Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

redux模型

Answer

Redux 模型是一个轻量级模型,具有以下特点和应用:

  1. 可与 Flux.1[Dev]和 Flux.1[Schnell]配合使用,基于 1 个输入图像生成图像变体,无需提示,适合快速生成特定样式的图像。
  2. 位置:将 Redux 模型下载到 comfyui/models/style_models,下载 sigclip_patch14-384.safetensors 到 ComfyUI/models/clip_vision。
  3. 重绘节点:ComfyUI-InpaintEasy,相关链接:https://github.com/CY-CHENYUE/ComfyUI-InpaintEasy 。
  4. 在工作流中的应用:
    • 用于电商服饰行业的换装、虚拟试穿等场景,提升效果并简化工作流。
    • 模特生成:加入 Redux 模型,强度不用太高,让提示词生效(Redux-prompt 节点风格细节等级 1=27×27 最强,14=1×1 最弱)。
    • 服装高精度处理:使用 Flux 的 fill 模型,提示词书写格式为这是一组图片,左边是衣服,右边的模特穿着左边的衣服,Redux 权重调整为最大。

FLUX.1 Redux 还适用于所有 FLUX.1 基本模型,用于生成图像变化,给定输入图像能重现具有轻微变化的图像,自然集成到更复杂工作流程中,通过提示解锁图像重新设计。最新型号 FLUX1.1[pro]Ultra 支持该功能,允许组合输入图像和文本提示,创建具有灵活宽高比的高质量 4 兆像素输出。

Content generated by AI large model, please carefully verify (powered by aily)

References

ComfyUI Flux redux

Redux模型是一个轻量级模型,可与Flux.1[Dev]和Flux.1[Schnell]配合使用,以基于1个输入图像生成图像变体,无需提示。它非常适合快速生成特定样式的图像。[heading3]移除背景[content][heading3]关于提示词[content]这里需要注意的是,如果要往一张图上融合,提示词最好描述下图片的背景颜色。[heading3]Redux模型位置[content]将Redux模型下载到comfyui/models/style_models下载sigclip_patch14-384.safetensors到ComfyUI/models/clip_vision[heading3]重绘节点[content]ComfyUI-InpaintEasyhttps://github.com/CY-CHENYUE/ComfyUI-InpaintEasy[heading3]工作流[content]

FLUX这下真无敌了!多种官方FLUX工具开源

结构调节使用精明的边缘或深度检测来在图像转换过程中保持精确控制。通过边缘或深度图保留原始图像的结构,用户可以进行文本引导的编辑,同时保持核心构图完整。这对于重新纹理图像特别有效。【接着是ControlNet,前面我们有介绍最早的ControlNet,这次官方做了Canny和Depth模型。】【FLUX.1 Canny[dev]是120亿个参数。生成的输出可用于FLUX.1[dev]非商业许可证中所述的个人、科学和商业目的。官方在他们的GitHub上提供了FLUX.1 Canny[dev]的参考实现以及示例代码。鼓励希望在FLUX.1 Canny[dev]之上构建的开发人员和创意人员以此为起点。】FLUX.1 Canny/Depth有两个版本:可实现最大性能的完整模型,以及基于FLUX.1[dev]的LoRA版本,可更轻松地开发。[heading2]使用FLUX.1 Redux进行图像变化和重新设计[content]FLUX.1 Redux是适用于所有FLUX.1基本模型的适配器,用于生成图像变化。给定输入图像,FLUX.1 Redux可以重现具有轻微变化的图像,从而可以细化给定图像。它自然地集成到更复杂的工作流程中,通过提示解锁图像重新设计。通过API,可以通过提供图像和提示来重新设计样式。最新型号FLUX1.1[pro]Ultra支持该功能,允许组合输入图像和文本提示,以创建具有灵活宽高比的高质量4兆像素输出。

