Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

ai在商业中的应用

Answer

AI 在商业中的应用广泛,涵盖以下多个领域:

  1. 医疗保健:
    • 医学影像分析,辅助诊断疾病。
    • 加速药物研发,识别潜在药物候选物和设计新治疗方法。
    • 提供个性化医疗方案。
    • 控制手术机器人,提高手术精度和安全性。
  2. 金融服务:
    • 风控和反欺诈,降低金融机构风险。
    • 评估借款人信用风险,辅助贷款决策。
    • 分析市场数据,助力投资决策。
    • 提供 24/7 客户服务,回答常见问题。
  3. 零售和电子商务:
    • 分析客户数据进行产品推荐。
    • 改善搜索结果,提供个性化购物体验。
    • 实现动态定价。
    • 提供聊天机器人服务。
  4. 制造业:
    • 预测机器故障,进行预测性维护。
    • 检测产品缺陷,把控质量。
    • 优化供应链管理。
    • 控制工业机器人,提高生产效率。
  5. 交通运输:(未提及具体应用,暂缺)

此外,在以下七大行业也有商业化应用:

  1. 企业运营:包括日常办公文档材料撰写整理、营销对话机器人、市场分析、销售策略咨询、法律文书起草、案例分析、法律条文梳理、人力资源简历筛选、预招聘、员工培训。
  2. 教育:协助评估学生学习情况、提供职业规划建议、定制化学习内容、论文初稿搭建及审核、帮助低收入国家/家庭获得平等教育资源。
  3. 游戏/媒体:定制化游戏、动态生成 NPC 互动、自定义剧情、开放式结局、出海文案生成、语言翻译、辅助广告投放和运营、数字虚拟人直播、游戏平台代码重构、AI 自动生成副本。
  4. 零售/电商:舆情、投诉、突发事件监测及分析、品牌营销内容撰写及投放、自动化库存管理、自动生成或完成 SKU 类别选择、数量和价格分配、客户购物趋势分析及洞察。
  5. 金融/保险:个人金融理财顾问、贷款信息摘要及初始批复、识别并检测欺诈活动风险、客服中心分析及内容洞察、保险理赔处理及分析、投资者报告/研究报告总结。
  6. 制造业/汽车:生产计划和供应链计划状态查询、产线预测性维保辅助、产品质量分析与溯源、自动驾驶全场景模拟训练及虚拟汽车助手、线上购车品牌和配置对比分析。
  7. 生命科学:研发阶段靶点发现及产品成药性、医学文献内容检索和重点摘要提取、相关法规整理、医药代表培训及知识库建立、分诊导诊助理、诊疗助理、术后护理及复建辅助。

不仅如此,ChatGPT 大模型以及生成式 AI 技术还将在图片、视频、数字人等领域的各种复杂场景中落地,利用海量数据资源和算法实现商业化应用与迭代更新。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:请问 AI 有哪些应用场景?

人工智能(AI)已经渗透到各行各业,并以各种形式改变着我们的生活。以下是一些人工智能的主要应用场景:1.医疗保健:医学影像分析:AI可以用于分析医学图像,例如X射线、CT扫描和MRI,以辅助诊断疾病。药物研发:AI可以用于加速药物研发过程,例如识别潜在的药物候选物和设计新的治疗方法。个性化医疗:AI可以用于分析患者数据,为每个患者提供个性化的治疗方案。机器人辅助手术:AI可以用于控制手术机器人,提高手术的精度和安全性。2.金融服务:风控和反欺诈:AI可以用于识别和阻止欺诈行为,降低金融机构的风险。信用评估:AI可以用于评估借款人的信用风险,帮助金融机构做出更好的贷款决策。投资分析:AI可以用于分析市场数据,帮助投资者做出更明智的投资决策。客户服务:AI可以用于提供24/7的客户服务,并回答客户的常见问题。3.零售和电子商务:产品推荐:AI可以用于分析客户数据,向每个客户推荐他们可能感兴趣的产品。搜索和个性化:AI可以用于改善搜索结果并为每个客户提供个性化的购物体验。动态定价:AI可以用于根据市场需求动态调整产品价格。聊天机器人:AI可以用于提供聊天机器人服务,回答客户的问题并解决他们的问题。4.制造业:预测性维护:AI可以用于预测机器故障,帮助工厂避免停机。质量控制:AI可以用于检测产品缺陷,提高产品质量。供应链管理:AI可以用于优化供应链,提高效率和降低成本。机器人自动化:AI可以用于控制工业机器人,提高生产效率。5.交通运输:

