Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如何训练自己的模型

Answer

训练自己的模型可以参考以下步骤:

  1. 选择合适的底模,如 Baichuan2-7B-Chat 模型,配置模型本地路径和提示模板。
    • 在 Train 页面里选择 sft 训练方式,加载定义好的数据集,如 wechat 和 self_cognition。
    • 注意学习率和训练轮次的设置,要根据数据集大小和收敛情况来调整。
    • 使用 FlashAttention-2 可减少显存需求,加速训练速度。
    • 显存小的情况下,可以减少 batch size 并开启量化训练,内置的 QLora 训练方式很实用。
    • 需要用到 xformers 的依赖。
    • 显存占用约 20G,训练时间根据聊天记录规模大小而定,少则几小时,多则几天。
  2. 对于 AI 绘画模型的训练,如 Stable Diffusion:
    • 设置 sample_sampler,可选择多种 sampler,默认是“ddim”。
    • 设置 save_model_as,可选择多种格式,目前 SD WebUI 兼容"ckpt"和"safetensors"格式模型。
    • 完成训练参数配置后,运行训练脚本进行全参微调训练。
    • 选择合适的底模型,如 WeThinkIn_SD_二次元模型。
    • 利用 accelerate 库封装训练脚本,可根据需求切换训练环境参数。
  3. 创建图像描述模型:
    • 模型由编码器和解码器组成,编码器将输入图像转换为特征向量,解码器根据特征生成描述文本,二者组合形成完整模型。
    • 自定义损失函数,如使用稀疏分类交叉熵并屏蔽填充部分。
    • 编译模型后开始训练,可使用单个 GPU 训练,每个 epoch 约 15 至 20 分钟,可根据需求增加训练次数。
    • 训练完成后进行推理与生成字幕,重构解码器结构,编写自定义推理循环以生成完整句子。
Content generated by AI large model, please carefully verify (powered by aily)

References

创作:基于百川大模型向微信群大佬们虚心学习

选择Baichuan2-7B-Chat模型作为底模,配置模型本地路径,配置提示模板Train页面里,选择sft训练方式,加载定义好的数据集wechat和self_cognition。其中学习率和训练轮次非常重要,根据自己的数据集大小和收敛情况来设置,使用FlashAttention-2则可以减少显存需求,加速训练速度;显存小的朋友可以减少batch size和开启量化训练,内置的QLora训练方式非常好用。需要用到xformers的依赖具体命令参数如下:显存占用20G左右,耐心等待一段时间,请神模式开启...根据聊天记录规模大小,少则要几小时,多则几天,一个虚拟助手就能训练完成了。专不专业还有待大量标准问答验证,只是口气和习惯的模仿是有点意思的,若再加上[《克隆自己的声音——赛博分身必备技能》](http://mp.weixin.qq.com/s?__biz=MzI0MzA4NDkwMw==&mid=2247492147&idx=1&sn=efacb40a6c5610b6ed7368ba1d043f13&chksm=e970d93bde07502df2ff09ae3e700923ae285c21c7151282870d9e1db309da07ee5a49f609ed&scene=21#wechat_redirect)的效果,那几乎就传神了。不过这里还有很多细节工作需要完善:

教程:深入浅出完整解析Stable Diffusion(SD)核心基础知识 - 知乎

