Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

转型AI工作需要什么能力

Answer

转型 AI 工作通常需要以下能力:

  1. 技术方面:
    • 具备 AI 技术的专业知识,例如了解 AI 如何用于提供产品和服务,以及技术标准的开发、使用和适用性。
    • 熟悉不同 AI 工具的特点和用途。
    • 掌握如何写提示词,以便清晰地向 AI 传达任务。
    • 能够搭建 AI 智能体,实现多个 AI 工具协同工作。
  2. 监管方面:
    • 政府需要持续评估监管领域的不同能力需求,并密切关注和审查。
    • 监管机构需要获取新的技能和专业知识,部分监管机构存在潜在的能力差距,特别是在 AI 技术的专业知识、AI 应用案例在多个监管制度中的交互以及市场情报等方面。
    • 监管机构要具备有效适应 AI 应用案例和应用的出现,并在组织内吸收和分享这些知识的能力。
    • 能够与提供保证技术的组织(如保证服务提供商)和制定技术标准的组织(即标准开发组织)合作,将相关工具嵌入监管框架和最佳实践。
    • 跨监管机构合作,分享知识并协同监管跨多个监管制度的 AI 应用案例。
  3. 组织方面:
    • 有效适应 AI 应用案例和应用的出现,并在组织内吸收和分享这些知识。
    • 与相关组织合作,开发技术标准,并将其嵌入监管框架和最佳实践。
    • 跨部门合作,共享知识并协同工作。
Content generated by AI large model, please carefully verify (powered by aily)

References

【法律法规】《促进创新的人工智能监管方法》.pdf

101.Government has prioritised the ongoing assessment of the different capability needs across the regulatory landscape.We will keep this under close review as part of our ongoing monitoring and evaluation activity.102.While our approach does not currently involve or anticipate extending any regulator’s remit,150 regulating AI uses effectively will require many of our regulators to acquire new skills and expertise.Our research151 has highlighted different levels of capability among regulators when it comes to understanding AI and addressing its unique characteristics.Our engagement has also elicited a wide range of views on the capabilities regulators require to address AI risks and on the best way for regulators to acquire these.103.We identified potential capability gaps among many,but not all,regulators,primarily in relation to:AI expertise.Particularly:o Technical expertise in AI technology.152 For example,on how AI is being used to deliver products and services and on the development,use and applicability of technical standards.153o Expertise on how AI use cases interact across multiple regulatory regimes.o Market intelligence on how AI technologies are being used to disrupt existing business models,both in terms of the potential opportunities and risks that can impact regulatory objectives.Organisational capacity.A regulator’s ability to:o Effectively adapt to the emergence of AI use cases and applications,and assimilate and share this knowledge throughout the organisation.o Work with organisations that provide assurance techniques(e.g.assurance service providers)and develop technical standards(i.e.standards development organisations),to identify relevant tools and embed them into the regulatory framework and best practice.o Work across regulators to share knowledge and cooperate in the regulation of AI use cases that interact across multiple regulatory regimes.

夙愿:AI 工作流,赋能我的十倍增长

感谢你耐心阅读这篇略显冗长的文章。让我们简单回顾一下,首先,我们讨论了什么是AI工作流。简单来说,就是把AI工具融入到工作里的各个环节中,为我们的工作来提效。然后,我们聊到了搭建AI工作流需要的三层能力:第一层,了解各种AI工具,知道每个AI工具的特点和用途。第二层,学会写提示词,这是很关键,决定你能不能把任务给AI说清楚。第三层,搭建AI智能体,让替代人工,使用多个AI工具协同工作,自动完成任务。接下来,我让AI帮我梳理出了这套搭建AI工作流和公众号工作流的SOP:

【法律法规】《促进创新的人工智能监管方法》.pdf

1.19.AI is already delivering major advances and efficiencies in many areas.AI quietly automates aspects of our everyday activities,from systems that monitor traffic to make our commutes smoother,17 to those that detect fraud in our bank accounts.18 AI has revolutionised large-scale safety-critical practices in industry,like controlling the process of nuclear fusion.19 And it has also been used to accelerate scientific advancements,such as the discovery of new medicine20 or the technologies we need to tackle climate change.212.20.But this is just the beginning.AI can be used in a huge variety of settings and has the extraordinary potential to transform our society and economy.22 It could have as much impact as electricity or the internet,and has been identified as one of five critical technologies in the UK Science and Technology Framework.23 As AI becomes more powerful,and as innovators explore new ways to use it,we will see more applications of AI emerge.As a result,AI has a huge potential to drive growth24 and create jobs.25 It will support people to carry out their existing jobs,by helping to improve workforce efficiency and workplace safety.26 To remain world leaders in AI,attract global talent and create high-skilled jobs in the UK,we must create a regulatory environment where such innovation can thrive.3.21.Technological advances like large language models(LLMs)are an indication of the transformative developments yet to come.27 LLMs provide substantial opportunities to transform the economy and society.For example,LLMs can automate the process of writing code and17 Transport apps like Google Maps,and CityMapper,use AI.18 Artificial Intelligence in Banking Industry:A Review on Fraud Detection,Credit Management,and Document Processing,ResearchBerg Review of Science and Technology,2018.19 Accelerating fusion science through learned plasma control,Deepmind,2022;Magnetic control of tokamak plasmas through deep reinforcement learning,Degrave et al.,2022.

