Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

文档转训练集

Answer

将文档转训练集通常可以按照以下步骤进行:

  1. 手动收集数据集:公司通常会雇用人员,为其提供标签说明,要求人们提出问题并写下答案。
  2. 注重质量:预训练阶段的文本可能来自互联网,数量大但质量较低。在第二阶段,应更看重质量而非数量,例如采用 100,000 个高质量的对话文档。
  3. 形成 SOP:初期可以先手动形成标准操作流程(SOP),然后逐步实现自动化,此过程初期可能需要大量人力。
Content generated by AI large model, please carefully verify (powered by aily)

References

文章:Andrej Karpathy 亲授:大语言模型入门

所以我们真的想要一个助理模型。而获取这些辅助模型的方式基本上是通过以下过程。我们基本上保持优化相同。所以训练是一样的。这只是下一个单词预测任务,但我们将更换正在训练的数据集。所以我们过去一直在尝试对互联网文档进行训练。我们现在将其替换为我们手动收集的数据集。我们收集它们的方式是使用很多人。因此,通常公司会雇用人员,并向他们提供标签说明,并要求人们提出问题,然后为他们写下答案。因此,这是一个基本上可以将其纳入您的训练集的单个示例的示例。有一个用户说,你能写一个关于垄断一词在经济学中的相关性的简短介绍吗?然后是助理。再次,该人填写理想的响应应该是什么,理想的响应以及它是如何指定的以及它应该是什么样子。这一切都来自我们为OpenAI或Anthropic等公司的人员和工程师提供的标签文档,或者其他任何会提供这些标签文档的公司。现在,预训练阶段涉及大量文本,但质量可能较低,因为这些文本仅来自互联网,有数百TB,而且质量并不高。但在第二阶段,我们更看重质量而不是数量。所以我们的文档可能会少很多,例如100,000,但现在所有这些文档都是对话,它们应该是非常高质量的对话,从根本上讲,人们是根据标签说明创建它们的。

智能纪要:02-26 | DeepSeek部署+蒸馏 2025年2月26日

[02:20:11](https://waytoagi.feishu.cn/minutes/obcnyb5s158h8yi8alo4ibvl?t=8411000)AI相关技术、应用及问题解答交流本章节主要围绕模型训练、知识库搭建等问题展开讨论。许键介绍了端点信息排查方法,推荐Llama factory微调框架,讲解不同数据集下载渠道。还对比了蒸馏数据与RAG的效果、Lora微调和全仓微调的区别等,解答了显卡使用、文档转数据集等问题,告知知识库链接和作业提交方式。

智能纪要:02-26 | DeepSeek部署+蒸馏 2025年2月26日

关于模型训练与平台服务的介绍模型复现与微调:1:1复现没问题,理解细节并自行制作需基础知识。提供手把手教程、数据集等可1:1复现,微调在特定领域可降低幻觉,参数量不变但权重变化。训练模型的学习方法:先会用再学会训,从训的过程中倒推学习参数调整,这是一种以用导学的学习方法。模型回答效果对比:微调后的模型在回答排列组合等问题时,思考前几乎无反馈,答案多为英文且格式稳定,但仍可能答错。平台服务介绍:阿里云提供多种解决方案,百炼是提供多种模型服务的Maas平台,派平台是提供云服务的PaaS平台,二者在定位、服务内容和核心差异上有所不同。关于模型训练与数据集相关问题的探讨数据资源情况:默认提供公共数据训练集,百派平台能匹配模型和数据,通义开源了不少数据集。多模态训练:多模态有自身标注方式,如视频拉框标注。参数量变化:通常训练模型参数量固定,若想改变需改模型层,但可能要从头调。本地微调框架:可使用llama factory等框架,需搭建并部署。开源数据下载:可在GitHub、hugging face、Mo Model Scope等平台获取。数据集转化:将文档资料转成数据集可先手动形成SOP,再逐步自动化,初期需大量人力。