sample_sampler:设置训练中测试模型效果时使用的sampler,可以选择["ddim","pndm","lms","euler","euler_a","heun","dpm_2","dpm_2_a","dpmsolver","dpmsolver++","dpmsingle","k_lms","k_euler","k_euler_a","k_dpm_2","k_dpm_2_a"],默认是“ddim”。save_model_as:每次模型权重保存时的格式,可以选择["ckpt","safetensors","diffusers","diffusers_safetensors"],目前SD WebUI兼容"ckpt"和"safetensors"格式模型。(3)SD关键参数详解(4)SD模型训练完成训练参数配置后,我们就可以运行训练脚本进行SD模型的全参微调训练了。我们本次训练用的底模型选择了WeThinkIn_SD_二次元模型,大家可以关注Rocky的公众号WeThinkIn,后台回复“SD_二次元模型”获取模型资源链接。我们打开SD_finetune.sh脚本,可以看到以下的代码:我们把训练脚本封装在accelerate库里,这样就能启动我们一开始配置的训练环境了。在本文的6.2节中,我们已经详细介绍了如何配置accelerate训练环境,如果我们想要切换不同的训练环境参数,我们只需要将accelerate_config.yaml改成我们所需要的配置文件与路径即可(比如:/本地路径/new_accelrate_config.yaml)。

8. 创建图像描述模型

在这一部分,我们将详细讨论如何实现我们的图像字幕生成模型。这个模型主要由两部分组成:编码器和解码器。[heading3]编码器[content]编码器的作用是将输入图像转换为一组特征向量,这些特征向量包含了图像的重要信息。在我们的模型中,编码器是一个预训练的卷积神经网络(CNN)。[heading3]解码器[content]解码器部分的任务是根据编码器提供的图像特征生成描述图像内容的文本。这部分模型的结构稍微复杂一些,因为它涉及到序列生成,并且在这个过程中使用了注意力机制。[heading3]组合模型[content]现在我们有了单独的编码器和解码器,我们需要将它们组合在一起,形成一个完整的图像字幕生成模型。[heading2]自定义损失函数[content]由于我们的任务是生成文本序列,并且这些序列可能具有不同的长度,我们需要特殊处理损失函数。我们使用稀疏分类交叉熵作为损失函数,但是需要屏蔽填充的部分。[heading2]编译模型[content]最后,我们需要编译我们的模型,这样我们就可以开始训练它了。[heading2]训练模型[content]一旦我们的模型被编译,我们就可以开始训练它了。在本教程中,我使用了一个单一的GPU来进行训练。每个epoch大约需要15至20分钟的时间。当然,你可以根据自己的需求进行更多的训练,这可能会得到更好的结果。[heading2]推理与生成字幕[content]训练完成后,我们可以使用我们的模型为新的图像生成字幕。在这一步,我们需要稍微修改解码器的结构,以便我们可以手动控制GRU的状态。[heading3]重构解码器[content]在推理阶段,我们需要更细粒度地控制解码器的行为。因此,我们重构解码器模型,使其可以接收额外的GRU状态输入,并返回新的GRU状态。[heading3]自定义推理循环[content]为了生成字幕,我们编写一个自定义推理循环,它会一次产生一个单词,直到生成一个完整的句子。

Others are asking
大模型和HR和招聘日常工作有哪些结合点?
大模型与 HR 和招聘日常工作的结合点主要体现在以下几个方面: 1. 面试环节:面试不仅仅是单点功能,面试后的结果如何发送到公司 HR 系统,以及如何通知 HR 人员的录用或不录用情况,需要一套工作流系统将大模型 Agent 框架的能力与企业原有的业务系统紧密连接。 2. 不同场景的应用:企业在不同的 HR 场景,如面试、员工评估等,可能会有专门的大模型。例如面试有面试大模型,员工评估也有相应的大模型。 3. 新员工招聘:将招聘流程分解得足够细,如搜集简历、编写职位描述、制定招聘计划、确定招聘需求、筛选简历、安排面试、数字人自动面试、结果评估和发录取通知书等。然后结合大模型目前成熟的能力进行筛选,同时考虑场景的容错度和数据准备度。