Others are asking
纯AI打造的儿童绘本动画剧集《森林童话会》即将上线
很抱歉,目前没有关于纯 AI 打造的儿童绘本动画剧集《森林童话会》的更多详细信息。
2025-04-15
调教ai的利器,提示词工程
提示词工程是调教 AI 的重要手段,以下是关于提示词工程的相关知识: 作用:避免 AI 掉入“幻觉”陷阱,引导 AI 生成更可靠的内容。 原理:AI 对提示词的理解能力与幻觉的产生密切相关,清晰、具体的提示词能帮助其更好地理解意图,减少错误。 技巧: 明确要求 AI 引用可靠来源,如在询问历史事件时要求引用权威文献,询问科学事实时要求引用科研论文,询问法律条款时要求引用官方文件。 要求 AI 提供详细的推理过程,如询问数学公式时展示推导过程,询问代码功能时逐行解释含义。 明确限制 AI 的生成范围,如询问名人名言时指定名人姓名和相关主题,询问新闻事件时指定时间范围和关键词。 通过这些清晰、具体、有针对性的提示词技巧,可以引导 AI 生成更准确和可靠的内容。但提示词工程只是辅助手段,从根本上解决 AI 幻觉问题还需从数据、模型、训练方法等多方面努力。 提示词工程就像与博学但有点固执的老教授交流,精心设计输入文本能引导 AI 更好地理解需求并给出更准确有用的回答。比如,问“请用简单的语言,为一个 10 岁的小朋友解释什么是人工智能,并举一个生活中的例子”,AI 更可能给出通俗易懂的解释。 在使用 AI 工具的过程中,可能会出现答非所问、回答格式不标准等问题,为让 AI 更好地服务,需要学习提示词工程。当用户的需求接近 AI 真实范围时,可通过写提示词甚至创建 BOT 来优化使用效果。
2025-04-15
学习ai
以下是新手学习 AI 的方法和建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-04-15
分析AI颠覆性发展的生产策略调查的研究情况综述
以下是关于企业构建和购买生成式 AI 方式的 16 个变化的研究情况综述: 生成式人工智能在 2023 年迅速席卷消费市场,创下超过 10 亿美元的消费支出纪录。预计 2024 年企业领域的收入机会将数倍于消费市场。去年,企业对 genAI 的参与多局限于少数明显用例,且以“GPTwrapper(GPT 套壳)”产品作为新的 SKU 交付,一些人对其在企业中的扩展持怀疑态度。 然而,在过去几个月,a16Z 与数十家财富 500 强和顶级企业领导人交谈并对 70 多位进行调查后发现,过去 6 个月里,企业对生成式 AI 的资源配置和态度有显著变化。尽管仍有保留,但企业领导人几乎将预算增加两倍,更多应用部署在较小的开源模型上,并将更多业务从早期实验转移到生产环境中。 这对创始人是巨大机遇。a16Z 认为,为客户“以 AI 为中心的战略计划”构建解决方案,能预见痛点,从重服务模式转向构建可扩展产品的人工智能初创公司,将抓住新投资浪潮并占据重要市场份额。 任何时候,为企业构建和销售产品都需深入了解客户预算、关注点和路线图。a16Z 根据访谈结果总结了 16 个最为关键的考虑因素,涉及资源、模型和应用。
2025-04-15
什么是AI
AI 是一门令人兴奋的科学,它是某种模仿人类思维可以理解自然语言并输出自然语言的东西,其生态位是一种似人而非人的存在。 对于没有理工科背景的人来说,可以把 AI 当成一个黑箱。最初,计算机按照明确定义的程序和算法进行数字运算,而对于像从照片判断人的年龄这类无法明确编程的任务,正是 AI 所感兴趣的。 现在的 AI(主要是生成式 AI 这类技术)可以接受和理解不同的输入和数据,并生成多种内容,如文字、声音、图像、视频、3D 模型等。简单来说,可以把 AI 当人看。
2025-04-15
作为一个想要使用AI工具提升工作效率的AI小白,我已经学习了怎么编写prompt,接下来我应该学习什么
如果您已经学习了如何编写 prompt ,接下来可以学习以下内容: 1. 理解 Token 限制:形成“当前消耗了多少 Token”的自然体感,把握有效记忆长度,避免在超过限制时得到失忆的回答。同时,编写 Prompt 时要珍惜 Token ,秉承奥卡姆剃刀原理,精简表达,尤其是在连续多轮对话中。 熟练使用中英文切换,若 Prompt 太长可用英文设定并要求中文输出,节省 Token 用于更多对话。 了解自带方法论的英文短语或句子,如“Chain of thought”。 2. 学习精准控制生成式人工智能:重点学习提示词技术,编写更清晰、精确的指令,引导 AI 工具产生所需结果。 探索构建智能体(AI Agents),将工作单元切割开,赋予其特定角色和任务,协同工作提高效率。 在实际应用中遵循准则,如彻底变“懒人”、能动嘴不动手、能让 AI 做的就不自己动手、构建自己的智能体、根据结果反馈调整智能体、定期审视工作流程看哪些部分可用更多 AI 。 3. 若想进一步提升: 学习搭建专业知识库、构建系统知识体系,用于驱动工作和个人爱好创作。 注重个人能力提升,尤其是学习能力和创造能力。 您还可以结合自身生活或工作场景,想一个能简单自动化的场景,如自动给班级孩子起昵称、排版运营文案、安排减脂餐、列学习计划、设计调研问卷等。选一个好上手的提示词框架开启第一次有效编写,比如从基础的“情境:”开始。
2025-04-15
如何快速上手Cursor、Windsurf、V0.dev、bolt.new、Devin等AI编程产品的经验,能快速转型为AI产品经理?