Others are asking
什么ai可以实现免费的ppt文档制作
以下是一些可以实现免费 PPT 文档制作的 AI 工具: 1. 歌者 PPT(gezhe.com):这是一款永久免费的智能 PPT 生成工具。具有一键生成 PPT 内容、支持多种文件格式转 PPT、多语言支持、海量模板和案例库、在线编辑和分享以及增值服务等功能。其产品优势包括免费使用、智能易用、海量案例、资料转 PPT 专业、AI 翻译等。推荐理由为完全免费、智能化程度高、模板和案例丰富、支持多语言以及几乎无需学习成本就能上手使用。 2. Gamma:在免费版本中也能生成质量较高的 PPT,随着不断优化和改进,能满足大多数用户需求。个人使用体验良好,在内容组织、设计美观度和整体专业感方面表现出色。 3. WPS AI:可以对 PPT 大纲进行优化,大纲还可以二次修改。但可能存在未来收费的情况。
2025-03-10
有哪些是可以帮助编写并生成WORD文档的工具
以下是一些可以帮助编写并生成 WORD 文档的工具: 1. 生成 Word 的插件“create_document”,它要求输入参数为 Markdown 格式。因为 Markdown 格式标记了层级,所以生成的 Word 能够保留小标题的层级,便于在导航窗格中从大纲快速跳转,并且能够插入自动目录。而普通文本格式输入的变量,小标题没有层级,无法生成大纲目录,甚至换行也存在问题。 2. 作为资深研究者和教授,利用 GPT4 按照特定步骤进行操作,包括请求数据集和研究领域、制定研究假设、进行文献综述、假设检验、撰写论文等,最终能够以 Word 文档的形式提交。 希望这些信息对您有所帮助。
2025-03-10
有没有什么工具,能根据需求进行数据库设计文档生成的
以下是为您提供的相关信息: COZE 工作流中关于数据库节点的教程: 1. 在 SQL 输入中添加 SQL 代码,如果不会写 SQL 语言或不懂代码,可以借助 AI 帮助。例如将相关需求发送给豆包,如学习特定文档并根据具体需求撰写用于工作流的 SQL 语句。 2. 向豆包提出具体要求,如指定数据库表名称(如“user_question_answer”)和存储字段名称(“create_time”“answer”“question”),并说明数据写入的需求。 3. 豆包会回复生成的 SQL 语句(如“INSERT INTO user_question_answer”),将其复制到数据库节点里 SQL 的位置。 4. 试运行时提供输入内容并选择第一步使用的 bot,成功后发布工作流即可记录对应数据到数据库。 另外,欧盟数据法案英文版.pdf 中提到:成员国主管当局应确保对违反本法规规定义务的行为处以处罚。在这样做时,应考虑到所涉公共利益、违规行为的性质、严重程度、复发和持续时间、所开展活动的范围和种类以及违规者的经济能力。委员会应在必要时考虑特定部门的条件和自愿数据共享机制的现有做法,为企业间数据共享合同制定和推荐非强制性示范合同条款。这些示范合同条款应主要是帮助特别是小企业签订合同的实用工具。当广泛和完整地使用时,这些示范合同条款也应具有有益的效果,影响关于访问和使用数据的合同设计,从而在访问和共享数据时更广泛地导致更公平的合同关系。为消除通过联网产品和相关服务的物理组件(如传感器)获得或生成的数据库中的数据持有者声称根据第 96/9/EC 号指令第 7 条享有的特殊权利(如果此类数据库不符合特殊权利的条件)从而阻碍用户根据本法规有效行使访问和使用数据以及与第三方共享数据的权利的风险,本法规应明确该特殊权利不适用于此类数据库,因为保护要求未得到满足。
2025-03-06
请给我推荐一些AI写小说相关的文档和学习资料
以下是为您推荐的一些 AI 写小说相关的文档和学习资料: 1. 《🐋全新 AI 整活计划:DeepSeek 小说家 2025 年 2 月 9 日》 介绍了关于提示词编写及 AI 应用的探讨,包括理性决策提示词的编写方法、示例的价值、自用与他用提示词的区别、改进指令遵循、AI 应用于软件开发等方面。 还分享了关于写作方式、好文字的定义、模型特点与推荐等内容。 2. 《陈财猫:如何用 AI 写出比人更好的文字?》 提到了两个技巧,一是“显式归纳与列出你想要的文本特征”,二是“通过 prompt 中的描述与词语映射到预训练数据中的特定类型的文本,从而得到想要的相似样本”。 3. 《Stuart:教你用 coze 写起点爆款小说《夜无疆》,做到高中生文笔水平》 介绍了一个能写出至少高中水平小说的 coze 工作流,包括用 bing 搜索相关内容、将搜索结果结构化、用大模型草拟大纲、写文章等核心节点。
