

(7)LLM分布式训练面面观

数据并行(Data Parallel)是使用最为广泛的并行方法,加速性能非常好,原因是各个数据切片可以做到完全解耦,只需要在最后每个mini-batch结束的时候做一下梯度的all-reduce既可。数据并行可以分为中心化方式的和无中心化方式的,对应于pytorch里面的DataParallel和DistributedDataParallel这两种方式最大的区别是gradient和reduce计算过程DataParallel是要在forward之后把所有输出gather到0号卡上,计算完loss之后再scatter到各个设备上,然后做backward独立计算gradient,最后搜集gradient到0号卡。因此需要在forward和backward间插入一次通信DistributedDataParallel是每张卡独立的做forward和backward,然后对各卡的gradient做all-reduce。因此forward和backward间无需通信

(7)LLM分布式训练面面观

ZeRO的出发点是希望优化数据并行里显存占用。因为在数据并行里面,每个device上都有完整的权重信息,梯度信息和优化器状态信息,这个其实是比较冗余的。

Others are asking
分布式预训练模型并行
分布式预训练模型并行主要包括以下内容: 张量并行:当模型参数增大,除流水线并行外,还可用张量并行缓解,即以前的模型并行。以矩阵乘为例,对权重矩阵 B 有按列切分和按行切分两种方案。按列切分,A 不变,每一列独立计算后结果 concat 在一起;按行切分,A 对应列切分,两部分独立计算后结果 sum 在一起。 大模型发展历程:2017 年发布的 Attention Is All You Need 论文开启了相关研究。之后有多种预训练模型,如 2018 年 Google 提出的 BERT,创新性地双向预训练并行获取上下文语义信息和使用掩码语言建模;2018 年 OpenAI 提出的 GPT,开创仅用自回归语言建模作为预训练目标;2021 年 Meta 提出的首个开源模型 LLAMA,为构建更大规模、更通用的语言模型提供方法与工具。 分布式训练的其他方面: 分布式通信原语包括点对点通信和集合通信,集合通信包含多种方式。 3D 并行包括数据并行,各自有优势和问题。 ZeRO 针对数据并行显存占用大的问题提出优化,Alpa 借鉴 AI 编译器思路对 3D 并行建模并用自动化搜索方式得到并行策略。 如果想了解更多关于 transformer 在 NLP/多模态/AIGC 的算法知识、分布式训练知识,以及如何在 TVM 上做 PTQ 量化和部署,可以关注作者 aaronxic。
2025-03-12
分布式预训练
分布式预训练是指在训练模型时采用的一种方法。 在训练 GPT 时,模型以完全随机的权重开始,随着训练时间的推移,通过从分布中抽样并持续反馈,逐渐学会关于单词、空格和逗号等的知识,预测也越来越一致。观察训练时,可通过损失函数随时间的变化来评估。经过预训练,模型在语言建模中学会强大的通用表示,能有效对任意下游任务进行微调。 此外,还有一些关于初始化权重的灵活方法,如利用非监督式训练方式逐个训练神经层。例如,以受限玻尔兹曼机器(RBM)开始,通过对比发散进行训练,生成隐藏值并模拟训练另一个 RBM,重复此过程形成多层,如有分类需求可添加隐藏单元并微调权重,这种非监督式与监督式的组合也称为半监督式学习。 深度信念网络(DBNs)在标准化 MNIST 字符识别数据库中有出色表现,超越普通神经网络。Yoshua Bengio 等提出深层网络冗余式逐层训练,认为深度机器学习方法在复杂问题上比浅显方法更有效。关于非监督式预训练,利用自动代码取代 RBM 也是一种看法,其关键在于有足够多的显示层,能学习优良的高层数据显示,与传统手动设计特征提取步骤不同。Hinton 与 Bengio 的工作证明了深层神经网络能被训练好的假设是正确的。
2025-03-12
deepseek 分布式如何部署