七大行业的商业化应用

企业运营:日常办公文档材料撰写整理;营销对话机器人,市场分析,销售策略咨询;法律文书起草、案例分析、法律条文梳理;人力资源简历筛选,预招聘,员工培训。教育:协助评估学生学习情况,为职业规划提供建议;针对学生情况以及兴趣定制化学习内容;论文初稿搭建及论文审核;帮助低收入国家/家庭通过GPT获得平等的教育资源。游戏/媒体:定制化游戏,动态生成NPC互动,自定义剧情,开放式结局;出海文案内容生成,语言翻译及辅助广告投放和运营;数字虚拟人直播;游戏平台代码重构;AI自动生成副本。零售/电商:舆情、投诉、突发事件监测及分析;品牌营销内容撰写及投放;自动化库存管理;自动生成或完成SKU类别选择、数量和价格分配;客户购物趋势分析及洞察。金融/保险:个人金融理财顾问;贷款信息摘要及初始批复;识别并检测欺诈活动风险;客服中心分析及内容洞察;保险理赔处理及分析;投资者报告/研究报告总结。制造业/汽车:生产计划、供应链计划状态查询;产线预测性维保辅助;产品质量分析与溯源;自动驾驶全场景模拟训练及虚拟汽车助手;线上购车品牌、配置对比分析。生命科学:研发阶段靶点发现及产品成药性;医学文献内容检索,重点摘要提取,相关法规整理;医药代表培训及知识库建立;分诊导诊助理、诊疗助理、术后护理及复建辅助。不仅如此,ChatGPT大模型以及生成式AI技术还将在图片、视频、数字人等领域的各种复杂场景中落地,利用海量的数据资源和算法实现商业化应用与迭代更新。

七大行业的商业化应用

中国OpenAI们“狂飙”200天:一面PPT造模,一面落地应用难|钛媒体深度来源:https://mp.weixin.qq.com/s/yYtsdCkTZYtSciC8ORrqEg企业运营:日常办公文档材料撰写整理;营销对话机器人,市场分析,销售策略咨询;法律文书起草、案例分析、法律条文梳理;人力资源简历筛选,预招聘,员工培训。教育:协助评估学生学习情况,为职业规划提供建议;针对学生情况以及兴趣定制化学习内容;论文初稿搭建及论文审核;帮助低收入国家/家庭通过GPT获得平等的教育资源。游戏/媒体:定制化游戏,动态生成NPC互动,自定义剧情,开放式结局;出海文案内容生成,语言翻译及辅助广告投放和运营;数字虚拟人直播;游戏平台代码重构;AI自动生成副本。零售/电商:舆情、投诉、突发事件监测及分析;品牌营销内容撰写及投放;自动化库存管理;自动生成或完成SKU类别选择、数量和价格分配;客户购物趋势分析及洞察。金融/保险:个人金融理财顾问;贷款信息摘要及初始批复;识别并检测欺诈活动风险;客服中心分析及内容洞察;保险理赔处理及分析;投资者报告/研究报告总结。制造业/汽车:生产计划、供应链计划状态查询;产线预测性维保辅助;产品质量分析与溯源;自动驾驶全场景模拟训练及虚拟汽车助手;线上购车品牌、配置对比分析。生命科学:研发阶段靶点发现及产品成药性;医学文献内容检索,重点摘要提取,相关法规整理;医药代表培训及知识库建立;分诊导诊助理、诊疗助理、术后护理及复建辅助。不仅如此,ChatGPT大模型以及生成式AI技术还将在图片、视频、数字人等领域的各种复杂场景中落地,利用海量的数据资源和算法实现商业化应用与迭代更新。