2025-03-05
我想要知识库里的ai系统学习文档,要怎么获取
您可以通过以下方式获取 AI 系统学习文档: 1. 观看李弘毅老师的生成式 AI 导论、吴达的生成式 AI 入门视频等,并整理成学习笔记,在整理过程中学习更多知识,还能与大家交流互动。 2. 等待社区共创内容,通过共创做小项目来反向推动学习。 3. 原子将分享 30 分钟快速体验 AI 工具并教爸妈理解相关内容。 4. 学习 A16Z 推荐的包括 GPT 相关知识、Transformer 模型运作原理,及大语言模型词语接龙原理等基础知识。 5. 查看如介绍 GPT 运作原理、Transformer 模型、扩散模型等的经典必读文章。 6. 推荐看 open AI 的官方 Cookbook,小琪姐做了中文精读翻译,也可查看 cloud 的相关内容。 7. 查看历史脉络类资料,如整理了 open AI 的发展时间线和万字长文回顾等。 相关内容的获取链接为:https://waytoagi.feishu.cn/minutes/obcn7mvb3vu6k6w6t68x14v5?t=2727000 、https://waytoagi.feishu.cn/minutes/obcn7mvb3vu6k6w6t68x14v5?t=2806000 、https://waytoagi.feishu.cn/minutes/obcn7mvb3vu6k6w6t68x14v5?t=2942000 。
2025-03-05
我想要系统学习AI,请问文档在哪里?
以下是一些可供您系统学习 AI 的资源: 1. 通往 AGI 之路知识库: 其中包含关于 AI 知识库使用及 AIPO 活动的介绍,包括使用情况、发起背景、内容安排及相关资源等。 有 AIPO 线下活动及 AI 相关探讨,涉及活动规则、玩法以及 AI 在科技发展中的地位和研究方向。 介绍了 way to AGI 社区活动与知识库,包括活动安排、材料准备、知识库使用和内容更新情况。 提供了关于 AI 知识库及学习路径的介绍。 包含 AI 相关名词解释,如 AGI、AIGC、agent、prompt 等,建议通过与 AI 对话或李继刚老师的课程来理解。 说明了知识库的信息来源,如赛博蝉星公众号、国外优质博主的 blog 或 Twitter 等,推荐订阅获取最新信息并投稿。 介绍了社区共创项目,如 AIPU、CONFIUI 生态大会,每月有切磋大会等活动,还发起了新活动 AIPO。 提供了学习路径,如李弘毅老师的生成式 AI 导论等高质量学习内容,可系统化学习或通过社区共创活动反推学习,鼓励整理学习笔记并分享交流。 有经典必读文章,如介绍 GPT 运作原理、Transformer 模型、扩散模型等的文章,还包括软件 2.0 时代相关内容。 为初学者入门推荐了 open AI 的官方 Cookbook,小琪姐做了中文精读翻译,也可查看 cloud 的相关内容。 整理了 open AI 的发展时间线和万字长文回顾等历史脉络类资料。 2. 通往 AGI 之路的相关平台: 网站: 公众号:通往 AGI 之路 B 站: 小红书: X(Twitter): 内置知识库 AI 助手 此外,还有【法律法规】《人工智能法案》2023.06.pdf_TEXTS ADOPTED 中的相关内容,但此部分主要涉及法规方面。
2025-03-05
如何训练自己的模型
训练自己的模型可以参考以下步骤: 1. 选择合适的底模,如 Baichuan27BChat 模型,配置模型本地路径和提示模板。 在 Train 页面里选择 sft 训练方式,加载定义好的数据集,如 wechat 和 self_cognition。 注意学习率和训练轮次的设置,要根据数据集大小和收敛情况来调整。 使用 FlashAttention2 可减少显存需求,加速训练速度。 显存小的情况下,可以减少 batch size 并开启量化训练,内置的 QLora 训练方式很实用。 需要用到 xformers 的依赖。 显存占用约 20G,训练时间根据聊天记录规模大小而定,少则几小时,多则几天。 