DeepSeek 的分布式部署情况如下: 腾讯云(自建服务器):提供全版本,采用多机分布式部署,节点数量为 2 个,单节点配置为 HCCPNV6 机型,可在线体验(需开通 T1 平台服务)。 腾讯云(调用 API):提供 DeepSeekR1 和 DeepSeekV3 版本,API 调用 DeepSeek 系列模型限时免费。即日至北京时间 2025 年 2 月 25 日 23:59:59,所有腾讯云用户均可享受 DeepSeekV3、DeepSeekR1 模型限时免费服务,单账号限制接口并发上限为 5。在此之后,模型价格将恢复至原价。 京东云:提供“deepseekr1:1.5b”、“deepseekr1:7b”、“deepseekr1:32b”版本,价格为 1.89 元/小时起,采用服务器部署的方式。 Gitee AI:提供全版本,R1 价格 0.1 元/次,基于沐曦曦云 GPU 及曦源一号国产替代算力集群,有在线体验。 此外,还可以通过以下步骤实现 DeepSeek 联网版的部署: 1. 拥有扣子专业版账号,如果是普通账号,请自行升级或注册专业号后使用。 2. 开通 DeepSeek R1 大模型,访问地址:https://console.volcengine.com/cozepro/overview?scenario=coze 。打开火山方舟,找到开通管理,找到 DeepSeek R1 模型,点击开通服务。添加在线推理模型,添加后在扣子开发平台才能使用。 3. 创建智能体,点击创建,先完成一个智能体的创建。
2025-02-20
deepseek 分布式部署
以下是关于 DeepSeek 分布式部署的相关信息: 云计算厂商提供的 DeepSeek 版本及特点: 腾讯云(自建服务器):全版本,多机分布式部署,节点数量 2 个,单节点配置为 HCCPNV6 机型,可在线体验(需开通 T1 平台服务)。 腾讯云(调用 API):DeepSeekR1、DeepSeekV3,API 调用 DeepSeek 系列模型限时免费,即日起至 2025 年 2 月 25 日 23:59:59,所有腾讯云用户均可享受限时免费服务,单账号限制接口并发上限为 5,之后模型价格将恢复原价。 京东云:“deepseekr1:1.5b、“deepseekr1:7b”、“deepseekr1:32b”,价格 1.89/小时起,服务器部署方式。 gitee ai:全版本,R1 价格 0.1 元/次,基于沐曦曦云 GPU 及曦源一号国产替代算力集群,有在线体验。 价格方面: 腾讯云(调用 API):即日起至 20250208 24:00 享受折扣价,20250209 00:00 恢复原价。输入:¥2¥1/M Tokens,输出:¥8¥2/M Tokens。当前有优惠活动,包括邀请好友赚 2000 万 Tokens,注册即送 2000 万 Tokens。 阿里云(人工智能平台 PAI):以 R1 为例,所需计算资源价格 316.25/小时,模型部署成在线服务,在人工智能平台 PAI 下的模型部署下的模型在线服务 EAS。 阿里云(阿里云百炼):全版本,免费额度:10000000/10000000,通过 API 调用。 华为昇腾社区:全版本,部署 DeepSeekR1 模型用 BF16 权重进行推理至少需要 4 台 Atlas 800I A2(864G)服务器,用 W8A8 量化权重进行推理则至少需要 2 台 Atlas 800I A2,服务器调用 Docker 下载部署权重资源,非 API 调用模式。
2025-02-20
AI大模型训练是什么意思
AI 大模型训练是一个复杂的过程,主要包括以下方面: 1. 数据转换:当请求输入到模型时,会从自然语言形式转化为机器可理解的格式,通常是向量。 2. 数学计算确定参数:类似于通过已知的几组(x,y)值计算方程式 y=f(x)=ax+b 中的参数 a 和 b,大语言模型通过计算确定可能多达 1750 亿个的参数。 3. 一般训练步骤: 无监督学习:分析大量文本数据,学习语言基本结构和常识,具备文本补齐能力,将人类知识向量化以获得基础语言模型。 清洗出好的数据。 指令微调:训练模型理解并执行具体指令,如翻译文本,以回答问题,此阶段数据输入量相对减少。 对齐过程:引入人类评价标准和处理特定格式要求,优化模型输出以符合人类期望,包括处理文化、道德等细节。 4. 生成式预训练:是机器学习领域由来已久的概念,如 GPT 模型基于 Transformer 模型,在大型未标记文本数据集上进行预训练,并能生成类似人类自然语言的文本。 5. 大模型特点: 强大在于庞大的参数数量,这些参数在学习过程中不断调整,帮助模型深入理解和生成数据。 训练依赖大量数据,包括文本、图像、音频等,通过对数据的学习掌握丰富知识和技能。 总之,大模型训练是一个涉及多步骤、大量数据和复杂计算的过程,旨在使模型具备强大的语言处理和生成能力。