以下是关于快速上手 Cursor、Windsurf、V0.dev、bolt.new、Devin 等 AI 编程产品并转型为 AI 产品经理的一些经验: 1. 深入理解用户场景和 AI 能力边界:要构建差异化的 AI Native 体验,需要同时对 AI 能力边界和用户场景有深入洞察。 2. 持续迭代产品:在快速变化的模型能力下,避免在每次的基座模型迭代中掉队或被淘汰。 3. 构建良好的模型产品化能力和基础设施:使得应用可以持续收集用户数据以迭代模型。 对于具体的产品: Cursor: 允许用自然语言描述需求,对上下文有深度理解能力,能理解整个项目的结构和依赖关系,进行跨文件的语义分析。 提供智能的代码重构建议,自动诊断和修复常见错误,基于代码自动生成文档。 但要注意,即使有 AI 辅助,当好产品经理也不容易,需要反复沟通和调整。 Devin:作为 2024 年横空出世的产品,预示着软件开发范式的根本转变。 Windsurf、V0.dev、bolt.new 等: 可以使用如 Cursor Composer 构建产品、使用 Bolt.new 构建产品、使用 V0.dev 生成组件等。 此外,国内知名的 AI 全栈开发者 @idoubi 分享了相关使用经验,包括自动补全代码、Debug&&Fix Error、实时对话&&联网搜索、写提示词、写前端页面、截图生成组件、写常用的代码逻辑/函数、代码重构、多语言翻译等方面。同时,对于零代码基础的人员,也有使用相关工具实现想法的方法,如使用 Cursor Composer、Bolt.new、Claude 等构建不同类型的应用。还可以盘点常用的 AI 辅助编程工具和使用场景,如 AI 编辑器(Cursor、Windsurf、Pear Al 等)、编辑器 AI 扩展(Github Copilot、Continue、Cline 等)、UI 组件生成工具(Cursor、V0.dev、Claude、screenshottocode 等)、完整项目构建工具(Cursor、Bolt.new、Replit Agent、Wordware 等)。
2025-04-10
普通产品经理转型AI产品经理需要怎么进行
普通产品经理转型为 AI 产品经理,需要关注以下方面: 1. 技术原理: 了解思维链,谷歌 2022 年的论文提到其能显著提升大语言模型在复杂推理的能力,即使不用小样本提示,也可在问题后加“请你分步骤思考”。 熟悉 RAG(检索增强生成),外部知识库切分成段落后转成向量,存在向量数据库,用户提问时段落信息会和问题一起传给 AI,可搭建企业和个人知识库。 掌握 PAL(程序辅助语言模型),2022 年的论文提出,对于语言模型计算问题,借助如 Python 解释器等工具而非让 AI 直接生成结果。 知晓 ReAct 框架,2022 年《React:在语言模型中协同推理与行动》的论文提出,核心是让模型动态推理并与外界环境互动,如用搜索引擎搜索关键字观察结果,可借助 LangChain 等框架简化构建流程。 2. 知识储备: 关注并阅读技术论文,了解技术脉络,但小白直接看有难度,可借助 AI 辅助阅读,同时要完成一定知识储备。 林粒粒呀的相关视频是很好的科普入门。 总之,转型需要对相关技术原理有深入理解,并积累足够的知识。
2025-03-28
想转型AI产品经理,推荐学习的资料有?