2. 对于 AI 绘画模型的训练,如 Stable Diffusion: 设置 sample_sampler,可选择多种 sampler,默认是“ddim”。 设置 save_model_as,可选择多种格式,目前 SD WebUI 兼容"ckpt"和"safetensors"格式模型。 完成训练参数配置后,运行训练脚本进行全参微调训练。 选择合适的底模型,如 WeThinkIn_SD_二次元模型。 利用 accelerate 库封装训练脚本,可根据需求切换训练环境参数。 3. 创建图像描述模型: 模型由编码器和解码器组成,编码器将输入图像转换为特征向量,解码器根据特征生成描述文本,二者组合形成完整模型。 自定义损失函数,如使用稀疏分类交叉熵并屏蔽填充部分。 编译模型后开始训练,可使用单个 GPU 训练,每个 epoch 约 15 至 20 分钟,可根据需求增加训练次数。 训练完成后进行推理与生成字幕,重构解码器结构,编写自定义推理循环以生成完整句子。
2025-03-10
如何去训练ai,让ai可以更精准的回答问题分析趋势
要训练 AI 使其更精准地回答问题和分析趋势,可以从以下几个方面入手: 检索原理: 1. 信息筛选与确认:系统会对检索器提供的信息进行评估,筛选出最相关和最可信的内容,同时验证信息的来源、时效性和相关性。 2. 消除冗余:识别并去除多个文档或数据源中的重复信息,避免在生成回答时出现重复或矛盾的内容。 3. 关系映射:分析不同信息片段之间的逻辑和事实关系,如因果、对比、顺序等,构建结构化的知识框架,使信息在语义上更连贯。 4. 上下文构建:将筛选和结构化的信息组织成连贯的上下文环境,包括对信息进行排序、归类和整合,形成统一的叙述或解答框架。 5. 语义融合:在必要时合并意义相近但表达不同的信息片段,减少语义重复并增强信息表达力。 6. 预备生成阶段:将整合好的上下文信息编码成适合生成器处理的格式,如转化为适合输入到生成模型的向量形式。 大模型生成回答: 最终全新的上下文被传递给大语言模型,大语言模型根据提供的信息回答问题。因为这个上下文包括了检索到的信息,所以相当于同时拿到了问题和参考答案,通过大语言模型的全文理解,生成准确和连贯的答案。 批判性思维与复杂问题解决: 批判性思维指分析、评估、推理并做出明智判断的能力,在 AI 时代尤为关键。培养批判性思维需要养成质疑习惯,通过辩论、逻辑训练、阅读反面意见等方式锻炼,注重逻辑推理和定量分析能力的培养。复杂问题解决与批判性思维密切相关,指在不确定情境下分析问题、设计解决方案的能力,往往需要综合运用多种思维技能,通过参与实际复杂项目、案例研究来提高经验,可利用 AI 作为资料提供者或头脑风暴助手,但关键在于人类自己的分析和决策过程。 纯强化学习: DeepSeek R1 引入纯强化学习,不依赖大量人类标注数据,而是让 AI 通过自我探索和试错来学习。在“冷启动”阶段,通过少量人工精选的思维链数据进行初步引导,建立符合人类阅读习惯的推理表达范式,随后主要依靠强化学习,在奖励系统的反馈下(包括准确率奖励和格式奖励),自主探索推理策略,不断提升回答的准确性,实现自我进化。纯强化学习有可能解锁新的人工智能水平,DeepSeek R1 更注重学习推理的底层策略,培养通用推理能力,实现跨领域的知识迁移运用和推理解答。
2025-03-07
lora怎么训练
以下是关于 Lora 训练的详细步骤: 创建数据集: 1. 进入厚德云模型训练数据集(https://portal.houdeyun.cn/sd/dataset)。 2. 在数据集一栏中,点击右上角创建数据集。 3. 输入数据集名称。 4. 可以上传包含图片+标签 txt 的 zip 文件,也可以只有图片后续使用自动打标功能。建议提前把图片和标签打包成 zip 上传,Zip 文件里图片名称与标签文件应当匹配,例如:图片名“1.png”,对应的达标文件就叫“1.txt”。 5. 上传 zip 以后等待一段时间,确认创建数据集。返回到上一个页面,等待一段时间后就会上传成功,可以点击详情检查,预览到数据集的图片以及对应的标签。 Lora 训练: 1. 点击 Flux,基础模型会默认是 FLUX 1.0D 版本。 2. 选择数据集,点击右侧箭头,会跳出您所有上传过的数据集。 3. 触发词可有可无,取决于数据集是否有触发词。