ComfyUI 换装服饰一致性

这个工作流,可以用在电商服饰行业,换装,虚拟试穿等场景。在提升效果的同时,简化了工作流。没有繁琐的依赖,环境,更多的使用了原生的节点。工作流的整体思路是:首先,生成适合服装的模特。为什么做这一步?这是因为,很多时候,换装的效果不好,有违和感,是因为服装和人物匹配。这一步,我们可以抽卡,抽到满意的模特后进入第二步。第二步,开始进行高精度的换装。先进行预处理的工作,拼出来mask然后重绘mask区域。[heading3]工作流解释[content][heading4]模特生成[content]接下来一起来过一下工作流先生成与衣服匹配的模特这里可以先不关注衣服的相似度,先抽出满意的模特。这里加入Redux模型,强度不用太高。让提示词生效,Redux-prompt节点风格细节等级(1=27×27最强,14=1×1最弱))。[heading4]服装高精度处理[content][heading5]mask的处理[content]高精度换装前的准备:这里做两个工作1.将模特身上的衣服分割出来2.拼接出来对应模特与衣服合并后图片的遮罩[heading5]提示词格式与Redux权重[content]这里使用的是Flux的fill模型,提示词书写的格式:这是一组图片,左边是衣服,右边的模特穿着左边的衣服需要注意的是,Redux这里,把权重的调整为最大。这样我们就可以对mask位置,对服装进行了进一步的处理原来的服装细节得到了还原,并且也有了需要的模特。