2025-03-11
文档转训练集
将文档转训练集通常可以按照以下步骤进行: 1. 手动收集数据集:公司通常会雇用人员,为其提供标签说明,要求人们提出问题并写下答案。 2. 注重质量:预训练阶段的文本可能来自互联网,数量大但质量较低。在第二阶段,应更看重质量而非数量,例如采用 100,000 个高质量的对话文档。 3. 形成 SOP:初期可以先手动形成标准操作流程(SOP),然后逐步实现自动化,此过程初期可能需要大量人力。
2025-03-10
如何训练自己的模型
训练自己的模型可以参考以下步骤: 1. 选择合适的底模,如 Baichuan27BChat 模型,配置模型本地路径和提示模板。 在 Train 页面里选择 sft 训练方式,加载定义好的数据集,如 wechat 和 self_cognition。 注意学习率和训练轮次的设置,要根据数据集大小和收敛情况来调整。 使用 FlashAttention2 可减少显存需求,加速训练速度。 显存小的情况下,可以减少 batch size 并开启量化训练,内置的 QLora 训练方式很实用。 需要用到 xformers 的依赖。 显存占用约 20G,训练时间根据聊天记录规模大小而定,少则几小时,多则几天。 2. 对于 AI 绘画模型的训练,如 Stable Diffusion: 设置 sample_sampler,可选择多种 sampler,默认是“ddim”。 设置 save_model_as,可选择多种格式,目前 SD WebUI 兼容"ckpt"和"safetensors"格式模型。 完成训练参数配置后,运行训练脚本进行全参微调训练。 选择合适的底模型,如 WeThinkIn_SD_二次元模型。 利用 accelerate 库封装训练脚本,可根据需求切换训练环境参数。 3. 创建图像描述模型: 模型由编码器和解码器组成,编码器将输入图像转换为特征向量,解码器根据特征生成描述文本,二者组合形成完整模型。 自定义损失函数,如使用稀疏分类交叉熵并屏蔽填充部分。 编译模型后开始训练,可使用单个 GPU 训练,每个 epoch 约 15 至 20 分钟,可根据需求增加训练次数。 训练完成后进行推理与生成字幕,重构解码器结构,编写自定义推理循环以生成完整句子。
2025-03-10
如何去训练ai,让ai可以更精准的回答问题分析趋势
要训练 AI 使其更精准地回答问题和分析趋势,可以从以下几个方面入手: 检索原理: 1. 信息筛选与确认:系统会对检索器提供的信息进行评估,筛选出最相关和最可信的内容,同时验证信息的来源、时效性和相关性。 2. 消除冗余:识别并去除多个文档或数据源中的重复信息,避免在生成回答时出现重复或矛盾的内容。 3. 关系映射:分析不同信息片段之间的逻辑和事实关系,如因果、对比、顺序等,构建结构化的知识框架,使信息在语义上更连贯。 4. 上下文构建:将筛选和结构化的信息组织成连贯的上下文环境,包括对信息进行排序、归类和整合,形成统一的叙述或解答框架。 5. 语义融合:在必要时合并意义相近但表达不同的信息片段,减少语义重复并增强信息表达力。 6. 预备生成阶段:将整合好的上下文信息编码成适合生成器处理的格式,如转化为适合输入到生成模型的向量形式。 大模型生成回答: 最终全新的上下文被传递给大语言模型,大语言模型根据提供的信息回答问题。因为这个上下文包括了检索到的信息,所以相当于同时拿到了问题和参考答案,通过大语言模型的全文理解,生成准确和连贯的答案。 批判性思维与复杂问题解决: 批判性思维指分析、评估、推理并做出明智判断的能力,在 AI 时代尤为关键。培养批判性思维需要养成质疑习惯,通过辩论、逻辑训练、阅读反面意见等方式锻炼,注重逻辑推理和定量分析能力的培养。复杂问题解决与批判性思维密切相关,指在不确定情境下分析问题、设计解决方案的能力,往往需要综合运用多种思维技能,通过参与实际复杂项目、案例研究来提高经验,可利用 AI 作为资料提供者或头脑风暴助手,但关键在于人类自己的分析和决策过程。 纯强化学习: DeepSeek R1 引入纯强化学习,不依赖大量人类标注数据,而是让 AI 通过自我探索和试错来学习。在“冷启动”阶段,通过少量人工精选的思维链数据进行初步引导,建立符合人类阅读习惯的推理表达范式,随后主要依靠强化学习,在奖励系统的反馈下(包括准确率奖励和格式奖励),自主探索推理策略,不断提升回答的准确性,实现自我进化。纯强化学习有可能解锁新的人工智能水平,DeepSeek R1 更注重学习推理的底层策略,培养通用推理能力,实现跨领域的知识迁移运用和推理解答。
