Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

企业级rag系统开发框架

Answer

企业级 RAG 系统开发框架如下:

  • 首先,通过数据预处理引擎(如 Unstructured)将企业无结构文件(如 PDF、幻灯片、文本文件)从数据孤岛(如 Google Drive 和 Notion)加载、转换为 LLM 可查询格式,并将这些文件“分块”成更小的文本块,以实现更精确的检索,然后作为向量嵌入和存储在数据库(如 Pinecone)中。
  • 当用户提出问题时,系统会检索语义上最相关的上下文块,并将其折叠到“元提示”中,与检索到的信息一起馈送给 LLM。LLM 会从检索到的上下文中合成答复返回给用户。
  • 在实际生产中,AI 应用程序具有更复杂的流程,包含多个检索步骤和“提示链”,不同类型的任务并行执行多个“提示链”,然后将结果综合在一起生成最终输出。
  • RAG 是检索增强生成(Retrieval Augmented Generation)的简称,概括起来是知识检索+内容生成,主要组成包括数据提取、embedding(向量化)、创建索引、检索、自动排序(Rerank)、LLM 归纳生成。其核心在于能否将内容检索得又快又准。

RAG 的优势在于:

  • 大语言模型技术存在输出结果不可预测、知识有截止日期、无法满足实际业务需求等问题,而 RAG 可以让大模型从权威的、预先确定的知识来源中检索、组织相关信息,更好地控制大模型生成的文本输出,并且用户可以深入了解 LLM 如何生成最终的结果。
  • RAG 可以和微调结合使用,两者并不冲突。微调适用于模型需要复制特定的结构、样式或格式时,RAG 适用于模型需要回答特定的询问或解决特定的信息检索任务。但 RAG 不适合教模型来理解广泛的领域或学习新的语言、格式或样式。

同时,通用的基础大模型无法满足实际业务需求的原因包括:

  • 知识的局限性:模型自身的知识源于训练数据,对于实时性、非公开或离线的数据无法获取。
  • 幻觉问题:大模型基于数学概率的文字预测,存在提供虚假、过时、通用或低可信度信息的情况。
  • 数据安全性:企业重视数据安全,不愿承担数据泄露风险将私域数据上传第三方平台训练。
Content generated by AI large model, please carefully verify (powered by aily)

References

AI 智能体:企业自动化的新架构 - Menlo Ventures

设置基线:RAG是当今大多数现代人工智能应用程序的标准架构。让我们以Sana的企业搜索用例为例,了解它在幕后的工作原理。该过程始于应用程序加载和转换无结构文件(如PDF、幻灯片、文本文件)跨越企业数据孤岛,如Google Drive和Notion,转换为LLM可查询格式,通常通过像[Unstructured](https://menlovc.com/portfolio/unstructured/)*这样的数据预处理引擎进行。这些文件现在被"分块"成更小的文本块,以实现更精确的检索,并作为向量嵌入和存储在像[Pinecone](https://menlovc.com/portfolio/pinecone/)*这样的数据库中。当用户向AI应用程序提出问题时(例如,"总结我与公司X会议的所有笔记"),系统会检索语义上最相关的上下文块,并将其折叠到"元提示"中,与检索到的信息一起馈送给LLM。然后,LLM会从检索到的上下文中合成一个整洁的带有项目符号的答复返回给用户。当然,该图仅说明了一个带有一个LLM调用的单一检索步骤。在生产中,AI应用程序具有更复杂的应用程序流程,包含数十甚至数百个检索步骤。这些应用程序通常具有"提示链",其中一个检索步骤的输入馈送到下一步,并且不同类型的任务并行执行多个"提示链"。然后将结果综合在一起,以生成最终输出。[Eve](https://menlovc.com/portfolio/eve/)*法律研究的共同驾驭员,例如,可能会将针对《第七篇》的研究查询分解为专注于预定子主题的独立提示链,如雇主背景、就业历史、《第七篇》、相关案例法和原告案件支持证据。LLMs然后运行每个提示链,为每个生成中间输出,并综合各输出编写最终备忘录。

RAG提示工程(一):基础概念

大语言模型技术的本质导致了大模型的输出结果具有不可预测性,此外,静态的训练数据导致了大模型所掌握的知识存在截止日期,无法即时掌握最新信息。因此,当我们将大模型应用于实际业务场景时会发现,通用的基础大模型无法满足我们的实际业务需求。主要存在以下原因:知识的局限性:模型自身的知识完全源于它的训练数据,而现有的主流大模型(ChatGPT、文心一言、通义千问…)的训练集基本都是抓取网络公开的数据用于训练,对于一些实时性的、非公开的或离线的数据是无法获取到的,这部分知识也就无从具备。幻觉问题:大模型的底层原理是基于数学概率的文字预测,即文字接龙。因此大模型存在幻觉问题,会在没有答案的情况下提供虚假信息,提供过时或通用的信息,从可信度低非权威来源的资料中提供结果等。数据安全性:对于企业来说,数据安全至关重要,没有企业愿意承担数据泄露的风险,将自身的私域数据上传第三方平台进行训练。因此如何大模型落地应用时如何保障企业内部数据安全是一个重要问题。而RAG是解决上述问题的一套有效方案。它可以让大模型从权威的、预先确定的知识来源中检索、组织相关信息,更好地控制大模型生成的文本输出,并且用户可以深入了解LLM如何生成最终的结果。并且,RAG可以和微调结合使用,两者并不冲突。RAG类似于为模型提供教科书,允许它基于特定查询检索信息。这该方法适用于模型需要回答特定的询问或解决特定的信息检索任务。然而,RAG不适合教模型来理解广泛的领域或学习新的语言,格式或样式。微调类似于让学生通过广泛的学习内化知识。这种方法当模型需要复制特定的结构、样式或格式时非常有用。以下是RAG与微调从维度方面的比较:参考资料:《Retrieval-Augmented Generation for Large Language Models:A Survey》(https://arxiv.org/pdf/2312.10997.pdf)