Others are asking
文生营销图AI
以下是关于文生营销图 AI 的相关教程: Liblibai 简易上手教程: 1. 定主题:确定您需要生成的图片的主题、风格和要表达的信息。 2. 选择 Checkpoint:根据主题选择内容贴近的 Checkpoint,如麦橘、墨幽的系列模型。 3. 选择 lora:寻找与生成内容重叠的 lora,以控制图片效果和质量。 4. 设置 VAE:选择 840000 那一串。 5. CLIP 跳过层:设为 2。 6. Prompt 提示词:用英文写需求,使用单词和短语组合,用英文半角逗号隔开,无需语法和长句。 7. 负向提示词 Negative Prompt:用英文写要避免的内容,同样是单词和短语组合,用英文半角逗号隔开。 8. 采样方法:一般选 DPM++2M Karras,也可参考模型作者推荐的采样器。 9. 迭代步数:选 DPM++2M Karras 时,在 30 40 之间,多了意义不大且慢,少了效果差。 10. 尺寸:根据喜好和需求选择。 11. 生成批次:默认 1 批。 Tusiart 简易上手教程: 1. 定主题:确定图片的主题、风格和要表达的信息。 2. 选择基础模型 Checkpoint:根据主题选择贴近的 Checkpoint,如麦橘、墨幽的系列模型。 3. 选择 lora:寻找与生成内容重叠的 lora,以控制图片效果和质量。 4. ControlNet:用于控制图片中特定的图像,如人物姿态等,属于高阶技能。 5. 局部重绘:下篇再教。 6. 设置 VAE:选择 840000 那一串。 7. Prompt 提示词:用英文写需求,使用单词和短语组合,用英文半角逗号隔开,无需语法和长句。 8. 负向提示词 Negative Prompt:用英文写要避免的内容,同样是单词和短语组合,用英文半角逗号隔开。 9. 采样算法:一般选 DPM++2M Karras,也可参考模型作者推荐的采样器。 10. 采样次数:选 DPM++2M Karras 时,在 30 40 之间,多了意义不大且慢,少了效果差。 11. 尺寸:根据喜好和需求选择。 关于【SD】文生图提示词: 1. 避免使用太大的数值,如 1920x1080,可能导致奇怪构图,可使用高清修复放大图像倍率,记住高宽比主要控制画面比例。 2. 调整好参数后生成图片,若质感不足,可添加标准化提示词,如:,绘图,画笔等,让画面更趋近于固定标准。
2025-02-26
AI LOGO工具
以下是一些生成 Logo 的 AI 产品: 1. Looka:这是一个在线 Logo 设计平台,使用 AI 理解用户的品牌信息和设计偏好,生成多个设计方案供选择和定制。 2. Tailor Brands:AI 驱动的品牌创建工具,通过用户回答问题生成 Logo 选项。 3. Designhill:其 Logo 制作器利用 AI 技术创建个性化设计,用户可选择元素和风格。 4. LogoMakr:提供简单易用的设计工具,用户能拖放设计,利用 AI 建议的元素和颜色方案。 5. Canva:广受欢迎的在线设计工具,提供 Logo 设计模板和元素,有 AI 辅助设计建议。 6. LogoAI by Tailor Brands:Tailor Brands 推出的 AI Logo 设计工具,根据输入快速生成方案。 7. 标小智:中文 AI Logo 设计工具,利用人工智能技术帮助创建个性化 Logo。 这些 AI 产品让无设计背景的用户也能轻松创建专业 Logo。使用时,用户可根据品牌理念和视觉偏好,通过简单交互获得系列方案,并进一步定制优化至满意。 此外,您还可以访问网站的 AI 生成 Logo 工具版块获取更多好用的工具:https://waytoagi.com/category/20 。 在第六期“一起做个 LOGO 吧”活动中,活动时间为 2024 年 6 月 9 日至 2024 年 6 月 16 日。活动目标包括探索制作 LOGO 方法、创造独特生成技巧、制作代表学习成果的作品。