2025-03-07
怎么基于飞书表格数据分析
基于飞书表格进行数据分析可以参考以下步骤: 1. 应用的背景说明 解决的问题:使用 Coze、飞书多维表格、自定义 AI 字段捷径来实现数据的高效抓取与批量 AI 化处理。 技术场景:包括 Coze 定义智能体并发布到飞书多维表格字段捷径,多维表格中使用和配置自定义的 AI 字段捷径,Coze 应用采用交互式界面将数据导入到飞书多维表格并驱动其自动运行,以及多维表格仪表盘对数据的可视化。 期望达到的目的:更多是希望大家能了解“如何最高效率使用 AI”,并将方案泛化到自己的实际工作中,同时选择了最适合的技术路线(不懂代码即可完成)。 2. 动手实践 设计多维表格:进到飞书,新建一个多维表格,配置字段,新建一列,选择编辑列,完成相关设置。配置完后,打开自动更新,若 note_url 有赋值,模型分析会自动触发。 配置其它列:例如在第一列中设置提取标题,同理可新建列提取正文、点赞、转发、评论列表等数据,进行更多自动化处理,包括笔记内容分析、仿写、改写,封面分析、标题拆解、图文复刻、视频提取分析(逐帧解析)分析视频、音频和字幕等数据分析,基于评论列表的舆情分析、情绪分析、线索挖掘、需求挖掘等。 更多资源:关于多维表格相关教程,推荐复习。 3. 创建知识库并上传表格数据 上传方式:本地文档 操作步骤: 在表格格式页签下,选择本地文档,然后单击下一步。 将要上传的文档拖拽到上传区,或单击上传区域选择要上传的文档,然后单击下一步。目前支持上传.csv 和.xlsx 格式的文件内容,且表格内需要有列名和对应的数据。每个文件不得大于 20M。一次最多可上传 10 个文件。 配置数据表信息后,单击下一步。包括指定数据范围(通过选择数据表、表头、数据起始行指定数据范围)、确认表结构(系统已默认获取了表头的列名,可自定义修改列名,或删除某一列名)、指定语义匹配字段(选择哪个字段作为搜索匹配的语义字段。在响应用户查询时,会将用户查询内容与该字段内容的内容进行比较,根据相似度进行匹配)。 查看表结构和数据,确认无误后单击下一步。 完成上传后,单击确定。
2025-03-12
AI赋能办公,包含AI+对话、AI+写作与PPT、图片与视频生成和数据分析,还有面向HR、行政、财务、营销等岗位的AI赋能课
以下是关于 AI 赋能办公的相关内容: GPT 使用场景: 1. 内容生成:可以生成文章、故事、诗歌、歌词等内容。 演示:https://chat.openai.com/ 、https://bard.google.com/extensions 、https://claude.ai/ 2. 聊天机器人:作为聊天机器人后端,提供自然对话体验。 演示: 3. 问答系统:为用户提供准确答案。 4. 文本摘要:生成文本的摘要或概述。 5. 机器翻译:虽非专门设计,但有不错表现。 6. 群聊总结: 7. 代码生成:GPT3 及后续版本可生成代码片段,帮助解决编程问题。 8. 教育:用于教育领域,帮助学生解答问题或提供学习材料。 9. 浏览器插件:webpilot 10. PDF 对话:演示 www.chatpdf.com PPT 相关: 1. 2. AiPPT.cn:爱设计&AiPPT.cn 是一家 AIGC 数字科技企业,致力于打造“下一代个人与组织的 Ai 工作站”。旗下产品包括 AiPPT 等超过 10 余款应用 AI 能力的内容创作工具。23 年在 Ai+办公领域推出 AiPPT.cn/AiPPT.com,帮助用户“一分钟一键生成 PPT”,是国内 AiPPT 赛道创业公司第 1 的产品,全球第 4,国内所有 AIGC 产品 PC 端 Top10。目标市场主要是市场、运营、销售、人力、财务、行政、技术、产品、总助、公务员、学生、老师等基层及中高层管理岗位人员。 3. 在众多的 PPT 工具中,AI 带来便捷高效体验。深入了解了五大 AI PPT 工具:MindShow、爱设计、闪击、Process ON、WPS AI,它们各自有鲜明特色和擅长场景。选择合适工具要根据实际需求调整,试用和体验比盲目跟风更明智。 其他: 1. 音视频提取总结:https://bibigpt.co/r/AJ 2. 播客总结:https://podwise.xyz/dashboard/trending 3. 生成脑图:https://xmind.ai/editor/