RAG提示工程(一):基础概念

RAG是检索增强生成(Retrieval Augmented Generation)的简称,是当前最火热的企业级LLM应用方案。RAG概括起来就是知识检索+内容生成。这么说太抽象,可以理解为大模型的开卷考试,既然是开卷考试,那么谁带的书和资料内容更全,谁翻书翻的更快更准,谁开卷考试的结果就往往更好。下面来看RAG的主要组成,依次是数据提取——embedding(向量化)——创建索引——检索——自动排序(Rerank)——LLM归纳生成。当然这里少了使用环节,我们暂时先忽略。大家知道,开卷考试时,往往大家的参考资料都差不多,在有限的考试时间内如何又快又准的锁定问题在书上的相关内容更为重要。RAG做的好不好也是如此,核心就看能不能将内容检索的又快又准。如果抄错了书上(知识库)内容,往往大模型给出的答案也南辕北辙。

Others are asking
什么是AGI,如何在做企业级程序开发的工作中使用提高自己的工作效率
AGI 即通用人工智能(Artificial General Intelligence),指的是具备像人类一样广泛的认知能力和学习能力,可以执行多种复杂任务的人工智能。 在企业级程序开发工作中提高效率,可以考虑以下几点: 1. 利用自动化工具和脚本:例如自动化测试工具、代码生成工具等,减少重复性工作。 2. 采用敏捷开发方法:如 Scrum 或 Kanban,提高团队协作和项目管理效率。 3. 学习和应用新的编程语言和框架:选择适合项目需求的高效技术。 4. 优化代码结构和算法:提高程序的性能和运行效率。 5. 建立良好的代码规范和文档:便于团队成员理解和维护代码。 6. 利用云计算资源:根据需求灵活扩展计算和存储能力。 7. 持续学习和交流:参加技术社区和培训,了解行业最新动态和最佳实践。
2025-02-11
企业级应用集成AI大模型架构白皮书
以下是关于企业级应用集成 AI 大模型架构的相关内容: 从整体分层的角度来看,目前大模型整体架构可以分为以下几层: 1. 基础层:为大模型提供硬件支撑,数据支持等,例如 A100、数据服务器等等。 2. 数据层:这里的数据层指的不是用于基层模型训练的数据基集,而是企业根据自己的特性,维护的垂域数据。分为静态的知识库,和动态的三方数据集。 3. 模型层:包括 LLm 或多模态模型。LLm 即 largelanguagemodel 大语言模型,例如 GPT,一般使用 transformer 算法来实现。多模态模型即市面上的文生图、图生图等的模型,训练所用的数据与 llm 不同,用的是图文或声音等多模态的数据集。 4. 平台层:模型与应用间的平台部分,比如大模型的评测体系,或者 langchain 平台等,提供模型与应用间的组成部分。 5. 表现层:也就是应用层,用户实际看到的地方。 此外,以下报告也涉及相关内容: 1. 量子位智库发布的《》概述了大模型技术在多个行业中的应用和发展趋势。强调大模型在编程、教育、医疗等领域的重要性,并预测其将推动生产力和创新服务的增长。大模型业务模式涵盖应用开发、模型 API 和模型服务,其中模型服务和 API 是核心。报告还讨论了大模型在不同地域和行业的落地情况,以及企业在大模型技术投资方面的需求。 2. 亿欧智库发布的《》聚焦于企业中人工智能大模型的应用和落地情况。报告涵盖了 AI 大模型在企业中的应用现状、发展趋势以及面临的挑战。它详细分析了 AI 技术如何推动企业创新、提高效率和降低成本,并探讨了不同行业如何利用 AI 大模型实现数字化转型。此外,白皮书还提供了关于如何克服实施过程中的障碍和最大化 AI 大模型价值的见解。 对于大模型 API,与大模型对话产品的提示词不同。对于大模型 API,需要利用插件预先获取的网页内容变量、提示词和 API 请求参数,拼搭出完整的 API 提示请求,精确引导 API 返回想要的生成结果。根据 BigModel 官网给出的请求示例,可以看到需要在请求中传递 Model 类型、系统提示词、用户提示词、top_p、temperature 等关键参数。可以构建相应的 API 请求内容,包括设定系统提示词定义基础任务、设定用户提示词提供具体任务数据并要求大模型按 JSON 格式返回生成结果等。如果缺少参数设定的经验,也可以先询问 AI 文本总结类的模型 API 请求,temperature 设定多少合适,再逐步调试效果即可。
2025-02-06
企业级AI的现状如何了?
目前企业级 AI 的现状呈现出以下特点: 1. 应用方面:更多迁移到具体业务场景,企业重点放在自主构建应用程序上,如客户支持和内部聊天机器人等,同时也在尝试更新颖的应用,如编写消费品配方、缩小分子发现范围和进行销售推荐。 2. 资源配置和态度:企业对生成式 AI 的资源配置和态度在过去 6 个月发生显著变化,预算几乎增加两倍,将更多应用部署在较小的开源模型上,并将更多业务从早期实验转移到生产环境中。 3. 市场机会:生成式人工智能在 2023 年席卷消费市场,2024 年企业领域的收入机会预计数倍于消费市场。 4. 创新与挑战:基础模型的出现使企业构建自己的 AI 应用程序更易,但“GPT wrappers(GPT 套壳)”存在局限性。目前尚不清楚当更多面向企业的 AI 应用上市时情况是否会改变。那些能在“LLM+UI”公式之外创新,并帮助企业更好利用专有数据的应用将表现出色。 5. 赋能企业:许多公司正将 AI 融入工作流程以快速达成 KPI、扩张规模和降低成本。应用公司在 AI 50 强榜单中占据主导地位。不远的将来,有望看到 UX 和 UI 围绕 AI 的功能进行重新设计。
2025-01-11