以下是为您推荐的学习资料,有助于您从产品经理转型为 AI 产品经理: 1. 林粒粒呀的相关视频,如“小白如何理解技术原理与建立框架”,其中介绍了思维链、RAG、PAL、ReAct 等概念,并且提到 Transformer 是仿生算法的阶段性实现。 思维链:谷歌在 2022 年一篇论文提到思维链可以显著提升大语言模型在复杂推理的能力,即使不用小样本提示,也可以在问题后面加一句【请你分步骤思考】。 RAG:检索增强生成(RetrievalAugmented Generation),外部知识库切分成段落后转成向量,存在向量数据库。用户提问并查找到向量数据库后,段落信息会和原本的问题一块传给 AI,可搭建企业知识库和个人知识库。 PAL:程序辅助语言模型(ProgramAided Language Model),2022 年一篇论文中提出,对于语言模型的计算问题,核心在于不让 AI 直接生成计算结果,而是借助其他工具比如 Python 解释器作为计算工具。 ReAct:2022 年一篇《React:在语言模型中协同推理与行动》的论文提出了 ReAct 框架,即 reason 与 action 结合,核心在于让模型动态推理并采取行动与外界环境互动。比如用搜索引擎对关键字进行搜索,观察行动得到的结果。可借助 LangChain 等框架简化构建流程。 2. 余一的相关内容,如《AI 时代个人生存/摸鱼探索指南.Beta》《从 2023 年报,看中国上市公司怎么使用生成式 AI》。 3. 相关网页链接: 创新公司观察: 2022 2024 年融资 2000w 美金以上的公司列表和详细公司分析:https://ameliadev.notion.site/202220242000w08f50fafd81b420fa7f26ecd6c0b3243?pvs=4 AI Grant 公司列表和详细公司分析(三期):https://ameliadev.notion.site/AIGranta52f291e81f34b418c9919497961e831?pvs=4 AIGC 行业与商业观察(2024.1):https://gamma.app/docs/AIGCDev9q1bax2pspnlxqu 【AI 产品/功能构建】: 顶级科技公司产品团队正在构建哪些 AI 功能【总览】:https://gamma.app/docs/AIzawqmb2ff3cv958 顶级科技公司产品团队正在构建哪些 AI 功能【产品分析】:https://gamma.app/docs/AItebxqet8ubz3rje 顶级科技公司产品团队正在构建哪些 AI 功能【思考借鉴】
2025-03-18
java程序员怎么转型大模型算法工程师
以下是为 Java 程序员转型大模型算法工程师提供的一些建议: 1. 学习相关理论知识:了解大模型的基本原理,包括模型架构、预训练及微调、部署及推理等。 2. 掌握技术工具:熟悉 LLM 相关技术,如 Transformer、Prompt Tuning、RLHF、Langchain、Agent、MOE、RAG 等。 3. 提升编程能力:熟悉算法和数据结构,具备扎实的编程基础,尤其是 Python 开发。 4. 积累项目经验: 可以参考大圣的全网最适合小白的 Llama3 部署和微调教程,该教程手把手教您下载并部署 Llama3 模型,使用甄嬛数据集微调模型,并了解微调的意义和概念。但需注意,此教程不会讲解微调的技术性原理及文中用到的 Python 代码。 关注招聘信息,例如序智科技和中国移动设计院的招聘需求,了解大模型算法工程师的职责和要求,针对性地提升自己的能力。 5. 增强相关技能: 对至少 2 个框架具备源码级别的理解和优化能力,包括但不限于 Langchain、XAgent、ChatDev、DsPy、AutoGPT、BabyAGI、MetaGPT。 熟悉 GPT Function Calling 原理,熟练掌握 Prompt Engineering。 对预训练/微调(尤其是微调)熟练,熟练掌握 huggingface/deepspeed(或其他框架)。 对多模态大模型有一定了解,精通低代码平台会是加分项。 您可以根据自身情况,有针对性地进行学习和实践,逐步实现从 Java 程序员向大模型算法工程师的转型。
2025-03-12
AI产品经理如何转型