2025-03-10
最近一个月有哪些令人惊艳的开源大模型
以下是最近一个月令人惊艳的开源大模型: 1. 三月初,Meta 的 LLaMA 泄露给公众,随后社区出现一系列创新,包括指令调整、量化、质量改进、人类评估、多模态、RLHF 等变体,解决了扩展问题,降低了培训和实验的准入门槛。 2. 1 月 20 日,DeepSeek 宣布开源 R1 模型,将大模型行业推进到推理时代,引发了深刻影响。 3. 2024 年 5 月: 谷歌在 Google Cloud Next 2024 上发布一系列生成式 AI 产品和服务。 OpenAI 发布 GPT4 Turbo 模型,并开源评估框架 simpleevals。 xAI 发布首个多模态模型 Grok1.5V 的预览版。 微软 WizardLM 团队发布 WizardLM2,后紧急撤回进行毒性测试。 Mistral AI 开源 Mistral 8x22B 模型。 Meta 发布拥有 4000 亿参数的开源大模型 Llama 3。
2025-03-10
有关国产大模型介绍及对比
以下是关于国产大模型的介绍及对比: 过去一年,国内大模型取得了显著进步。综合能力超过 GPT 3.5 和 GeminiPro 的国产模型有 11 个,如百度的文心一言 4.0、阿里云的通义千问 2.0 和 Qwen 72BChat、OPPO 的 AndesGPT、清华&智谱 AI 的智谱清言、字节跳动的云雀大模型等。在 SuperCLUE 测评中,国外模型平均成绩为 69.42 分,国内模型平均成绩为 65.95 分,差距约 4 分,且国内外平均水平差距在缩小。 国内开源模型在中文上表现优于国外开源模型,如百川智能的 Baichuan213BChat、阿里云的 Qwen72B、Yi34BChat 均优于 Llama213BChat。国内大模型竞争格局方面,从国内 TOP19 大模型的数量来看,创业公司和大厂的占比几乎持平。 此外,还有针对国产大模型的测评机制,包括以同组提示词下 ChatGPT 4.0 生成的内容做对标参照,对复杂提示词理解和执行、推理能力、文本生成能力、提示词设计能力、长文本归纳总结能力等方面进行多轮测评。 国外的代表性大模型如 GPT4 的不同版本、Claude2、Llama2 有较好的稳定性表现。国内开源模型总体表现较好,成绩最好的开源模型在中文某些场景或任务上接近 GPT 4,大版本的模型通常优于中小版本,众多创业公司是开源模型的主力。
2025-03-10
LLM大模型与运维
以下是关于 LLM 大模型与运维的相关内容: 部署方面: 本地部署包括三大部分:本地部署大语言模型、本地部署 FastGPT+OneAPI、本地部署 HOOK 项目或 COW。 下载并安装 Ollama:根据电脑系统,从 https://ollama.com/download 下载,双击打开点击“Install”,安装完成后将下方地址复制进浏览器中确认:http://127.0.0.1:11434/ 。 下载 qwen2:0.5b 模型:Windows 电脑点击 win+R 输入 cmd 回车,Mac 电脑按下 Command(⌘)+Space 键打开 Spotlight 搜索输入“Terminal”或“终端”,然后复制命令行粘贴回车等待自动下载完成。 训练方面: 模型训练比推理复杂得多,是一个计算量极大的过程。获取参数面临计算复杂性问题。例如训练 Llama2 70B 这样的开源模型,需要约 10TB 的文本,通常来源于互联网的抓取,大约 6000 个 GPU,运行约 12 天,费用约 200 万美元,得到的参数文件约 140GB,压缩比约 100 倍,且是有损压缩。 整体架构方面: 基础层:为大模型提供硬件支撑,数据支持,如 A100、数据服务器等。 数据层:包括静态的知识库和动态的三方数据集。 模型层:有 LLm(如 GPT,一般使用 transformer 算法)或多模态模型(如文生图、图生图等,训练数据为图文或声音等多模态数据集)。 平台层:如大模型的评测体系或 langchain 平台等,提供模型与应用间的组成部分。 表现层:即应用层,是用户实际看到的地方。