模型效果预览提示词则随机抽取一个数据集中的标签填入即可。 4. 训练参数这里可以调节重复次数与训练轮数,厚德云会自动计算训练步数。如果不知道如何设置,可以默认 20 重复次数和 10 轮训练轮数。 5. 可以按需求选择是否加速,点击开始训练,会显示所需要消耗的算力。 6. 然后等待训练,会显示预览时间和进度条。训练完成的会显示出每一轮的预览图。 7. 鼠标悬浮到想要的轮次模型,中间会有个生图,点击会自动跳转到使用此 lora 生图的界面。点击下方的下载按钮则会自动下载到本地。 此外,还有一些相关的补充信息: 1. 训练前要确保下载几个模型:t5xxl_fp16.safetensors、clip_l.safetensors、ae.safetensors、flux1dev.safetensors。注意:不使用的话它们放到哪里都可以,甚至放一起一个文件夹,只要知道“路径”,后面要引用到“路径”。因为是训练,不是跑图,跑图可以寻求降低方案,训练的话,用 flux1dev.safetensors 这个版本,编码器用 t5xxl_fp16.safetensors 这个版本最好。 2. 下载脚本: 夸克网盘链接:https://pan.quark.cn/s/ddf85bb2ac59 百度网盘链接:https://pan.baidu.com/s/1pBHPYpQxgTCcbsKYgBi_MQ?pwd=pfsq 提取码:pfsq 3. 安装虚拟环境:下载完解压,在文件中找到 installcnqinglong.ps1 这个文件,右键,选择“使用 PowerShell 运行”,新手的话这里就点击“Y”,然后等待 1 2 小时的漫长下载过程。下载完成后最后会提示是否下载 hunyuan 模型,选择 n 不用下载。 在使用 SD 训练一套贴纸 LoRA 模型时: 1. 原始形象:MJ 关键词:A drawing for a rabbit stickers,in the style of hallyu,screenshot,mori kei,duckcore plush doll art exaggerated poses,cry/happy/sad/...ar 3:4niji 5style cutes 180 。会得到不同风格的贴图,可以先看看自己喜欢哪一种。出图过程可以有意识地总结这一类贴图的特征,比如都是可爱的兔子、有不同的衣服和头饰、都有一双大大的卡通眼睛,会有不同的面部表情。 2. 注意事项:关键词中限制了颜色,因此 MJ 生成的图片会一种情绪对应一种颜色,所以同一种情绪最好多生成几张不同色系的,可以减少后续训练中模型把情绪和颜色做挂钩(如果需要这样的话,也可以反其道而行之)。数据集中正面情绪与负面情绪最好比例差不多,如果都是正面积极的,在出一些负面情时(sad,cry)的时候,可能会出现奇怪的问题(如我们训练的是兔子形象,但 ai 认知的 sad 可能是人的形象,可能会出现人物特征)。如果训练 256256 大小的表情包,这样的素材就已经够用了。如果要训练更高像素的图片,则需要进一步使用 MJ 垫图和高清扩展功能。比如从 256 高清化到 1024,输入左图,加入内容描述,加入风格描述,挑选合适的,选出新 30 张图片(卡通二次元类型的 lora 训练集 30 张差不多,真人 60 100 张)。
2025-03-06
小白用户,使用API结合cherry studio建立本地知识库之后,应该怎么训练使AI更聪明
以下是使用 API 结合 cherry studio 建立本地知识库后训练使 AI 更聪明的方法: 1. 在线知识库: 点击创建知识库,创建一个画小二课程的 FAQ 知识库。 知识库的飞书在线文档中,每个问题和答案以分割。 选择飞书文档,选择自定义的自定义,输入。 编辑修改和删除内容,添加 Bot 并在调试区测试效果。 2. 本地文档: 注意拆分内容,提高训练数据准确度。 对于画小二课程,将 80 节课程分为 11 个章节,不能一股脑全部放进去训练。 首先将 11 章的大章节名称内容放进来,章节内详细内容按照固定方式进行人工标注和处理。 然后选择创建知识库自定义清洗数据。 3. 发布应用: 点击发布,确保在 Bot 商店中能够搜到。 此外,在训练 AI 时,还需要注意以下几点: 提示词:告诉 AI 它的角色和要专注的技能。 知识库:相当于给 AI 发放工作手册,例如可以放入特定的剧情等内容。 希望以上内容对您有所帮助。