万字长文带你使用Coze打造企业级 万字长文带你使用Coze打造企业级
以下是一些关于使用 Coze 打造企业级的相关资源: 基础教程: 大圣:胎教级教程:万字长文带你使用 Coze 打造企业级知识库(https://waytoagi.feishu.cn/wiki/CT3UwDM8OiVmOOkohPbcV3JCndb ) 大聪明:保姆级教程:Coze 打工你躺平(https://waytoagi.feishu.cn/wiki/PQoUwXwpvi2ex7kJOrIcnQTCnYb ) 安仔:Coze 全方位入门剖析免费打造自己的 AI Agent(https://waytoagi.feishu.cn/wiki/SaCFwcw9xi2qcrkmSxscxTxLnxb ) Coze“图像流”抢先体验(https://waytoagi.feishu.cn/wiki/AHs2whOS2izNJakGA1NcD5BEnuf ) YoYo:Coze 图像流小技巧:探索视觉艺术的隐藏宝藏(https://waytoagi.feishu.cn/wiki/CTajwJnyZizxlJk8a4AcJYywnfe ) 【智能体】让 Coze 智能体机器人连上微信和微信群详细配置文档(https://waytoagi.feishu.cn/wiki/ExHMwCDZ7i6NA7knCWucFvFvnvJ ) 知识库相关: 官方文档:创建并使用知识库(https://www.coze.cn/docs/guides/use_knowledge ) 官方文档:知识库最佳实践(https://www.coze.cn/docs/guides/product_knowledge_bot ) 用 Coze 做一个基于知识库的 QA bot,TA 熟读了我所有的文章(https://zhuanlan.zhihu.com/p/699276883 ) 手把手教你如何用扣子(COZE)打造一个企业级的知识库机器人(https://zhuanlan.zhihu.com/p/695935995 ) Coze 汽车售后服务知识库 Bot 拆解(https://waytoagi.feishu.cn/wiki/N4wBwPY1oifcNJkZsyHc6McdnYg?renamingWikiNode=true )
2024-12-24
企业级的ai服务或者解决方案有哪些
以下是一些企业级的 AI 服务或解决方案: 1. 美国的 Zephyr AI 公司,于 2024 年 3 月 13 日完成 A 轮融资,融资金额 1.11 亿美元,主营 AI 药物发现和精准医疗。 2. Together AI 公司,2024 年 3 月 13 日完成 A 轮融资,融资金额 1.06 亿美元,从事 AI 基础设施和开源生成。 3. Glean 公司,2024 年 2 月 27 日完成 D 轮融资,融资金额 2.03 亿美元,专注于 AI 驱动企业搜索。 4. Figure 公司,2024 年 2 月 24 日完成 B 轮融资,融资金额 6.75 亿美元,业务为 AI 机器人。 5. Abridge 公司,2024 年 2 月 23 日完成 C 轮融资,融资金额 1.5 亿美元,从事 AI 医疗对话转录。 6. Recogni 公司,2024 年 2 月 20 日完成 C 轮融资,融资金额 1.02 亿美元,提供 AI 接口解决方案。 在 AI 应用方面: 1. AI 智能写作助手,如 Grammarly、秘塔写作猫,利用自然语言处理技术,市场规模达数十亿美元。 2. 淘宝拍照搜商品,通过图像识别和机器学习技术,市场规模达数百亿美元。 3. 小爱同学、Siri 等 AI 语音助手定制开发,运用语音识别和自然语言理解技术,市场规模在百亿美元以上。 4. Keep 智能训练计划,基于数据分析和机器学习,市场规模达数十亿美元。 5. 大众点评智能推荐,借助数据挖掘和自然语言处理,市场规模达百亿美元规模。 6. 阿里小蜜等电商客服,采用自然语言处理和机器学习技术,市场规模达数十亿美元。 影刀 RPA + AI Power 具有以下特点: 1. 功能亮点:集成丰富的 AI 组件及各种技能组件,拓展 AI 服务的能力边界,打造 AI Agent,如搜索引擎组件可让 AI 接入互联网获取实时信息,RPA 组件可直接调用影刀 RPA 客户端应用实现 AI 自动化操作。 2. 无缝多样的使用方式:提供网页分享、对话助理、API 集成等嵌入方式,方便企业在不同业务场景下灵活选择接入方式,打通分散的系统,实现便捷的 AI 交互。 3. 贴身的企业级服务支持:提供教学培训、技术答疑、场景共创等贴身服务,帮助企业把产品用起来,把 AI 落地下去,找到最佳实践,助力业务成功。
2024-12-19
企业级别ai模型使用敏感词场景设计
很抱歉,目前知识库中没有关于企业级别 AI 模型使用敏感词场景设计的相关内容。但一般来说,在进行企业级别 AI 模型使用敏感词场景设计时,需要考虑以下几个方面: 1. 明确敏感词的定义和范围:根据企业的业务特点、法律法规要求以及道德规范,确定哪些词汇被视为敏感词。 2. 数据采集和预处理:在收集数据用于训练模型时,对包含敏感词的数据进行特殊处理或标记。 3. 模型训练中的考虑:调整模型的参数和算法,以降低对敏感词的过度依赖或错误理解。 4. 实时监测和更新:随着业务和社会环境的变化,及时更新敏感词列表,并对模型进行相应的调整和优化。 5. 人工审核与干预:对于模型输出中涉及敏感词的内容,设置人工审核环节,确保准确性和合规性。 希望以上思路能对您有所帮助,如果您需要更详细准确的设计方案,建议咨询专业的 AI 技术团队或相关专家。