2025-03-12
数据分析师常用的prompt
以下是数据分析师常用的 prompt 相关内容: 1. ChatGPT 助力数据分析: 第一个 user prompt:限定 SELECT SQL,不要用 SELECT查询全部列,仅回复一条 SELECT SQL 语句,至少查询两列(数据项、数据值),不能直接查询长类型字段(如 mediumtext/longtext),可用 count/substring 等函数查询。 system prompt 是表结构信息,如有难以理解的字段可告知 GPT 字段意义,多个表可分开描述。 需校验 GPT 生成的 SQL,不通过直接返回提示“抱歉,不支持此类请求”,通过再执行 SQL 查询数据。 数据分析的 user prompt:提示数据分析,限定返回的 JSON 格式(conclusion、keyMap、title),keyMap 用于数据 key 的映射,获取结果数据对应的维度、数据项、数据值的 key 值,用于映射数据渲染图表,根据结果数据 tableData 的维度选择对应的 prompt 传递给 GPT。 结果数据 tableData 跟随接口返回到前端,已通过 SQL 查询的数据,不能让 GPT 再次生成,否则耗时。 2. 数据:数据分析 prompt:https://notion.castordoc.com/gptprompts,castordoc 整理的适合数据团队日常使用的 prompt 案例。 3. 潘帅:手把手分享法律人如何用好 AI—Prompt 篇: 律师常用 Prompt 场景: 案例检索:最好使用法律行业垂类的 AI 产品,通用型 AI 存在问题。 Prompt 指令词示例: 请搜索近五年内关于商标侵权案件中“混淆可能性”标准的具体判例,并提供相似度最高的三个案例的关键要点摘要。 检索近三年内所有涉及软件算法专利侵权的案例,分析法院判决中关于技术特征对比和侵权判定的标准,为即将面临的专利侵权案件提供参考。 比对不同地区法院在处理劳动争议案件时对加班费计算标准的差异判决,总结对雇主有利的判决趋势,为客户提供合规操作指导。 研究环境法相关案例,特别是涉及工业废弃物处理的法律责任,为客户提供合规处理建议,以降低潜在的法律风险。 Promopt 结构提示:【案例领域或类型+明确需要查找的重点内容+查找案例的目的+其他希望 AI 做的事情】 类案检索:最好使用法律行业垂类的 AI 产品,通用型 AI 存在问题。
2025-03-11
根据论文题目:"基于机器学习的中国股市波动率预测与美股市场对比分析",列出详细框架列出框架,每条框架要明确具体方向内容及数据图表要求
以下是为您提供的关于“基于机器学习的中国股市波动率预测与美股市场对比分析”的论文框架: 一、引言 1. 研究背景和意义 阐述机器学习在金融领域的应用现状 强调股市波动率预测的重要性 说明中、美股市对比的价值 2. 研究目的和问题 明确预测股市波动率的具体目标 提出中、美股市对比的关键问题 3. 研究方法和数据来源 介绍所采用的机器学习算法 说明中国股市和美股市场的数据获取途径 二、相关理论与文献综述 1. 机器学习在股市预测中的应用 列举常见的机器学习模型及其在股市预测中的效果 分析其优缺点 2. 股市波动率的理论和测量方法 解释波动率的概念和计算方法 介绍常用的波动率模型 3. 中、美股市的特点和差异 对比两国股市的交易制度、投资者结构等方面 总结已有研究中关于中、美股市波动率的差异 三、数据预处理与特征工程 1. 数据收集与清洗 详细描述中国股市和美股市场的数据收集范围和时间跨度 处理缺失值、异常值等数据问题 2. 特征选择与构建 确定影响股市波动率的关键特征 构建新的特征变量 3. 数据标准化与归一化 说明对数据进行标准化和归一化的方法和目的 四、模型构建与训练 1. 选择合适的机器学习模型 比较不同模型(如随机森林、支持向量机、神经网络等)的适用性 确定最终选用的模型 2. 模型训练与优化 描述训练过程中的参数调整和优化方法 展示模型的性能评估指标 3. 