Others are asking
Joy_caption_two_load模型
Joy_caption_two_load 模型相关信息如下: 下载地址: 模型可从 https://huggingface.co/unsloth/MetaLlama3.18Bbnb4bit 下载,存放文件夹为 Models/LLM/MetaLlama3.18Bbnb4bit 。 网盘链接:https://huggingface.co/spaces/fancyfeast/joycaptionprealpha/tree/main/wpkklhc6 ,存放文件夹为 models/Joy_caption 。 此外,还有 MiniCPMv2_6提示生成器+CogFlorence 可从 https://huggingface.co/pzc163/MiniCPMv2_6promptgenerator 和 https://huggingface.co/thwri/CogFlorence2.2Large 下载。 节点安装地址:D:\\ComfyUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 。 安装步骤: (Comfyui evn python.exe)python m pip install rrequirements.txt 或点击 install_req.bat ,注意 transformers 版本不能太低。 下载模型或者运行 comfyui 自动下载模型到合适文件夹。 模型安装: Joy_caption ,运行自动下载模型(推荐手动下载)。 三个模型(页面显示和实际大小有一定差异): 3.5G,放到:你的\\ComfyUI\\models\\clip\\siglipso400mpatch14384 。 5.7G,放到:你的\\ComfyUI\\models\\LLM\\MetaLlama3.18Bbnb4bit 。 86MB,放到:你的\\ComfyUI\\models\\Joy_caption 。 相关模型介绍: Joy Caption 模型在 SigLIP 和 Llama3.1 的基础之上,使用 Adapter 模式,训练出更好的描述图像的模型,需要与 SigLIP 和 Llama3.1 混合使用,输入图像,输出一段语义丰富的图像描述。 Google 的 SigLIP 是一种改进的多模态模型,类似于 CLIP,但是采用了更优的损失函数。 MetaLlama3.18Bbnb4bit 是优化的多语言大语言模型,基于 Meta 的 Llama 3.1 架构,使用 BitsAndBytes 库进行 4bit 量化,大幅减少内存使用,同时保持模型性能。 模型工作流程: siglipso400mpatch14384(视觉模型): 接收输入图像。 分析图像的视觉内容(如物体、场景、颜色、纹理等)。 将这些视觉信息编码成一组特征向量。 image_adapter.pt(适配器): 接收来自视觉模型的特征向量。 转换和调整这些特征,使其适合语言模型处理。 一些特定任务的优化或微调(如图片到文字)。 MetaLlama3.18Bbnb4bit(语言模型): 接收经过适配器处理的特征。 基于这些特征生成相应的文本描述。 应用语言知识来确保描述的连贯性和准确性。
2025-03-04
小公司, 想部署一个本地ai系统,希望它能够, 对运维, 运营, 客服, 美术, 策划, 程序都能够有很大的帮助, 目前市面上那款 ai 模型比较合适
对于小公司想要部署一个能对运维、运营、客服、美术、策划、程序都有帮助的本地 AI 系统,以下是一些相关信息: 线上和线下本地部署的 AI 特点: 线上部署的优势在于出图速度快,不依赖本地显卡配置,无需下载大型模型,还能参考其他创作者的作品,但出图尺寸受限。线下部署的优势是可添加插件,出图质量高,但使用时电脑可能宕机,配置不高可能爆显存导致出图失败。建议线上用于找参考、测试模型,线下作为主要出图工具。 Ollama: 支持多种大型语言模型,包括通义千问、Llama 2、Mistral 和 Gemma 等,适用于不同场景。 易于使用,适用于 macOS、Windows 和 Linux 系统,支持 CPU 和 GPU。 提供模型库,用户可从中下载不同模型,满足不同需求和硬件条件。 支持自定义模型,可调整参数。 提供 REST API 用于运行和管理模型,以及与其他应用集成。 社区贡献丰富,有多种集成插件和界面。 Google Gemma: 是 Google 发布的家用版小模型,有 2b(20 亿参数)和 7b(70 亿参数)版本。小模型可能不适合复杂任务,但适合提升基础操作效率。部署环境友好,可通过 ollama 方便部署,支持热加载模型文件。2b 反应速度快但互动话题有限,7b 输出质量高但可能卡顿,对非英文语种反馈不稳定。 综合考虑,如果您的公司对出图质量要求较高,且有较好的硬件配置,可以选择线下部署结合线上测试的方式。在语言模型方面,Ollama 具有较多优势,可根据具体需求选择合适的模型进行部署。
2025-03-04
小游戏公司, 想部署一个本地ai系统,希望它能够, 对运维, 运营, 客服, 策划, 程序都能够有很大的帮助, 目前市面上那款 ai 模型比较合适