对于 AI 产品经理的转型,以下是一些相关的知识和建议: 技术方面: 了解思维链,谷歌在 2022 年的论文提到其能显著提升大语言模型在复杂推理的能力,即使不用小样本提示,也可在问题后加“请你分步骤思考”。 熟悉 RAG(检索增强生成),外部知识库切分成段落后转成向量,存在向量数据库,用户提问并查找到向量数据库后,段落信息会和原本的问题一块传给 AI,可搭建企业和个人知识库。 知晓 PAL(程序辅助语言模型),2022 年的一篇论文中提出,对于语言模型的计算问题,不让 AI 直接生成计算结果,而是借助如 Python 解释器等工具作为计算工具。 掌握 ReAct 框架,2022 年一篇《React:在语言模型中协同推理与行动》的论文提出,核心在于让模型动态推理并采取行动与外界环境互动,比如用搜索引擎对关键字进行搜索,观察行动结果,可借助 LangChain 等框架简化构建流程。 学习途径: 很多大佬认为要关注或直接阅读技术论文,比如产品经理转型 AI 产品经理需要懂技术脉络,但小白直接看技术论文有难度,虽可让 AI 辅助阅读,仍要完成一定知识储备。林粒粒呀的相关视频是很好的科普入门。 此外,从一些案例来看,比如长春人定居北京的䷎贤峰,有医学学士、计算机 AI 方向硕士背景,做过多种职业,包括医生、码农、产品经理、管理咨询等,目前是一家快消品公司财务总监兼董秘,业余捡回老本行;Sundy 有 5 年产品运营经验,从教育方向到 web3 行业,目标是转行当 AIGC 产品经理。
2025-03-12
企业如何培养全员AI思维,将AI融入企业文化,驱动人才转型,推动AI驱动的创新。
企业培养全员 AI 思维、将 AI 融入企业文化、驱动人才转型并推动 AI 驱动的创新,可参考以下方面: 1. 组织管理转型:参考波士顿咨询公司发布的《》报告,AI 技术将推动组织从金字塔结构向松树型转变,需要人才具备创新、持续学习、透明和协作能力,组织文化应强调人的价值和认知多样性。为加速 AI 转型,建议采取自上而下的战略推动和自下而上的创新激活,培养关键人才,并重塑员工技能。 2. 构建 AI 监督与反馈机制: 建立异常监测机制,针对 AI 决策结果进行定期回顾,设立异常情况触发预警机制,避免因 AI 错误而导致决策失误。 在关键业务决策中设置人类干预节点,在 AI 给出初步建议后由人类进行审核和判断,特别是财务预测、市场扩展策略等核心业务决策应有清晰的人工复核流程。 企业可以引入“人机协作审查委员会”,由高层管理人员、业务线负责人和技术团队组成,每月审查 AI 关键决策的结果,设定触发条件(如连续三次异常预测)来判断是否需要人工干预。 3. 保留人类的创新与主导地位: 虽然 AI 能通过数据提供创新支持,但真正的突破性创新依然需要人类的参与,企业应明确 AI 是助力而非替代。在中国市场,创新是企业保持竞争优势的关键,过度依赖 AI 可能会削弱员工的创新力和主动性。 设立创新实验室,让 AI 提供背景数据和支持,员工在此基础上进行创意开发,AI 可以生成基础创意,员工进行拓展和跨领域应用。 进行跨部门协作,创建多样化团队,整合市场、技术和创意团队的力量,让 AI 提供洞察和辅助,具体决策由团队中的人类成员作出。 企业可以设立“AI 创新月”,每月让不同部门提出与 AI 相关的创新方案,要求员工结合 AI 的分析提出创意,而非直接采用 AI 方案,以培养团队的创新能力,避免 AI 的全权主导。
2025-03-12
runway属于什么ai能力类型
Runway 是一家总部位于旧金山的 AI 创业公司推出的产品。 在 AI 能力类型方面: 年初爆火,其 Gen2 代表了当前 AI 视频领域最前沿的模型,能够通过文字、图片等方式生成 4 秒左右的视频。 内测能力可根据参考图像进行 Video to Video 视频风格化。 致力于专业视频剪辑领域的 AI 体验,同时也在扩展图片 AI 领域的能力。 11 月 25 日发布新图像生成模型 Frames,专注打造特定美学和视觉氛围,支持细粒度控制“外观、感觉和氛围”,强调“世界构建”,可设计完整的视觉世界,包括场景、氛围、情感等,提供全面的视觉叙事支持。 目前 Runway 支持在网页、iOS 访问,网页端目前支持 125 积分的免费试用额度(可生成约 105 秒视频),iOS 则有 200 多,两端额度貌似并不同步。官方网站:https://runwayml.com/
2025-04-15
runway的能力类型,核心功能
Runway 的能力类型和核心功能包括以下方面: 在 Gen2 模型上推出了较多细节控制能力,并且支持精细数值调节,是当下 AI 视频生成产品中可控性最强的产品。 多笔刷控制局部运动:支持最多 5 个笔刷控制,包括物体运动方向、运动曲线调节。调高 Ambient,笔刷绘制区域物体的运动将和周边环境产生更多关联,并加大运动幅度。 相机控制:支持水平/垂直平移,水平/垂直翻转,镜头缩放/旋转。 Lip Sync Video:支持文本转 TTS 音频、音频文件换音,还有上半年大火的 Lip sync video 对口型能力。 不论是工具栏中不断丰富的音频、视频处理能力,还是 Runway Watch 栏目中的优秀合作案例,都能看出 Runway 一直坚定得在影视制作方向发展。未来若能打通 AI 生成和视频剪辑能力,Runway 未来将对影视制作起到至关重要的作用,成为视频领域必不可少的重要工具。
2025-04-15
你都有什么能力呢?