模型验证与比较 使用交叉验证等方法验证模型的准确性 对比不同模型的预测效果 五、中国股市波动率预测结果与分析 1. 预测结果展示 以图表形式呈现中国股市波动率的预测值 与实际波动率进行对比 2. 结果分析与讨论 分析预测结果的准确性和可靠性 探讨影响预测效果的因素 3. 敏感性分析 研究模型参数和输入特征对预测结果的敏感性 六、美股市场波动率预测结果与分析 1. 预测结果展示 以图表形式呈现美股市场波动率的预测值 与实际波动率进行对比 2. 结果分析与讨论 分析美股市场预测结果的特点和差异 对比中、美股市预测结果的异同 3. 影响因素分析 探讨美股市场特有的影响波动率的因素 七、中、美股市波动率对比分析 1. 波动率特征对比 比较中、美股市波动率的均值、方差、峰度等统计特征 分析波动率的周期性和趋势性 2. 影响因素对比 对比两国股市中影响波动率的宏观经济因素、政策因素等 讨论投资者行为对波动率的影响差异 3. 风险评估与管理对比 评估中、美股市的风险水平 对比风险管理制度和策略 八、结论与展望 1. 研究结论总结 概括中、美股市波动率预测的主要成果 总结对比分析的关键发现 2. 研究的局限性 指出研究过程中存在的不足之处 3. 未来研究方向 提出进一步改进模型和拓展研究的方向 对中、美股市波动率研究的展望 数据图表要求: 1. 中、美股市历史波动率的折线图 2. 不同机器学习模型预测效果的对比柱状图 3. 中、美股市波动率特征的统计表格 4. 影响中、美股市波动率的因素的相关性矩阵图 5. 中、美股市风险评估的雷达图
2025-03-11
在本地环境下要搭建一个医疗数据分析的BI智能体,应该怎么做
抱歉,您提供的内容中没有关于在本地环境下搭建医疗数据分析的 BI 智能体的相关有效信息。一般来说,要在本地环境搭建这样的智能体,您可以考虑以下步骤: 1. 明确需求和目标:确定您希望通过智能体实现的具体医疗数据分析功能和目标。 2. 选择合适的技术和工具:例如,选择适合数据分析的编程语言(如 Python)、数据库管理系统(如 MySQL、SQL Server 等)、数据分析库(如 Pandas、NumPy 等)。 3. 数据收集和预处理:获取相关的医疗数据,并进行数据清洗、转换和归一化等预处理操作,以确保数据的质量和可用性。 4. 模型选择和训练:根据需求选择合适的机器学习或深度学习模型,如分类模型、回归模型等,并使用预处理后的数据进行训练。 5. 智能体的开发和集成:使用所选的技术和工具,开发智能体的逻辑和功能,并将其与数据处理和模型预测部分进行集成。 6. 测试和优化:对搭建好的智能体进行测试,根据测试结果对其进行优化和改进。 7. 部署和维护:将智能体部署到本地环境中,并定期进行维护和更新,以适应新的数据和需求变化。
2025-03-11
有没有可以在网上查找小米销量数据并制作图表的ai工具?
以下是一些可以在网上查找小米销量数据并制作图表的 AI 工具: 1. Creately:这是一个在线绘图和协作平台,利用 AI 功能简化图表创建过程,适合绘制流程图、组织图、思维导图等。它具有智能绘图功能,可以自动连接和排列图形,还有丰富的模板库和预定义形状,支持实时协作,官网:https://creately.com/ 2. Whimsical:这是一个专注于用户体验和快速绘图的工具,适合创建线框图、流程图、思维导图等。它具有直观的用户界面,易于上手,支持拖放操作,快速绘制和修改图表,提供多种协作功能,适合团队工作,官网:https://whimsical.com/ 3. Miro:这是一个在线白板平台,结合 AI 功能,适用于团队协作和各种示意图绘制,如思维导图、用户流程图等。它支持无缝协作,支持远程团队实时编辑,有丰富的图表模板和工具,还支持与其他项目管理工具(如 Jira、Trello)集成,官网:https://miro.com/ 使用这些 AI 工具绘制图表的一般步骤如下: 1. 选择工具:根据您的具体需求选择合适的 AI 绘图工具。 2. 创建账户:注册并登录该平台。 3. 选择模板:利用平台提供的模板库,选择一个适合您需求的模板。 4. 添加内容:根据您的需求,添加并编辑图形和文字。利用 AI 自动布局功能优化图表布局。 5. 协作和分享:如果需要团队协作,可以邀请团队成员一起编辑。完成后导出并分享图表。
2025-03-10