2024-09-10
RAG内LLM的主要作用,简单概括
RAG(检索增强生成)中LLM(大语言模型)的主要作用包括: 1. 利用外部检索到的知识片段生成更符合要求的答案。由于LLM无法记住所有知识,尤其是长尾知识,且知识容易过时、不好更新,输出难以解释和验证,容易泄露隐私训练数据,规模大导致训练和运行成本高,通过RAG为LLM提供额外且及时更新的知识源,有助于生成更准确和有用的回答。 2. 在RAG的工作流程中,LLM接收整合后的知识片段和特定指令,利用其推理能力生成针对用户问题的回答。 3. 事实性知识与LLM的推理能力相分离,LLM专注于运用推理能力处理外部知识源提供的信息。
2025-03-08
RAG是什么,简单概括
RAG(RetrievalAugmented Generation)即检索增强生成,是一种结合检索和生成能力的自然语言处理架构,旨在为大语言模型(LLM)提供额外的、来自外部知识源的信息。 简单来说,它通过检索的模式为大语言模型的生成提供帮助,使大模型生成的答案更符合要求。 RAG 对于 LLM 来说很重要,因为 LLM 存在一些缺点,如无法记住所有知识(尤其是长尾知识)、知识容易过时且不好更新、输出难以解释和验证、容易泄露隐私训练数据、规模大导致训练和运行成本高。 而 RAG 具有一些优点,如数据库对数据的存储和更新稳定,数据更新敏捷且可解释,能降低大模型输出出错的可能,便于管控用户隐私数据,还能降低大模型的训练成本。 RAG 概括起来是知识检索+内容生成,可以理解为大模型的开卷考试,其主要组成依次是数据提取、embedding(向量化)、创建索引、检索、自动排序(Rerank)、LLM 归纳生成。其核心在于能否将内容检索得又快又准。 推荐阅读: 如何让 LLM 应用性能登峰造极:https://mp.weixin.qq.com/s/Kr16ub_FN6pTF6acse6MA 大模型主流应用 RAG 的介绍——从架构到技术细节: https://luxiangdong.com/2023/09/25/ragone/ 高级 RAG 技术:图解概览: https://baoyu.io/translations/rag/advancedragtechniquesanillustratedoverview
2025-03-08
rag
RAG(RetrievalAugmented Generation,检索增强生成)是一种结合检索和生成能力的自然语言处理架构。 通用语言模型通过微调可完成常见任务,而更复杂和知识密集型任务可基于语言模型构建系统,访问外部知识源来实现。Meta AI 引入 RAG 来完成这类任务,它把信息检索组件和文本生成模型结合,可微调且内部知识修改高效,无需重新训练整个模型。 RAG 接受输入并检索相关/支撑文档,给出来源(如维基百科),这些文档作为上下文和原始提示词组合给文本生成器得到最终输出,能适应事实随时间变化,让语言模型获取最新信息并生成可靠输出。 大语言模型(LLM)存在一些缺点,如无法记住所有知识(尤其是长尾知识)、知识容易过时且不好更新、输出难以解释和验证、容易泄露隐私训练数据、规模大导致训练和运行成本高。而 RAG 具有数据库存储和更新稳定、数据更新敏捷且不影响原有知识、降低大模型输出出错可能、便于管控用户隐私数据、降低大模型训练成本等优点。 在 RAG 系统开发中存在 12 大痛点及相应的解决方案。
2025-03-06
RAG
RAG(RetrievalAugmented Generation,检索增强生成)是一种结合检索和生成能力的自然语言处理架构。 通用语言模型通过微调可完成常见任务,而更复杂和知识密集型任务可基于语言模型构建系统,访问外部知识源来实现。Meta AI 的研究人员引入了 RAG 方法来完成这类任务,它把信息检索组件和文本生成模型结合在一起,可微调且内部知识修改高效,无需重新训练整个模型。 RAG 会接受输入并检索相关支撑文档,给出来源,这些文档作为上下文和原始提示词组合送给文本生成器得到最终输出,能适应事实随时间变化的情况,让语言模型获取最新信息并生成可靠输出。 LLM(大语言模型)存在一些缺点,如无法记住所有知识尤其是长尾知识、知识容易过时且不好更新、输出难以解释和验证、容易泄露隐私训练数据、规模大导致训练和运行成本高。而 RAG 具有诸多优点,如数据库对数据的存储和更新稳定且无学习风险、数据更新敏捷且可解释、降低大模型输出出错可能、便于管控用户隐私数据、降低大模型训练成本等。 在 RAG 系统开发中存在 12 大痛点及相应的解决方案。
2025-03-06
什么是RAG
RAG(RetrievalAugmented Generation)即检索增强生成,是一种结合检索和生成能力的自然语言处理架构,旨在为大语言模型(LLM)提供额外的、来自外部知识源的信息。 大模型存在一些缺点,如无法记住所有知识(尤其是长尾知识)、知识容易过时且不好更新、输出难以解释和验证、容易泄露隐私训练数据、规模大导致训练和运行成本高。而 RAG 具有以下优点: 1. 数据库对数据的存储和更新稳定,不存在模型学不会的风险。 2. 数据库的数据更新敏捷,增删改查可解释,且对原有知识无影响。 3. 数据库内容明确、结构化,加上模型的理解能力,能降低大模型输出出错的可能。 4. 知识库存储用户数据,便于管控用户隐私数据,且可控、稳定、准确。 5. 数据库维护可降低大模型的训练成本,新知识存储在数据库即可,无需频繁更新模型。 RAG 的核心流程是根据用户提问,从私有知识中检索到“包含答案的内容”,然后把“包含答案的内容”和用户提问一起放到 prompt(提示词)中,提交给大模型,此时大模型的回答就会充分考虑到“包含答案的内容”。其最常见应用场景是知识问答系统。 一个 RAG 的应用可抽象为 5 个过程: 1. 文档加载:从多种不同来源加载文档,如 PDF 等非结构化数据、SQL 等结构化数据以及 Python、Java 之类的代码等。 2. 文本分割:文本分割器把 Documents 切分为指定大小的块,称为“文档块”或者“文档片”。 3. 存储:包括将切分好的文档块进行嵌入转换成向量的形式,以及将 Embedding 后的向量数据存储到向量数据库。 4. 检索:通过某种检索算法找到与输入问题相似的嵌入片。 5. Output(输出):把问题以及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示一起来生成更加合理的答案。