我作为 AI 知识专家,具备以下能力: 1. 作为提示词专家,能将常规的提示词转化为结构化的提示词,并输出符合预期的回复。了解 LLM 的技术原理和局限性,具有丰富的自然语言处理经验,具备迭代优化能力。 2. 能为您介绍小白参与活动的流程和组队所需的人员类型,如脚本编写、出图、出视频、配音乐、剪辑、统筹等。 3. 为您讲解扣子提供的基础功能,包括提示词(设定 Bot 身份及回复逻辑)、插件(通过 API 连接集成平台和服务)、工作流(规划和实现复杂功能逻辑)、记忆库(保留和理解对话细节,添加外部知识库),并为您提供相关参考链接。
2025-04-14
2025年人工智能大模型的技术提升有哪些,是参数?推理能力?还是语料
2025 年人工智能大模型的技术提升可能体现在以下几个方面: 1. 视频生成能力:如 2024 年推出的多个先进的 AI 模型能够从文本输入生成高质量视频,相比 2023 年有显著进步。 2. 模型规模与性能:更小的模型能驱动更强的性能,如 2022 年最小能在 MMLU 上得分高于 60%的模型是具有 5400 亿参数的 PaLM,到 2024 年,参数仅 38 亿的微软 Phi3mini 也能达到相同阈值。 3. 推理能力:尽管加入了如思维链推理等机制显著提升了大语言模型的性能,但在一些需要逻辑推理的问题上,如算术和规划,尤其在超出训练范围的实例上,这些系统仍存在问题。 4. AI 代理:在短时间预算设置下,顶级 AI 系统得分高于人类专家,但随着时间预算增加,人类表现会超过 AI。 5. 算法变革:如 DeepSeek 的出现标志着算力效率拐点显现,其通过优化算法架构显著提升了算力利用效率,同时 2025 年发布的大模型呈现低参数量特征,为本地化部署到 AI 终端运行提供了可能,其训练过程聚焦于强化学习,提升了模型的推理能力。
2025-04-14
有哪些针对CoT能力的微调工具
以下是一些针对 CoT 能力的微调工具: 1. Selfconsistency CoT:使用手动设计的 Prompt 生成采样一组不同的推理路径,再通过“多数投票”找到推理步骤中“最一致”的路径,使用这条解码路径驱动原始的贪心解码方式来提示 CoT 性能。 2. MMCoT:侧重使用微调方法嵌入 CoT,通过将语言和图像合并在一个包含推理生成与答案推理的两阶段的框架中,使用微调大模型赋予输入多模态 CoT 的能力。 3. GoTInput 方法:通过对 CoT 生成的思维图进行抽取构建三元组,并使用 GNN 将文本、图像与 CoT 统一,从而生成包含 CoT 信息的最终答案。 4. VCoT:解决了一个输出多模态的问题,通过以生成图片的“标题”以及识别核心关注点作为图像生成的启动过程,通过递归的方式填充图像信息,从而实现输出多模态。 此外,在将 DoT 扩展到预训练的扩散语言模型 Plaid 1B 并在更复杂的推理任务上进行评估时,自回归模型和扩散模型在使用 CoT 或 DoT 进行微调时都显示出显著提高的性能。在微调 Plaid 1B 时,也探索了几种替代方案。 在强化学习驱动的合成数据生成与模型优化流程中,也涉及到 CoT 的相关应用和优化,如初始 CoT 生成、CoT 存储等。
2025-04-12
应用到律师软件的AI能力
以下是应用到律师软件的 AI 能力相关内容: 律师在工作中的优势包括: 1. 在沟通和谈判中能够与客户方、相对方、其他机构建立信任、表达观点、促成交易等。 2. 能够针对新兴行业或监管空白提出合规建议,如为新技术制定合法性指导。 3. 作为专业人士,在紧急情况下能做出专业判断,提供及时的法律建议和解决方案。 律师不擅长的方面有: 1. 处理大量信息和数据,在需要处理大量文本和数据的情况下,人工效率非常有限,如大量文件调查中的数据提取和整理。 2. 处理细节,可能难以记住各类案件中的所有事实和细节,尤其是在复杂案件中。 3. 精力与情绪,在处理复杂案件时,可能会面临情绪、精力、时间等带来的压力,从而影响专业判断。 基于以上,律师和 AI 的协同并非简单相加,而是一种借助互相优势、相互加持的关系。律师在运用大模型这一强大工具时,最关键的任务是根据不同的法律业务场景,精准地提出问题、指令(Prompt),以引导 AI 发挥其最大的效用。 在处理信息检索与整理任务时,律师可以指导 AI 精确抓取相关法律法规、先例判决等关键信息,能够迅速获得案件准备所需的素材,花更多的时间进行法律分析。当需要自动化处理文档时,律师可以指导 AI 生成和修改标准化合同。 在法律领域,生成式 AI 具有文本总结方面的能力。通过使用大模型,律师可以快速总结法律研究报告、实务文章、法学论文以及法律法规,帮助他们更高效地获取核心内容和深度见解。 对于如何认识 AI,作为不具备理工科背景的文科生,可以把 AI 当成一个黑箱,只需要知道它是某种模仿人类思维可以理解自然语言并输出自然语言的东西。驱动 AI 工具和传统道教的驱神役鬼拘灵遣将有奇妙的相似之处,都是通过特定的文字、仪轨程式来引用已有资源,驱使某种可以一定方式/程度理解人类文字的异类达成自己预设的效果,且皆需要面对工具可能突破界限(发疯)的情况。当想让 AI 实现愿望时,基于它的“非人”一面,需要尽可能通过语言文字(足够清晰的指令)压缩它的自由度,不仅要清晰告诉它需要干什么、边界在哪里、目标是什么、实现路径方法是哪一条,最好还直接给到它所需的正确的知识。