2025-03-09
lora模型
LoRA 模型相关信息如下: Fooocus 程序默认用到了 3 个 SDXL 的模型,包括一个 base、一个 Refiner 和一个 LoRA。LoRA 模型默认放在 Fooocus_win64_1110\\Fooocus\\models\\loras 。如果单独安装,需要下载三个模型: SDXL 基础模型:https://huggingface.co/stabilityai/stablediffusionxlbase1.0/resolve/main/sd_xl_base_1.0_0.9vae.safetensors refiner 模型:https://huggingface.co/stabilityai/stablediffusionxlrefiner1.0/resolve/main/sd_xl_refiner_1.0_0.9vae.safetensors LoRA 模型:https://huggingface.co/stabilityai/stablediffusionxlbase1.0/resolve/main/sd_xl_offset_examplelora_1.0.safetensors 若部署了 SD 秋叶包,也可共用模型(大模型和 LoRA),可在 Fooocus_win64_1110\\Fooocus\\modules\\path.py 中修改路径为秋叶包模型对应的路径,配置好后点击 run.bat 文件启动。 Lora 全称 LowRank Adaptation Models,中文翻译为低阶自适应模型,作用在于影响和微调画面,通过它可以再现人物或物品的特征。大模型训练复杂且对电脑配置要求高,LoRA 采用在原模型中插入新的数据处理层的方式,避免修改原有模型参数,训练轻量化,显存达到 6G 即可开启训练。 有利用新版 SDXL 生成的 lora 如针线娃娃,需要使用 SDXL1.0 的模型才可以运行,触发词是 BJ_Sewing_doll。想体验可添加公众号【白马与少年】,回复【SDXL】。
2025-03-09
最近的论文AI模型
以下是关于 AI 模型的相关知识: 1. 概念:生成式 AI 生成的内容称为 AIGC。 2. 概念与关系: AI 即人工智能。 机器学习是电脑找规律学习,包括监督学习、无监督学习、强化学习。 监督学习使用有标签的训练数据,目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习的数据没有标签,算法自主发现规律,经典任务如聚类,例如让模型将一堆新闻文章根据主题或内容特征分成相似组。 强化学习从反馈中学习,以最大化奖励或最小化损失,类似训小狗。 深度学习是一种参照人脑有神经网络和神经元(因层数多而称深度)的方法,神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 是大语言模型,对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型,可用于语义理解(不擅长文本生成),像上下文理解、情感分析、文本分类。 3. 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出 Transformer 模型,它完全基于自注意力机制(SelfAttention)处理序列数据,无需依赖循环神经网络(RNN)或卷积神经网络(CNN)。
2025-03-09
文档转训练集