2025-03-06
RAG架构图和实现案例
以下是关于 RAG 架构图和实现案例的相关内容: RAG 是当今大多数现代人工智能应用程序的标准架构。以 Sana 的企业搜索用例为例,其工作原理如下: 1. 应用程序加载和转换无结构文件(如 PDF、幻灯片、文本文件),跨越企业数据孤岛(如 Google Drive 和 Notion),通过数据预处理引擎(如 Unstructured)转换为 LLM 可查询格式。 2. 这些文件被“分块”成更小的文本块,以实现更精确的检索,并作为向量嵌入存储在数据库(如 Pinecone)中。 3. 当用户提出问题时,系统检索语义上最相关的上下文块,并将其折叠到“元提示”中,与检索到的信息一起馈送给 LLM。LLM 从检索到的上下文中合成答复返回给用户。 在生产中,AI 应用程序具有更复杂的流程,包含数十甚至数百个检索步骤,通常具有“提示链”,不同类型的任务并行执行多个“提示链”,然后将结果综合在一起生成最终输出。 随着 RAG 的发展,出现了自适应的检索(也被称作主动检索),其核心思想与 LLM Agent 相似。根据判断依据可分为 Promptbase 和 Tuningbase: 1. Promptbase:通过 Prompt Engineering 的方式让 LLM 对流程进行控制。典型实现案例是 FLARE,其核心思想是 LM 仅在缺乏所需知识时进行检索,以避免被动检索增强的 LM 中出现不必要或不适当的检索。FLARE 迭代地生成下一个临时句子,并检查是否包含低概率标记。如果是这样,系统将检索相关文档并重新生成句子。 2. Tuningbase:对 LLM 进行微调使其生成特殊的 token,以此来触发检索或生成。典型案例是 SelfRAG,具体步骤包括:给定输入提示和前面的生成结果,首先预测特殊 token“Retrieve”判断是否通过检索段落对继续的生成进行增强是有帮助;如果有帮助,调用检索模型,模型会生成一个 critique token 来评估检索段的相关性、下一个响应片段和一个批判令牌来评估响应片段中的信息是否得到了检索段的支持;最后,一个新的批判令牌评估响应的整体效用。模型会并行处理这些内容,并选择最佳结果作为最终的输出。 此外,系统的内存是 LMM 的上下文窗口,存在架构限制,窗口越大推理越慢,同时模型会失焦,降低推理的准确度。前沿模型研发团队都力争做到吞吐量、速度还有准确度的最佳平衡。大模型应用领域常用的方法是 RAG,例如 Perplexity、面向企业知识库的 Glean 以及面向个人知识库的 Maimo 等应用。
2025-03-05
根据论文题目:"基于机器学习的中国股市波动率预测与美股市场对比分析",列出详细框架列出框架,每条框架要明确具体方向内容及数据图表要求
以下是为您提供的关于“基于机器学习的中国股市波动率预测与美股市场对比分析”的论文框架: 一、引言 1. 研究背景和意义 阐述机器学习在金融领域的应用现状 强调股市波动率预测的重要性 说明中美股市对比的价值 2. 研究目的和问题 明确预测中国股市波动率的目标 提出与美股市场对比的关键问题 3. 研究方法和数据来源 介绍所采用的机器学习算法 说明中国股市和美股市场的数据获取途径 二、相关理论与文献综述 1. 机器学习在股市预测中的应用 列举常见的机器学习模型 分析其在股市预测中的优缺点 2. 股市波动率的理论和测量方法 解释波动率的概念和计算方式 介绍常用的波动率测量指标 3. 中美股市的特点和差异 对比中美股市的交易制度、投资者结构等方面 总结前人关于中美股市对比的研究成果 三、数据预处理与特征工程 1. 数据收集与清洗 收集中国股市和美股市场的历史数据 处理缺失值、异常值等 2. 特征选择与构建 提取影响股市波动率的关键特征 构建新的特征变量 3. 数据标准化与归一化 对数据进行标准化处理,使其具有可比性 四、模型建立与训练 1. 选择合适的机器学习模型 比较不同模型的性能,如随机森林、支持向量机等 确定最终使用的模型 2. 模型训练与优化 使用训练数据进行模型训练 调整参数以提高模型性能 3. 模型评估指标 确定评估模型预测效果的指标,如均方误差、准确率等 五、中国股市波动率预测结果与分析 1. 预测结果展示 以图表形式呈现中国股市波动率的预测值 与实际波动率进行对比 2. 结果分析与讨论 分析预测结果的准确性和可靠性 探讨影响预测效果的因素 六、美股市场波动率预测结果与分析 1. 预测结果展示 以图表形式呈现美股市场波动率的预测值 与实际波动率进行对比 2. 结果分析与讨论 分析美股市场预测结果的特点 与中国股市预测结果进行对比 七、中美股市波动率对比分析 1. 波动率特征对比 比较中美股市波动率的均值、方差等统计特征 分析波动率的周期性和趋势性 2. 影响因素对比 探讨宏观经济因素、政策法规等对中美股市波动率的不同影响 分析投资者行为和市场结构的差异 3. 风险评估与投资策略 根据对比结果评估中美股市的风险水平 提出针对中美股市的投资策略建议 八、结论与展望 1. 研究总结 总结研究的主要成果和发现 2. 研究不足与展望 指出研究中存在的局限性 对未来研究方向提出展望 数据图表要求: 1. 展示中国股市和美股市场的历史波动率走势对比图。 2. 呈现不同机器学习模型在预测中国股市和美股市场波动率时的性能评估指标对比图。 3. 绘制中美股市波动率的统计特征(均值、方差等)对比柱状图。 4. 以图表形式展示影响中美股市波动率的关键因素的对比分析。