2025-04-10
需要做一个自动化出视频的工作流
以下是一个关于自动化出视频工作流的详细介绍: 优势: 全自动化处理,解放双手。 40 秒快速出片,效率提升。 成本低廉,每条仅需 0.0x 元。 输出质量稳定专业。 DeepseekR1 保证文案质量。 还能改进,例如可以加入配套 BGM,让视频更有感染力;增加更丰富的画面内容和转场效果;使用免费节点替代付费插件,进一步降低成本;优化模板样式,支持更多展示形式;增加自动化程度,支持批量处理。 工作流程: 1. 可以在扣子商店体验,建议自己搭建。 2. 工作流调试完成后,加入到智能体中,可以选择工作流绑定卡片数据,智能体则通过卡片回复。 3. 选择发布渠道,重点如飞书多维表格,填写上架信息(为了快速审核,选择仅自己可用),确认发布等待审核,审核通过后即可在多维表格中使用。 4. 创建飞书多维表格,添加相关字段,配置选择“自动更新”,输入相关字段后,“文案视频自动化”字段捷径会自动调用工作流,生成视频。 5. 表单分享,实现“填写表单,自动创建文案短视频”的效果。 6. 全自动视频合成使用多视频融合插件,一键导出成品。但需注意节点产生的视频是异步生成,可能无法马上展现,需耐心等待几秒。 如果您还有其他疑问或需要进一步的帮助,请随时联系。
2025-04-14
我要写论文,需要用什么ai工具‘
在论文写作中,以下是一些常用的 AI 工具: 1. 文献管理和搜索: Zotero:结合 AI 技术,能自动提取文献信息,便于管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术进行文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,方便进行数据分析和可视化。 Knitro:用于数学建模和优化,助力复杂数据分析和模型构建。 4. 论文结构和格式: LaTeX:虽不是纯粹的 AI 工具,但结合自动化和模板,能高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化论文编写。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:检测潜在抄袭问题。 利用 AI 写课题的步骤和建议如下: 1. 确定课题主题:明确研究兴趣和目标,选择有价值和创新性的主题。 2. 收集背景资料:使用学术搜索引擎和文献管理软件等 AI 工具搜集相关文献和资料。 3. 分析和总结信息:借助 AI 文本分析工具提取关键信息和主要观点。 4. 生成大纲:用 AI 写作助手生成包括引言、文献综述、方法论、结果和讨论等部分的大纲。 5. 撰写文献综述:利用 AI 工具确保内容准确完整。 6. 构建方法论:根据研究需求,采用 AI 建议的方法和技术设计研究方法。 7. 数据分析:若涉及数据收集和分析,使用 AI 数据分析工具处理和解释数据。 8. 撰写和编辑:借助 AI 写作工具撰写各部分,并检查语法和风格。 9. 生成参考文献:使用 AI 文献管理工具生成正确格式。 10. 审阅和修改:用 AI 审阅工具检查逻辑性和一致性,根据反馈修改。 11. 提交前的检查:使用抄袭检测工具确保原创性,做最后的格式调整。 AI 文章排版工具方面: 1. Grammarly:不仅检查语法和拼写,还具备一定排版功能,可改进文档风格和流畅性。 2. QuillBot:AI 驱动的写作和排版工具,能改进文本清晰度和流畅性。 3. Latex:常用于学术论文排版,使用标记语言描述格式,有 AI 辅助的编辑器和插件简化过程。 4. PandaDoc:文档自动化平台,用 AI 帮助创建、格式化和自动化生成文档,适用于商业和技术文档。 5. Wordtune:AI 写作助手,重新表述和改进文本,使其更清晰专业。 6. Overleaf:在线 Latex 编辑器,提供丰富模板和协作工具,适合学术写作排版。 选择合适的 AI 文章排版工具需考虑文档类型、出版标准和个人偏好。学术论文常用 Latex 和 Overleaf,一般文章和商业文档则 Grammarly 和 PandaDoc 等可能更适用。
2025-04-14
我有秋叶整合包,然后需要怎么搭建本地部署?