将文档转训练集通常可以按照以下步骤进行: 1. 手动收集数据集:公司通常会雇用人员,为其提供标签说明,要求人们提出问题并写下答案。 2. 注重质量:预训练阶段的文本可能来自互联网,数量大但质量较低。在第二阶段,应更看重质量而非数量,例如采用 100,000 个高质量的对话文档。 3. 形成 SOP:初期可以先手动形成标准操作流程(SOP),然后逐步实现自动化,此过程初期可能需要大量人力。
2025-03-10
如何去训练ai,让ai可以更精准的回答问题分析趋势
要训练 AI 使其更精准地回答问题和分析趋势,可以从以下几个方面入手: 检索原理: 1. 信息筛选与确认:系统会对检索器提供的信息进行评估,筛选出最相关和最可信的内容,同时验证信息的来源、时效性和相关性。 2. 消除冗余:识别并去除多个文档或数据源中的重复信息,避免在生成回答时出现重复或矛盾的内容。 3. 关系映射:分析不同信息片段之间的逻辑和事实关系,如因果、对比、顺序等,构建结构化的知识框架,使信息在语义上更连贯。 4. 上下文构建:将筛选和结构化的信息组织成连贯的上下文环境,包括对信息进行排序、归类和整合,形成统一的叙述或解答框架。 5. 语义融合:在必要时合并意义相近但表达不同的信息片段,减少语义重复并增强信息表达力。 6. 预备生成阶段:将整合好的上下文信息编码成适合生成器处理的格式,如转化为适合输入到生成模型的向量形式。 大模型生成回答: 最终全新的上下文被传递给大语言模型,大语言模型根据提供的信息回答问题。因为这个上下文包括了检索到的信息,所以相当于同时拿到了问题和参考答案,通过大语言模型的全文理解,生成准确和连贯的答案。 批判性思维与复杂问题解决: 批判性思维指分析、评估、推理并做出明智判断的能力,在 AI 时代尤为关键。培养批判性思维需要养成质疑习惯,通过辩论、逻辑训练、阅读反面意见等方式锻炼,注重逻辑推理和定量分析能力的培养。复杂问题解决与批判性思维密切相关,指在不确定情境下分析问题、设计解决方案的能力,往往需要综合运用多种思维技能,通过参与实际复杂项目、案例研究来提高经验,可利用 AI 作为资料提供者或头脑风暴助手,但关键在于人类自己的分析和决策过程。 纯强化学习: DeepSeek R1 引入纯强化学习,不依赖大量人类标注数据,而是让 AI 通过自我探索和试错来学习。在“冷启动”阶段,通过少量人工精选的思维链数据进行初步引导,建立符合人类阅读习惯的推理表达范式,随后主要依靠强化学习,在奖励系统的反馈下(包括准确率奖励和格式奖励),自主探索推理策略,不断提升回答的准确性,实现自我进化。纯强化学习有可能解锁新的人工智能水平,DeepSeek R1 更注重学习推理的底层策略,培养通用推理能力,实现跨领域的知识迁移运用和推理解答。
2025-03-07
lora怎么训练
以下是关于 Lora 训练的详细步骤: 创建数据集: 1. 进入厚德云模型训练数据集(https://portal.houdeyun.cn/sd/dataset)。 2. 在数据集一栏中,点击右上角创建数据集。 3. 输入数据集名称。 4. 可以上传包含图片+标签 txt 的 zip 文件,也可以只有图片后续使用自动打标功能。建议提前把图片和标签打包成 zip 上传,Zip 文件里图片名称与标签文件应当匹配,例如:图片名“1.png”,对应的达标文件就叫“1.txt”。 5. 上传 zip 以后等待一段时间,确认创建数据集。返回到上一个页面,等待一段时间后就会上传成功,可以点击详情检查,预览到数据集的图片以及对应的标签。 Lora 训练: 1. 点击 Flux,基础模型会默认是 FLUX 1.0D 版本。 2. 选择数据集,点击右侧箭头,会跳出您所有上传过的数据集。 3. 触发词可有可无,取决于数据集是否有触发词。模型效果预览提示词则随机抽取一个数据集中的标签填入即可。 4. 训练参数这里可以调节重复次数与训练轮数,厚德云会自动计算训练步数。如果不知道如何设置,可以默认 20 重复次数和 10 轮训练轮数。 5. 可以按需求选择是否加速,点击开始训练,会显示所需要消耗的算力。 6. 然后等待训练,会显示预览时间和进度条。训练完成的会显示出每一轮的预览图。 7. 