2025-03-07
可视化分析的AI软件工具有哪些,可以生成线性结构、矩阵结构、框架结构、系统结构等
以下是一些可以用于生成线性结构、矩阵结构、框架结构、系统结构等可视化分析的 AI 软件工具: 1. Lucidchart:流行的在线绘图工具,支持多种图表创建,包括逻辑视图、功能视图和部署视图,用户可通过拖放界面轻松创建架构图。 2. Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能,如逻辑视图(类图、组件图)、功能视图(用例图)和部署视图(部署图)。 3. ArchiMate:开源的建模语言,专门用于企业架构,支持逻辑视图创建,可与 Archi 工具配合使用,该工具提供图形化界面创建 ArchiMate 模型。 4. Enterprise Architect:强大的建模、设计和生成代码工具,支持创建多种架构视图,包含逻辑、功能和部署视图。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富模板用于创建逻辑视图、功能视图和部署视图等。 6. draw.io(现称为 diagrams.net):免费的在线图表软件,允许用户创建各种类型图表,包括软件架构图,支持创建逻辑视图和部署视图等。 7. PlantUML:文本到 UML 的转换工具,通过编写描述性文本自动生成序列图、用例图、类图等,帮助创建逻辑视图。 8. Gliffy:基于云的绘图工具,提供创建各种架构图的功能,包括逻辑视图和部署视图。 9. Archi:免费开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图创建。 10. Rational Rose:IBM 的 UML 工具,支持创建多种视图,包括逻辑视图和部署视图。
2025-03-06
可视化分析的软件工具有哪些,可以生成线性结构、矩阵结构、框架结构、系统结构等
目前常见的可视化分析软件工具包括:Tableau、PowerBI、Excel、Google Data Studio、QlikView 等。但具体哪些工具能够生成您所提到的线性结构、矩阵结构、框架结构、系统结构等,可能需要您进一步查阅它们的详细功能介绍和实际使用体验来确定。
2025-03-06
Prompts(提示词)| 社区内prompt框架课程收录
以下是关于 Prompt(提示词)的相关内容: 一、Prompt 之道:清晰表达 1. 如何清晰表达 各种框架能帮助您将脑海中的想法通过特定角度描述出来,比如明确要做的事情、背景、目标、任务、数据和输出等。这些框架虽表述不同,但作用相似,能比空想更高效。 您可以在使用框架时,换不同预设角度描述同一物体。例如,去年有人用 langGPT 的框架模拟善解人意的老师讲解任何学科的概念。 2. 拓展阅读 :社区内 prompt 框架课程收录 :各个场景提示词收录 此外,还有李继刚关于文生文中 prompt 的道、术、用的万字说明,相关链接如下: https://mp.weixin.qq.com/s/R8UbrixkKHXE4dnVt0VMvw 豆包网页端:https://www.doubao.com/chat/?channel=browser_landing_page 豆包桌面客户端:
2025-03-06
如何在电脑上用chatbox框架,使用ollama搭建deepseek模型
在电脑上使用 Chat Box 框架,通过 Ollama 搭建 DeepSeek 模型的步骤如下: 1. 阿里云百炼平台: 百炼平台的模型广场有各种模型,包括音频理解、视频理解等,通义的一些强模型也在其中。 百炼平台无需部署,可直接使用 DeepSeek R1 模型。 DeepSeek R1 模型的价格与各大平台差不多,有大量免费额度,如 100 万 token,不同版本的模型如 7B、14B、32B 等也送了 100 万 token,LLAVA 限时免费。 使用 DeepSeek R1 模型需要解锁和授权,没有授权按钮的需要对阿里云进行实名认证,可通过支付宝扫码或在右上角头像处进行,共学群里有相关指引。 在首页体验模型页面可对比不同模型的效果,如 V3 和 R1,R1 会先思考,速度较快。 多模态可以识别更多输入信息,如读文件、图片等,而 DeepSeek R1 本身不是多模态模型。 通过模型广场的 API 调用示例获取链接,截断后粘贴到 Chat Box 的设置中,添加自定义提供方,设置模型名称为 DeepSeek R1,并获取 API key。 API key 可删除旧的并重新创建,方便本地软件连接。 2. Docker + RAGFlow + Ollama 搭建: 返回 RAGFlow 中,打开右上角设置,进入模型提供商。 选择 Ollama,配置相关信息,模型取决于运行的模型。 配置基础 URL。 导入一个 embedding 模型,用于文本向量化。 设置系统模型设置。 进入数据集,导入文件,可设置文件夹当作知识库。 对文件进行解析,解析速度取决于本机 GPU 性能。 解析好之后,进入检索测试。 测试没问题,可进入聊天界面,助理设置可自行设置。 对于开源模型,如 DeepSeek、Llama 等,可以使用以下方式: 1. Inference Provider:使用 Together AI 等推理服务提供商,在线体验和调用各种开源模型。 2. LM Studio:使用 LM Studio 等本地应用程序,在个人电脑上运行和部署较小的开源模型。