参与方式为使用 SD 等 AI 工具出图并将作品发送至 SD 学社微信群。会创建在线文档收集作品,6 月 16 日举行群内投票选出前三名,注意事项包括确保设计原创、允许作品公开展示以及在截止日期前提交。 在 AI 制作游戏 PV《追光者》中,故事背景创作阶段结合 chatGPT 发散制作游戏世界观,引导 ChatGPT 用分镜形式描述,使用 new bing 共创细致的故事分镜。生图阶段利用 ChatGPt 制作 midjourney 提示词工具,进入 midjourney 绘图包括制作 logo。还统一了 MJ 风格描述词,建立 AI 描述词模板,运用 midjourney 尝试制作不同风格 logo,最后用 PS 合成。
2025-02-26
我想知道ai学习路径
以下是为您提供的 AI 学习路径: 一、了解 AI 基本概念 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 在「」中,您可以找到为初学者设计的课程,特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)按照自己的节奏学习,并争取获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛,涵盖图像、音乐、视频等。您可以根据自身兴趣选择特定模块深入学习,比如掌握提示词的技巧,这上手容易且实用。 四、实践和尝试 理论学习后,实践是巩固知识的关键。您可以尝试使用各种产品进行创作,知识库中也有很多实践后的作品和文章分享,欢迎您在实践后进行分享。 五、体验 AI 产品 与现有的 AI 产品互动,如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人,了解其工作原理和交互方式,获得对 AI 实际应用表现的第一手体验。 六、技术研究方向 1. 数学基础:线性代数、概率论、优化理论等。 2. 机器学习基础:监督学习、无监督学习、强化学习等。 3. 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 4. 自然语言处理:语言模型、文本分类、机器翻译等。 5. 计算机视觉:图像分类、目标检测、语义分割等。 6. 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 7. 科研实践:论文阅读、模型实现、实验设计等。 七、应用方向 1. 编程基础:Python、C++等。 2. 机器学习基础:监督学习、无监督学习等。 3. 深度学习框架:TensorFlow、PyTorch 等。 4. 应用领域:自然语言处理、计算机视觉、推荐系统等。 5. 数据处理:数据采集、清洗、特征工程等。 6. 模型部署:模型优化、模型服务等。 7. 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。 希望以上内容对您有所帮助。
2025-02-26
AI 自动化和工作流编排有什么好的工具和方案
以下是一些关于 AI 自动化和工作流编排的工具和方案: 1. RPA 软件:很早就出现在工作流编排领域,目标是使基于桌面的业务流程和工作流程实现自动化,现在越来越多的 RPA 软件带上了 LLM。 2. ComfyUI:将开源绘画模型 Stable Diffusion 进行工作流化操作模式,用户在流程编辑器中配置 pipeline,通过不同节点和连线完成模型操作和图片生成,其 DSL 配置文件支持导出导入,提高了流程的可复用性,降低了时间成本。 3. Dify.AI:工作流设计语言与 ComfyUI 有相似之处,定义了一套标准化的 DSL 语言,方便使用导入导出功能进行工作流复用。 4. Large Action Model:采用“通过演示进行模仿”的技术,检查人们与界面的互动并模仿操作,从用户提供的示例中学习。 5. Auto GPT/Agent/Baby AGI:基于 GPT4 语言模型的开源应用程序,用户输入目标后可自主执行任务、递归地开发和调试代码。