鼠标悬浮到想要的轮次模型,中间会有个生图,点击会自动跳转到使用此 lora 生图的界面。点击下方的下载按钮则会自动下载到本地。 此外,还有一些相关的补充信息: 1. 训练前要确保下载几个模型:t5xxl_fp16.safetensors、clip_l.safetensors、ae.safetensors、flux1dev.safetensors。注意:不使用的话它们放到哪里都可以,甚至放一起一个文件夹,只要知道“路径”,后面要引用到“路径”。因为是训练,不是跑图,跑图可以寻求降低方案,训练的话,用 flux1dev.safetensors 这个版本,编码器用 t5xxl_fp16.safetensors 这个版本最好。 2. 下载脚本: 夸克网盘链接:https://pan.quark.cn/s/ddf85bb2ac59 百度网盘链接:https://pan.baidu.com/s/1pBHPYpQxgTCcbsKYgBi_MQ?pwd=pfsq 提取码:pfsq 3. 安装虚拟环境:下载完解压,在文件中找到 installcnqinglong.ps1 这个文件,右键,选择“使用 PowerShell 运行”,新手的话这里就点击“Y”,然后等待 1 2 小时的漫长下载过程。下载完成后最后会提示是否下载 hunyuan 模型,选择 n 不用下载。 在使用 SD 训练一套贴纸 LoRA 模型时: 1. 原始形象:MJ 关键词:A drawing for a rabbit stickers,in the style of hallyu,screenshot,mori kei,duckcore plush doll art exaggerated poses,cry/happy/sad/...ar 3:4niji 5style cutes 180 。会得到不同风格的贴图,可以先看看自己喜欢哪一种。出图过程可以有意识地总结这一类贴图的特征,比如都是可爱的兔子、有不同的衣服和头饰、都有一双大大的卡通眼睛,会有不同的面部表情。 2. 注意事项:关键词中限制了颜色,因此 MJ 生成的图片会一种情绪对应一种颜色,所以同一种情绪最好多生成几张不同色系的,可以减少后续训练中模型把情绪和颜色做挂钩(如果需要这样的话,也可以反其道而行之)。数据集中正面情绪与负面情绪最好比例差不多,如果都是正面积极的,在出一些负面情时(sad,cry)的时候,可能会出现奇怪的问题(如我们训练的是兔子形象,但 ai 认知的 sad 可能是人的形象,可能会出现人物特征)。如果训练 256256 大小的表情包,这样的素材就已经够用了。如果要训练更高像素的图片,则需要进一步使用 MJ 垫图和高清扩展功能。比如从 256 高清化到 1024,输入左图,加入内容描述,加入风格描述,挑选合适的,选出新 30 张图片(卡通二次元类型的 lora 训练集 30 张差不多,真人 60 100 张)。
2025-03-06
小白用户,使用API结合cherry studio建立本地知识库之后,应该怎么训练使AI更聪明
以下是使用 API 结合 cherry studio 建立本地知识库后训练使 AI 更聪明的方法: 1. 在线知识库: 点击创建知识库,创建一个画小二课程的 FAQ 知识库。 知识库的飞书在线文档中,每个问题和答案以分割。 选择飞书文档,选择自定义的自定义,输入。 编辑修改和删除内容,添加 Bot 并在调试区测试效果。 2. 本地文档: 注意拆分内容,提高训练数据准确度。 对于画小二课程,将 80 节课程分为 11 个章节,不能一股脑全部放进去训练。 首先将 11 章的大章节名称内容放进来,章节内详细内容按照固定方式进行人工标注和处理。 然后选择创建知识库自定义清洗数据。 3. 发布应用: 点击发布,确保在 Bot 商店中能够搜到。 此外,在训练 AI 时,还需要注意以下几点: 提示词:告诉 AI 它的角色和要专注的技能。 知识库:相当于给 AI 发放工作手册,例如可以放入特定的剧情等内容。 希望以上内容对您有所帮助。
2025-03-06
如何使用本地数据训练AI?