对于小游戏公司部署本地 AI 系统以帮助运维、运营、客服、策划和程序等方面,以下是一些建议和相关信息: 目前市面上的 AI 模型各有特点。线上 AI 具有出图速度快、不依赖本地显卡配置、无需下载大型模型以及能参考其他创作者作品等优势,但出图尺寸受限。线下部署的 AI 可以添加插件、出图质量高,但可能导致电脑宕机且对配置要求高。 在游戏领域,AI 大模型带来了诸多变化,如游戏内容辅助生成(包括文、图、3D 和音乐),可应用于游戏策划人和美术设计师。文生图和图生图能提高创作效率,动画辅助渲染可改变角色风格,游戏智能运营涵盖智能 NPC 互动、客服、攻略问答和代码脚本生成等,适用于产品经理、运营经理和社区运营经理。 Google 刚刚发布的家用版小模型 Gemma 有 2b(20 亿参数)和 7b(70 亿参数)版本。相对千亿参数的大模型,这类小模型可能不太适合处理复杂任务,但代表了模型本地化提升基础操作效率的趋势。Ollama 是一个开源的大型语言模型服务,方便部署最新版本的 GPT 模型并通过接口使用,支持热加载模型文件,且像小型的 llama 也支持本地部署。部署时,需进入 ollama.com 下载程序并安装,通过命令提示符进行操作和切换模型。2b 反应速度快但互动话题有限,7b 输出质量高但可能卡顿,且对非英文语种反馈不太稳定。 综合考虑,小游戏公司可以根据自身需求和硬件配置选择合适的 AI 模型。如果对出图质量要求高且有较好的硬件配置,可尝试线下部署;若更注重效率和便捷性,线上模型可能更适合。同时,也可以考虑像 Gemma 这样的小模型进行本地化部署以提升基础操作效率。
2025-03-04
小游戏公司, 想部署一个本地ai系统,希望它能够, 对运维, 运营, 客服, 美术, 策划, 程序都能够有很大的帮助, 目前市面上那款 ai 模型比较合适
对于小游戏公司部署本地 AI 系统以帮助运维、运营、客服、美术、策划、程序等方面,以下是一些建议和目前市面上合适的 AI 模型分析: 线上 AI 平台的优势在于出图速度快,对本地显卡配置要求低,无需下载大型模型,还能参考其他创作者的作品,但出图分辨率有限制。 线下部署的优势是可以添加插件,出图质量高,但使用时电脑可能宕机,配置不高还可能爆显存导致出图失败。 综合考虑,建议充分发挥线上和线下平台的优势。线上可用于找参考、测试模型,线下作为主要出图工具。 在图像生成方面,2022 年主流生成式图像应用如 DALLE 2.0、Stable Diffusion 和 Midjourney 使图像生成精细化程度提升,提示对图像生成结果的控制能力增强。 在 3D 模型生成中,AI 能完成 3D 模型生成流程的“一步到位”,大大提升效率。 在游戏开发中,AI 可用于游戏内容辅助生成(如文、图、3D、音乐)、动画辅助渲染、游戏智能运营(包括智能 NPC 互动、客服、攻略问答、代码和脚本生成)等。 对于小游戏公司,Stable Diffusion 可能是一个较为合适的选择,它在 2D 美术素材辅助生成方面能够提高创作效率、降低成本,并且有多种应用场景,如文生图、图生图等。同时,也可以考虑结合线上平台进行参考和测试。
2025-03-04
我想打造一个量化交易模型
打造一个量化交易模型需要考虑以下几个方面: 一、预训练大模型与金融量化 1. 大型的系统工程 大多数量化算法的核心数据是公开的量价数据,大模型预训练的数据中最重要的也是公开数据,各家会有一些独有数据来源,但占比不大。 量化和大模型的整体算法逻辑基本类似,决定模型能力好坏的是大型系统工程能力。 作为大型系统工程,量化和大模型都需要大型的计算集群,对性能和效率有极致追求。 细节在大型系统工程中十分关键,量化交易系统包含交易执行、风控等多个方面,大模型预训练也包含大量细节。 2. 关键技术变得不公开 金融量化是非常闭源的系统,各家的交易系统是最大的秘密武器,公开部分少。 现在大模型也在往闭源方向发展,几个巨头的核心模型都开始走向闭源。 二、应用开发 1. 轻量化 MMM的部署运行 模型实现包括以下步骤: 第一步:安装运行需要的依赖项。 第二步:准备数据集,可使用模拟数据集或自己的数据集。 第三步:拆分数据。 第四步:数据预处理,进行缩放处理(归一化),让每个变量之间的关系对等。 第五步:初始化模型,数据集训练最费时间,取决于数据量大小和训练步长。 第六步:运算可视化,包括损失值、绘制残差图、所有单一变量对最终销售的贡献、Baseline 预测、所有外因对销售的贡献度等。 希望以上内容对您打造量化交易模型有所帮助。
2025-03-04
你用的是什么大模型
大模型是指输入大量语料,使计算机获得类似人类的“思考”能力,能够理解自然语言,并进行文本生成、推理问答、对话、文档摘要等工作。 大模型的“大”体现在用于表达 token 之间关系的参数多,主要是指模型中的权重(weight)与偏置(bias),例如 GPT3 拥有 1750 亿参数。以 Transform 为代表的大模型采用自注意力(Selfattention)机制来学习不同 token 之间的依赖关系,生成高质量 embedding。 在大模型的训练和使用过程中,可以用“上学参加工作”来类比: 1. 找学校:训练 LLM 需要大量计算,GPU 更合适,只有购买得起大量 GPU 的才有资本训练自己的大模型。 2. 确定教材:大模型需要大量的数据量,几千亿序列(Token)的输入基本是标配。 3. 找老师:即用合适的算法讲述“书本”中的内容,让大模型更好理解 Token 之间的关系。 4. 就业指导:学完知识后,为让大模型更好胜任某一行业,需要进行微调(fine tuning)指导。 5. 搬砖:就业指导完成后,正式干活,比如进行翻译、问答等,在大模型里称之为推导(infer)。 在 LLM 中,Token 被视为模型处理和生成的文本单位,可以代表单个字符、单词、子单词,甚至更大的语言单位,具体取决于所使用的分词方法(Tokenization)。在将输入进行分词时,会对其进行数字化,形成一个词汇表。常见的将 Token 表示成稠密矩阵向量的算法有:基于统计的 Word2Vec(通过上下文统计信息学习词向量)、GloVe(基于词共现统计信息学习词向量);基于深度网络的 CNN(使用卷积网络获得图像或文本向量)、RNN/LSTM(利用序列模型获得文本向量);基于神经网络的 BERT(基于 Transformer 和掩码语言建模进行词向量预训练)、Doc2Vec(使用神经网络获得文本序列的向量)。
2025-03-04