能用于自动化任务、创建自主的 AI 代理、完成各种任务等,访问地址为: 。 此外,在工作流编排中还涉及到一些概念和技术: 1. 短期记忆和长期记忆:短期记忆将所有的上下文学习看成是利用模型的短期记忆来学习;长期记忆通过外部的向量存储和快速检索来存储和召回信息。 2. 工具:学会调用外部不同类型 API 来获取模型缺少的额外信息、代码执行能力、访问专有信息源等。 3. 动作:大模型结合问句、上下文的规划、各类工具,最终决策出需要执行的动作。 4. Agentic Workflow 可以从提升效率、提高质量、节省时间的角度思考,通过将复杂任务分解成较小步骤,融入更多人类参与到流程中的规划与定义,减少对 Prompt Engineering 和模型推理能力的依赖,提高 LLM 应用面向复杂任务的性能。 但需要注意的是,Agentic Workflow 虽然美好,但使用的用户目前较少,可能是出现周期、工作流使用的上手难度等因素导致,并且在复杂流程上的开发并不是那么稳定可靠。
2025-02-26
AI教程
以下为为您提供的 AI 教程相关内容: 1. 五步学会用 AI 制作动画视频播客:五个步骤教您从零到一制作动画版视频播客,适合有一定技术基础的朋友,轻松上手创作动画视频!相关链接: 2. Poe AI 平台:这是一个支持与多个智能 AI 机器人(如 GPT4 等)进行实时在线交流的聊天网站。注册账号后可免费使用,部分功能需付费订阅。不同 AI 机器人有不同特点,可按需选择。官网地址是:https://poe.com/ ,可在官网帮助中心找到具体教程。
2025-02-26
有哪些AI可以协助生成PPT?
以下是一些可以协助生成 PPT 的 AI 工具: 1. Gamma:在线 PPT 制作网站,通过输入文本和想法提示快速生成幻灯片,支持嵌入多媒体格式,如 GIF 和视频,网址:https://gamma.app/ 2. 美图 AI PPT:由美图秀秀开发团队推出,通过输入简单文本描述生成专业 PPT 设计,包含丰富模板库和设计元素,网址:https://www.xdesign.com/ppt/ 3. Mindshow:AI 驱动的 PPT 辅助工具,提供自动布局、图像选择和文本优化等智能设计功能,网址:https://www.mindshow.fun/ 4. 讯飞智文:科大讯飞推出的 AI 辅助文档编辑工具,利用语音识别和自然语言处理技术优势,提供智能文本生成、语音输入、文档格式化等功能,网址:https://zhiwen.xfyun.cn/ 此外,还有以下相关网站: 1. https://kimi.ai 选 PPT 助手,暂时免费效果好。 2. https://tome.app ,AI 配图效果好。 3. https://chatppt.com ,自动化程度高。 4. https://wenku.baidu.com ,付费效果好。
2025-02-26
我如何AI应用产品创业思路 目前有商业和项目概念没有IT基础
以下是为您提供的关于 AI 应用产品创业思路的相关内容: 从过去的经验来看,2014 年是移动互联网的红利时代,当时有很多创业者和投资人在深圳的咖啡馆交流项目。有人参与移动互联网创业,做了一款帮人养成好习惯的 APP,积累了百万用户并拿到投资,但因商业化思考较浅等原因项目折戟。 对于现在的 AI 应用创业,有观点认为这一波 AI 更利好大厂,因为创业公司缺乏数据和场景。但也有观点指出,任何技术进步,现有的大公司虽会获利,但创业公司能创造新的价值和场景。以移动互联网为例,最大的四个应用如移动端的 IM 工具、打车、外卖、短视频,除微信外都来自创业公司,且新的技术优势应是解决新问题,而非做更好的上一代产品。此外,AI 时代有利于创业者的一个好处是,利用大模型的能力,创业公司人员更精简,很多 AI 应用创业者仅几人就能完成产品开发上线测试。而且从应用层面看,2B 的应用公司在中国可能会迎来跨越式发展的机会。 如果您没有 IT 基础但有商业和项目概念,建议您: 1. 深入研究目标市场和用户需求,找准新的问题和价值点。 2. 关注创新的应用场景,避免与大厂在已有产品上竞争。 3. 充分利用大模型的能力,优化团队结构,提高效率。 4. 考虑与有 IT 技术能力的团队或个人合作。