2025-03-03
我是一个普通本科的大二学生,学的是软件工程专业,但是我本身编程能力不是很好,我对ai拥有浓厚的兴趣,喜欢去学习并运用ai,我想未来all in ai并成为一个产品经理,我想给你分享一下我的计划,我想今年下半年考过英语四级,并且参加苹果26年的swift 学生挑战赛,我是零基础但是我愿意学习,希望你帮我制定一个包含实施策略、里程碑和最佳实践的详细框架,以帮助我有效地实现这些目标!
以下是为您制定的包含实施策略、里程碑和最佳实践的详细框架,以帮助您有效地实现目标: 一、英语四级考试 实施策略: 1. 制定学习计划,每天安排一定时间学习英语,包括词汇、语法、听力、阅读和写作。 2. 多做历年真题,熟悉考试题型和难度。 3. 参加英语学习社群或找学习伙伴,互相监督和鼓励。 里程碑: 1. 每月进行一次模拟考试,评估学习进度。 2. 两个月内完成词汇和语法的系统学习。 最佳实践: 1. 利用碎片时间背单词,如在公交车上、课间等。 2. 听力练习时,反复听同一篇材料,直到完全听懂。 3. 写作练习后请老师或同学帮忙批改,总结错误和不足。 二、参加苹果 26 年的 Swift 学生挑战赛 实施策略: 1. 从零基础开始学习 Swift 编程语言,通过在线课程、书籍等资源进行系统学习。 2. 参与相关的编程实践项目,提升实际操作能力。 3. 关注苹果官方网站和社区,了解挑战赛的最新动态和要求。 里程碑: 1. 三个月内掌握 Swift 编程语言的基础知识。 2. 半年内完成一个小型的 Swift 项目开发。 最佳实践: 1. 遇到问题及时在技术论坛或社区寻求帮助。 2. 定期回顾和总结所学知识,加深理解和记忆。 3. 参考优秀的 Swift 项目案例,学习他人的编程思路和技巧。 三、成为 AI 产品经理 实施策略: 1. 学习 AI 相关的基础知识,包括机器学习、深度学习等。 2. 了解产品经理的职责和工作流程,通过实践项目积累经验。 3. 关注行业动态,参加相关的研讨会和培训课程。 里程碑: 1. 一年内掌握 AI 基础知识和产品经理的基本技能。 2. 参与实际的 AI 项目开发,担任产品经理助理角色。 最佳实践: 1. 多与行业内的专业人士交流,获取经验和建议。 2. 不断提升自己的沟通和协调能力,以更好地推动项目进展。 3. 学会从用户需求出发,设计具有创新性和实用性的 AI 产品。 希望以上框架对您有所帮助,祝您顺利实现目标!
2025-03-01
手游开发的AI软件有哪些?
以下是一些手游开发中常用的 AI 软件: 语音生成: Coqui Studio:https://coqui.ai Bark:https://github.com/sunoai/bark Replica Studios:https://replicastudios.com 语音识别: OpenAI Whisper:https://huggingface.co/openai/whisperbase Facebook Wav2Vec2:https://huggingface.co/facebook/wav2vec2largexlsr53 对话模型: ChatGPT:https://chat.openai.com HuggingChat:https://huggingface.co/chat 故事讲述模型: MPT7BStoryWriter65k+:https://huggingface.co/mosaicml/mpt7bstorywriter Claude 100k:https://www.anthropic.com/index/100kcontextwindows GTP4 32k:https://platform.openai.com/docs/models/overview 游戏设计: Ludo.ai:https://ludo.ai 搜索引擎: Haddock:https://www.haddock.ai AI NPC: Inworld:https://inworld.ai Python 库 此外,网易推出的首款 AI 手游《逆水寒》在美术开发、NPC 与玩家的交互等方面应用了 AI 技术,如内嵌的全自动“AI 作词机”。还有一些 AI 应用如 AI 游戏道具推荐系统、AI 天气预报分时服务、AI 医疗病历分析平台、AI 会议发言总结工具、AI 书法作品临摹辅助工具等,也在不同方面为手游开发或相关领域提供了支持和帮助。
2025-03-09
开发角色在使用AI的时候会涉及哪些AI工具,帮我分别具体列举出来
开发角色在使用 AI 时可能涉及以下工具: 1. 个性(LLM 的文本):一些开源模型如 Vicuna 和 Pygmalion 经过微调,可在特定个性到无审查的角色扮演等场景中表现出色。 2. 记忆(向量存储):像 Pinecone 这样的向量存储系统,用于存储长期记忆、背景故事等独特信息。 3. 语音(语音合成):ElevenLabs 产品可赋予声音,并控制年龄、性别和口音。 4. 外表(SD 模型作图):LoRAs 可精细控制图像风格、细节和设置。 5. 动画(视频动画):DID 和 HeyGen 等工具能使图像“说话”。 6. 平台:多数开发者在 GCP 和 AWS 上部署运行,Steamship 等解决方案也受关注。 7. UI 层:SillyTavern、Agnaistic 和 KoboldAI 等是受欢迎的前端界面选择。 在游戏开发方面: 1. Unity 提供了新 Copliot 工具,可通过与 Muse Chat 聊天快速启动创建游戏项目,协助编码,创建 3D 材质、动画等内容。 2. Unity Sentis 工具允许在 Unity 运行时为游戏或应用程序嵌入 AI 模型,增强玩法和功能,是跨平台解决方案。