2025-03-06
如何使用本地数据训练AI?
使用本地数据训练 AI 可以参考以下内容: Teachable Machine: 应用场景广泛,如商品说明书、自动驾驶、教学互动等。 允许用户快速、简单地创建机器学习模型,无需专业知识或编程技能。 使用步骤: 收集数据:可上传图片、录制声音或动作视频作为训练数据。 训练模型:用收集的数据训练模型并测试其能否正确识别新的内容。 导出模型:完成训练后可下载或上传到网上用于其他项目。 特点: 提供多种创建机器学习模型的方式,灵活且用户友好。 可在本地完成训练,不通过网络发送或处理数据,保护隐私。 生成的模型是真实的 TensorFlow.js 模型,可在任何运行 JavaScript 的地方工作,还能导出到不同格式在其他地方使用。 官方网站: Stable Diffusion: 训练数据集制作: 数据清洗:筛除分辨率低、质量差、存在破损及与任务目标无关的数据,去除水印、干扰文字等。 数据标注:分为自动标注(如使用 BLIP 输出自然语言标签)和手动标注(依赖标注人员)。 补充标注特殊 tag:可手动补充特殊标注,如运行相关代码并修改参数。
2025-03-06
deepseek 私有化训练
以下是关于 DeepSeek 私有化训练的相关信息: 模型测试、问题探讨与新模型部署过程: 探讨了模型存在幻觉、答案有概率性等问题,并对比了加提示词前后的情况。 准备从 32B 蒸馏新模型,提及该模型的资源需求及阿里云拍卖机制。 介绍了启动 DSW 获取廉价 CPU 资源,以及部署模型时因库存不足不断加价的过程。 派平台大模型训练与微调实操讲解: 许键分享了抢硬件资源的方法,演示了通过提问蒸馏标注数据。 讲解了在派平台训练模型的流程,包括参数设置、数据集上传等,并展示了训练效果和日志查看。 说明了训练好的模型部署方法,强调训出满意模型需要大量基础知识学习。 模型蒸馏微调演示、平台介绍与问题解答: 许键展示了模型微调后的效果,如幻觉下降等。 介绍了阿里云解决方案,对比了百炼和派平台的差异。 进行了 Q&A,回答了无监督学习微调、训练数据资源、多模态训练标注、Python 代码报错等问题,提及派平台有公用数据集,还举例说明了多模态标注方式。 总结: 本地部署介绍:讲解了如果拥有云服务器如何进行本地部署,以及满血版本地部署的实际情况。 免费额度说明:在 freely.aliyun.com 可领取 500 元免费额度,但有使用限制,不能部署满血版和较大的增流模型。 平台服务差异:介绍了 DLC、DSW 和 EAS 等模型部署平台服务的差别。 模型蒸馏微调:会带着大家复现模型的蒸馏和微调,并讲解相关知识。 Deepseek R1 模型的制作及相关模型比较: R1 模型的强化学习:通过强化学习,在训练过程中给予模型反馈,对正确路线增强权重,使做对的概率变高,导致思考逻辑变长。 R1 模型的蒸馏与微调:用 Deepseek RE Zero 蒸馏出带思考的数据,基于 Deepseek V3 微调,进行冷启动,再做强化学习,还从非公布模型提取微调数据,加上人类偏好,最终形成 R1。 R1 与其他模型的差别:R1 是原生通过强化学习训练出的模型,蒸馏模型是基于数据微调出来的,基础模型能力强,蒸馏微调模型能力也会强。 模型的相互帮助:Deepseek R1 反过来蒸馏数据微调 V3,形成互相帮助的局面,使两个模型都更强。 智能章节: 许键介绍今日课程重点是云服务器上如何使用 Deepseek R1 及本地部署相关内容,提及派平台免费额度及适用模型。还介绍了自己和社区情况。接着讲解 Deepseek R1 制作过程,包括强化学习概念及示例,阐述其从 Deepseek r e Zero 到 M2 等模型的演变及原理。 主要介绍了 Deepseek R1 模型的构建过程,包括多轮强化学习和微调,还提及蒸馏模型的情况。探讨了不同模型部署所需的显存、内存及成本,对比了各模型在专业领域的能力表现。 介绍了以云基础设施和 GPU 算力资源为底层的派平台。该平台搭建 AI 框架并做优化,提供一键式快捷部署工具等。与百炼不同,它开放更多自由度,租户数据隔离。很多大模型在此训练,支持多机分布式部署等,既面向企业,也适合个人创业者,不同应用定价有差异。
2025-03-05