2025-02-25
我想使用ai优化商业计划书,给我推荐一个模型
以下为您推荐一些可用于优化商业计划书的模型: 1. Anthropic:计划发布可调节计算成本的混合 AI 模型,支持快速响应与深度推理自由切换,可按需求灵活调整计算资源。在某些商业编程任务上,推理能力优于 OpenAI o3minihigh,特别擅长处理大型代码库。采用基于 token 的滑动比例,可动态调整计算强度。参考链接: 2. Cursor AI:具有 Chat、Composer、Agent 三种模式。Chat Mode 适用于实时调试、代码问题解答、项目代码库查询;Composer Mode 可跨多个文件修改代码,适合复杂任务与模板化编程;Agent Mode 为全自动模式,可执行大型代码重构、自动化复杂任务。参考链接: 3. ChatGPT:现已支持个性化定制,可设置名字、职业、对话风格(话唠、直接、鼓舞等),自定义 AI 交互方式。支持功能选择,如网页搜索、DALL·E、代码、画布、高级语音等。参考链接: 4. 大模型选择如 Kimi、Claude 等,在脚本创作方面效果能满足要求,按需选择即可。对于科学上网困难的小伙伴,优先选择免费好用的 kimi(https://kimi.moonshot.cn/),有条件的话选择老牌的功能更强大的 chatgpt(https://chatgpt.com/)也可以。Claude 在脚本创作方面有优势。 在商业化过程中,还可以考虑结合企业私有数据与 RAG 模型的私有化部署,如有特殊需求,进行模型的 Finetuning(微调)以优化性能。基础模型主要负责提供推理提示,而 RAG 则用于整合新知识,实现快速迭代和定制化信息检索。
2025-02-25
传统软件行业融合AI的商业模式
传统软件行业融合 AI 的商业模式具有多种可能性和变革方向: 1. “AI 原生”模式:基于 AI 的能力再造商业模式,而非套用现有流程。 2. To AI 的商业模式:包括模型市场、合成数据、模型工程平台、模型安全等方面。 3. 基于国产芯片的软硬件联合优化,固件生态存在明确机会。 4. 端上智能有望成为全天候硬件 24x7 收集数据,具有较大想象空间。 5. 对于 SaaS 生态的影响: 认知架构带来巨大工程挑战,将模型基础能力转化为成熟可靠的端到端解决方案可能比想象中复杂。 可能引发业务模式全面变革,如从工程、产品和设计部门的瀑布式开发转变为敏捷开发和 A/B 测试,市场策略从自上而下的企业销售转向自下而上的产品驱动增长,商业模式从高价格销售转向基于使用的定价模式。 知名投资机构 Nfx 分析指出,AI 正在强制逆转 SaaS 从“软件即服务”转变为“服务即软件”,软件既能组织任务也能执行任务,传统劳动力市场最终将和软件融合成为新市场。降低企业在知识工作者上的支出,提高在软件市场的支出。企业组织中提供 AI 劳动力的产品有“AI 同事(雇佣)”等形式。
2025-02-21
AI产业商业模式
目前 AI 产业的商业模式仍在不断探索和发展中。 阻碍 AI 发展的因素包括产品体验的颠覆性和完成度不足、技术门槛相对较低以及商业模式尚未明确。例如,AI 修图新应用与移动互联网时代的“美图秀秀”相比,缺乏颠覆性创新,且主流修图产品也在引入 AI 功能,新应用难以脱颖而出。妙鸭是一个特例,其“先试用后付费”策略和 9.9 元定价吸引用户,且背靠大厂有资源优势,但市场空间和后续发展需观察。 传统移动互联网时代成熟的 APP 商业模式是免费吸引用户,再通过广告等方式间接收入,但当前阶段可能不再适用于 AI 应用,ToC 创业公司早期需敢于向用户收费。 Bret Taylor 认为做 AI 生意像咖啡产业,训练基础大模型如同卖咖啡豆,利润受限;开发 AI 应用如同在机场卖拿铁,能按需求定价,利润空间更大。 “AI 原生”是基于 AI 的能力再造商业模式,而非套用现有流程。To AI 的商业模式可能包括模型市场、合成数据、模型工程平台、模型安全等。 未来可能会出现全新的商业模式和创新打法。