以下是使用秋叶整合包搭建本地部署的步骤: 1. 下载整合包:可以从。 2. 复制启动器到下载仓库的目录下。 3. 打开启动器,可一键启动。如果有其他需求,可以在高级选项中调整配置。 显存优化根据显卡实际显存选择,不要超过当前显卡显存。xFormers 能极大地改善内存消耗和速度,建议开启。 4. 准备工作完毕后,点击一键启动即可。等待浏览器自动跳出,或是控制台弹出本地 URL 后说明启动成功。 如果报错提示缺少 Pytorch,则需要在启动器中点击配置。 5. Stable Diffusion webui 的更新比较频繁,请根据需求在“版本管理”目录下更新,同时注意插件的更新。 在 webui 的“扩展”选项卡下,可以安装插件。点击“加载自”后,目录会刷新,选择需要的插件点击右侧的 install 即可安装。安装完毕后,需要重新启动用户界面。 具体安装方法: 1. 打开整合包链接(https://pan.baidu.com/s/1hY8CKbYRAj9RrFGmswdNiA?pwd=caru ,提取码:caru),下载《1.整合包安装》,存放到电脑本地。 2. 打开保存到电脑里的文件夹。 3. 打开文件夹《1.秋叶整合包主包》,鼠标右击文件,点击“解压文件”。 4. 选择解压到 D 盘或者 E 盘(避免 C 盘被占满),点击确定。 5. 解压完成后,来到第二个文件夹,双击里面的文件,点击安装。 6. 打开刚刚解压保存的 SD 的根目录,找到启动器,鼠标右击启动器,点击“发送到”,选择桌面快捷方式,方便下次进入。 7. 双击启动器,等待更新,接着点击左边第二个“高级选项”,在显存优化里,根据自己电脑的显存选择。 8. 回到第一个一键启动,点击右下角的一键启动。出现代码页面不用管,等待 SD 的主界面在网页上自动弹出。如果出现报错,可以回到最开始的界面,在左边点击“疑难解答”,再点击右边的“开始扫描”,最后点击“修复”按钮。
2025-04-12
我想要自学AI相关的知识,但不知道从哪里开始,需要一个行动方案,我未来想做一个ai产品经理
以下是为您提供的自学 AI 知识并成为 AI 产品经理的行动方案: 1. 应用方面: 深入了解 Prompt,选择适合自己的 AI 对话、绘画和语音产品,每天使用并用于解决实际问题或提升效率。 2. 分析方面: 大量阅读各类文章、视频以及行业报告,理解各知识之间的关系。 3. 掌握相关技能: 了解目前 AI 提示词工程师岗位的招聘技能要求,例如: 本科及以上学历,计算机科学、人工智能、机器学习相关专业背景。 熟悉 ChatGPT、Llama、Claude 等 AI 工具的使用及原理,并具有实际应用经验。 熟练掌握 ChatGPT、Midjourney 等 AI 工具的使用及原理。 负责制定和执行 AI 项目,如 Prompt 设计平台化方法和模板化方法。 了解并熟悉 Prompt Engineering,包括常见的 Prompt 优化策略(例如 CoT、Fewshot 等)。 对数据驱动的决策有深入的理解,能够基于数据分析做出决策。 具有创新思维,能够基于业务需求提出并实践 AI first 的解决方案。 对 AI 技术与算法领域抱有强烈的好奇心,并能付诸实践。 对 AIGC 领域有深入的理解与实际工作经验,保持对 AI 技术前沿的关注。 具备一定的编程和算法研究能力,能应用新的 AI 技术和算法于对话模型生成。 具有一定的编程基础,熟练使用 Python、Git 等工具。 4. 了解产品经理工作: 调研市场、思考需求、转化需求、思考解决方案、设计解决方案、分配任务、进行测试、实现解决方案。 像善用提示词工程的人一样,将需求抽象再具象成产品。 总之,要成为 AI 产品经理,需要不断学习和实践,适应行业的发展和变化。
2025-04-12
请帮我生成一个大三毕业论文的题目,专业是关于计算机应用的,技术栈:Python(Pandas/Matplotlib),MYSQL,生成可视化图表,可生成HTML网站,包含数据分析,需要有最基本的功能,最好与生活中的某些东西联系起来
以下是为您生成的几个与生活相关的计算机应用专业大三毕业论文题目,供您参考: 1. 《基于 Python 和 MySQL 的居民日常消费数据分析及可视化网站构建》 2. 《利用 Python 和 MySQL 分析城市交通流量数据并实现可视化与网站展示》 3. 《基于 Python 和 MySQL 的家庭能源消耗数据分析与可视化网站设计》 4. 《运用 Python 和 MySQL 对校园图书馆借阅数据的分析及可视化网站开发》 5. 《通过 Python 和 MySQL 研究城市空气质量数据的可视化分析与网站实现》
2025-04-11
COE团队需要什么AI能力,比如AI辅助编程;AI部署+和调优;AI智能体;AI提示词; OCR识别
COE 团队可能需要以下 AI 能力: 1. AI 辅助编程:虽然 AI CODING 目前适用于小场景和产品的第一个版本,但在复杂应用中可能存在需求理解错误导致产品出错的情况。 2. AI 部署和调优:涵盖服务器创建、搭建微信机器人到引入 coze API 的全过程,包括 Docker 部署、本地运行、RailWay 部署等多种方式。 3. AI 智能体:从最初只有对话框的 chatbot 到有更多交互方式,低代码或零代码的工作流等场景做得较好。例如以证件照为例,实现了相关智能体和交互。创建智能体工作流包括创建、编辑人设、编排设计等步骤。 4. AI 提示词:在编写系统提示词时需要用{{input}}作为参数引入,以使大模型知道需要生成与输入相关的结果。 5. OCR 识别:未提及相关具体内容。 同时,在图像能力方面,支持图片生成、图片识别、图生图等,可选择 Dal3、stable diffusion、replicate、midjourney、CogView3、vision 模型。具有丰富插件,支持个性化插件扩展,已实现多角色切换、文字险、敏感词过滤、聊天记录总结、文档总结和对话、联网搜索等插件。通过上传知识库文件可自定义专属机器人,作为数字分身、智能客服、私域助手使用,基于 LinkAI 实现。
2025-04-09