2025-03-07
CRM,开发(网站前端和后端开发,低代码RPA开发,Mendix开发) 这些角色在使用AI的时候会涉及哪些AI工具,帮我分别具体列举出来
目前在 CRM 以及网站前端和后端开发、低代码 RPA 开发、Mendix 开发等角色中,常用的 AI 工具包括但不限于以下几种: 对于 CRM 角色: 智能客服工具,如基于自然语言处理的聊天机器人,能够自动回答客户常见问题,提高服务效率。 对于网站前端开发角色: 代码自动生成工具,能够根据设计稿或需求描述生成前端代码框架。 智能设计辅助工具,帮助生成页面布局和设计元素的建议。 对于网站后端开发角色: 代码漏洞检测工具,利用 AI 算法检测代码中的潜在安全漏洞。 智能代码优化工具,对后端代码进行性能优化建议。 对于低代码 RPA 开发角色: 流程自动化智能推荐工具,根据业务流程提供自动化的建议和方案。 对于 Mendix 开发角色: 智能组件推荐工具,根据开发需求推荐合适的组件。 需要注意的是,具体使用哪些 AI 工具还会因个人需求、项目特点和技术环境等因素而有所不同。
2025-03-07
财务专员,采购专员,PM,CRM,开发(网站前端和后端开发,低代码RPA开发,Mendix开发) 这些角色在使用AI的时候会涉及哪些AI工具,帮我分别具体列举出来
以下是财务专员、采购专员、PM、CRM、开发(网站前端和后端开发,低代码 RPA 开发,Mendix 开发)这些角色可能涉及的 AI 工具: 财务专员:可能会使用帮助进行财务分析和预测的 AI 工具,例如能够自动处理和分析大量财务数据的工具。 采购专员:可能用到能够进行市场趋势分析和供应商评估的 AI 工具,以辅助采购决策。 PM(项目经理):可以利用有助于项目进度管理、风险预测和资源分配的 AI 工具。 CRM(客户关系管理):例如能够进行客户行为分析和精准营销的 AI 工具。 网站前端和后端开发:可能会运用能够自动生成代码片段、检测代码错误和优化代码的 AI 工具。 低代码 RPA 开发:可能涉及能够自动生成流程和优化流程的 AI 工具。 Mendix 开发:也许会使用能够辅助模型设计和优化的 AI 工具。 需要注意的是,具体使用的 AI 工具会因工作需求和场景的不同而有所差异。
2025-03-07
财务专员,采购专员,PM,CRM,开发(网站前端和后端开发,低代码RPA开发,Mendix开发) 这些角色在使用AI的时候会涉及哪些AI工具,帮我分类列举出来
以下是为您分类列举的不同角色可能涉及的 AI 工具: 财务专员:可能会使用财务分析预测的 AI 工具,例如能够进行风险评估和预算规划的工具。 采购专员:或许会用到能够进行市场趋势分析和供应商评估的 AI 工具。 PM(项目经理):可能涉及项目进度预测和资源分配优化的 AI 工具。 CRM(客户关系管理):可能使用客户行为分析和销售预测的 AI 工具。 网站前端和后端开发:可能运用代码自动生成和漏洞检测的 AI 工具。 低代码 RPA 开发:也许会用到流程自动化设计和优化的 AI 工具。 Mendix 开发:可能涉及模型生成和性能优化的 AI 工具。
2025-03-07
财务专员,采购专员,PM,CM,开发 这些角色在使用AI的时候会涉及哪些AI工具,帮我分类列举出来
以下是财务专员、采购专员、PM(产品经理)、CM(不太明确您所指的具体含义,可能是配置管理专员等)、开发人员在使用 AI 时可能涉及的 AI 工具分类列举: 财务专员: 预测方面:生成式 AI 可帮助编写 Excel、SQL 和 BI 工具中的公式和查询,发现模式,并从更广泛、更复杂的数据集中为预测建议输入。 报告方面:生成式 AI 可帮助自动创建文本、图表、图形等内容,并根据不同示例调整报告。 会计和税务方面:生成式 AI 可以帮助综合、总结,并就税法和潜在的扣除项提出可能的答案。 采购专员: 生成式 AI 可以帮助自动生成和调整合同、采购订单和发票以及提醒。 PM(产品经理): 用户研究、反馈分析:Kraftful(kraftful.com) 脑图:Whimsical(whimsical.com/aimindmaps)、Xmind(https://xmind.ai) 画原型:Uizard(uizard.io/autodesigner/) 项目管理:Taskade(taskade.com) 写邮件:Hypertype(hypertype.co) 会议信息:AskFred(fireflies.ai/apps) 团队知识库:Sense(senseapp.ai) 需求文档:WriteMyPRD(writemyprd.com) 敏捷开发助理:Standuply(standuply.com) 数据决策:Ellie AI(ellie.ai) 企业自动化:Moveworks(moveworks.com) 开发人员: 不太明确您提到的开发人员的具体开发领域,不同领域可能有不同的针对性 AI 工具。但一般来说,在代码生成、错误检测、性能优化等方面可能会用到相关的 AI 工具。 由于不太明确“CM”的具体含义,暂时无法为您准确列举其对应的 AI 工具。
2025-03-07