使用本地数据训练 AI 可以参考以下内容: Teachable Machine: 应用场景广泛,如商品说明书、自动驾驶、教学互动等。 允许用户快速、简单地创建机器学习模型,无需专业知识或编程技能。 使用步骤: 收集数据:可上传图片、录制声音或动作视频作为训练数据。 训练模型:用收集的数据训练模型并测试其能否正确识别新的内容。 导出模型:完成训练后可下载或上传到网上用于其他项目。 特点: 提供多种创建机器学习模型的方式,灵活且用户友好。 可在本地完成训练,不通过网络发送或处理数据,保护隐私。 生成的模型是真实的 TensorFlow.js 模型,可在任何运行 JavaScript 的地方工作,还能导出到不同格式在其他地方使用。 官方网站: Stable Diffusion: 训练数据集制作: 数据清洗:筛除分辨率低、质量差、存在破损及与任务目标无关的数据,去除水印、干扰文字等。 数据标注:分为自动标注(如使用 BLIP 输出自然语言标签)和手动标注(依赖标注人员)。 补充标注特殊 tag:可手动补充特殊标注,如运行相关代码并修改参数。
2025-03-06
deepseek 私有化训练
以下是关于 DeepSeek 私有化训练的相关信息: 模型测试、问题探讨与新模型部署过程: 探讨了模型存在幻觉、答案有概率性等问题,并对比了加提示词前后的情况。 准备从 32B 蒸馏新模型,提及该模型的资源需求及阿里云拍卖机制。 介绍了启动 DSW 获取廉价 CPU 资源,以及部署模型时因库存不足不断加价的过程。 派平台大模型训练与微调实操讲解: 许键分享了抢硬件资源的方法,演示了通过提问蒸馏标注数据。 讲解了在派平台训练模型的流程,包括参数设置、数据集上传等,并展示了训练效果和日志查看。 说明了训练好的模型部署方法,强调训出满意模型需要大量基础知识学习。 模型蒸馏微调演示、平台介绍与问题解答: 许键展示了模型微调后的效果,如幻觉下降等。 介绍了阿里云解决方案,对比了百炼和派平台的差异。 进行了 Q&A,回答了无监督学习微调、训练数据资源、多模态训练标注、Python 代码报错等问题,提及派平台有公用数据集,还举例说明了多模态标注方式。 总结: 本地部署介绍:讲解了如果拥有云服务器如何进行本地部署,以及满血版本地部署的实际情况。 免费额度说明:在 freely.aliyun.com 可领取 500 元免费额度,但有使用限制,不能部署满血版和较大的增流模型。 平台服务差异:介绍了 DLC、DSW 和 EAS 等模型部署平台服务的差别。 模型蒸馏微调:会带着大家复现模型的蒸馏和微调,并讲解相关知识。 Deepseek R1 模型的制作及相关模型比较: R1 模型的强化学习:通过强化学习,在训练过程中给予模型反馈,对正确路线增强权重,使做对的概率变高,导致思考逻辑变长。 R1 模型的蒸馏与微调:用 Deepseek RE Zero 蒸馏出带思考的数据,基于 Deepseek V3 微调,进行冷启动,再做强化学习,还从非公布模型提取微调数据,加上人类偏好,最终形成 R1。 R1 与其他模型的差别:R1 是原生通过强化学习训练出的模型,蒸馏模型是基于数据微调出来的,基础模型能力强,蒸馏微调模型能力也会强。 模型的相互帮助:Deepseek R1 反过来蒸馏数据微调 V3,形成互相帮助的局面,使两个模型都更强。 智能章节: 许键介绍今日课程重点是云服务器上如何使用 Deepseek R1 及本地部署相关内容,提及派平台免费额度及适用模型。还介绍了自己和社区情况。接着讲解 Deepseek R1 制作过程,包括强化学习概念及示例,阐述其从 Deepseek r e Zero 到 M2 等模型的演变及原理。 主要介绍了 Deepseek R1 模型的构建过程,包括多轮强化学习和微调,还提及蒸馏模型的情况。探讨了不同模型部署所需的显存、内存及成本,对比了各模型在专业领域的能力表现。 介绍了以云基础设施和 GPU 算力资源为底层的派平台。该平台搭建 AI 框架并做优化,提供一键式快捷部署工具等。与百炼不同,它开放更多自由度,租户数据隔离。很多大模型在此训练,支持多机分布式部署等,既面向企业,也适合个人创业者,不同应用定价有差异。
2025-03-05