2025-02-21
AI商业模式
以下是关于 AI 商业模式的相关内容: 1. To AI 的商业模式可能更确定的方面包括:模型市场、合成数据、模型工程平台、模型安全。 2. 基于国产芯片的软硬件联合优化 固件生态是明确的机会。 3. 端上智能目前最大的想象空间是成为全天候硬件 24x7 收集数据。 Character.ai 覆盖了模型的研发、数据、应用等整个价值链,其商业模式注重在整个价值链上积累数据,并利用数据来不断优化用户体验,这种模式能够为公司带来持续的竞争优势和壁垒,从而在市场上获得更大的份额。 目前 AI 行业发展存在一些阻碍,如产品体验的颠覆性和完成度不足、技术门槛相对较低,以及商业模式尚未明确。例如,AI 修图新应用与移动互联网时代的“美图秀秀”相比,缺乏颠覆性创新。妙鸭这款产品在 2024 年凭借独特的产品功能和用户体验,收获了大量用户的关注和使用,其“先试用后付费”的策略和 9.9 元的定价具有吸引力,且背靠互联网大厂具备资源优势,但市场空间和后续发展潜力仍需观察。 相较 AI 类应用,传统移动互联网时代 APP 的商业模式是通过免费吸引用户,再通过广告等方式实现间接收入,但在当前阶段,这种模式或许不再适用于 AI 应用,To C 创业公司在产品发布早期阶段需做好向用户收费的准备。未来可能会出现全新的商业模式和创新打法。 此外,“AI 原生”是基于 AI 的能力来再造商业模式,而非用 AI 套用现有流程。
2025-02-21
AI搜索如何商业变现
AI 搜索的商业变现方式主要有以下几种: 1. 开放接口 API:将联网判断、意图识别、问题改写、信息源检索等步骤封装进黑盒,导出标准 API,让 ChatBot 类产品快速集成。开放 API 后,ChatBot 类应用只需修改 API 的域名前缀即可集成联网检索功能,这对 AI 搜索产品自身而言,增加了面向小 B 的营收途径。 2. 自定义信息源 Source:允许用户自定义信息源,满足个性化搜索需求。比如允许第三方创作者通过 Form 表单填写信息源的相关信息,调试通过后完成集成。 在 AI 时代,一些优秀的 AI 搜索产品如秘塔搜索(https://metaso.cn/)、Perplexity(https://www.perplexity.ai/?loginsource=oneTapHome)已展现出强大的搜索能力。同时,大型科技公司在 AI 搜索领域的动作也备受关注,如微软和苹果自愿放弃 OpenAI 董事会观察员席位,监管机构关注大型科技公司与初创企业的关系。人工智能驱动的搜索虽已开始出现成效,但也存在可靠性等问题。
2025-02-11
Deepseek目前已在电商行业应用落地的场景有哪些?
DeepSeek 目前已在电商行业应用落地的场景包括: 电商商品策划:如 。 商品链接分析:如 。 电商产品上架规划:如 。
2025-02-26
DeepSeek应用场景
DeepSeek 的应用场景包括: 1. 智能对话:能够进行自然流畅的对话交流。 2. 文本生成:生成各种类型的文本内容。 3. 语义理解:准确理解文本的语义。 4. 计算推理:进行相关的计算和推理。 5. 在实际场景中的应用,如工作、学习、生活和社交等方面,帮助解决各种问题。 在实际使用中,DeepSeek 在文字能力方面表现突出,尤其在中文场景中符合日常写作习惯,但在专业论文总结方面稍弱。数学能力经过优化表现不错,编程能力略逊于 GPT(据用户反馈)。
2025-02-26
基于大模型的RAG应用开发与优化
基于大模型的 RAG 应用开发与优化具有以下特点: 优势: 1. 灵活性:可根据需求和数据源选择不同组件和参数,还能使用自定义组件,只要遵循 LangChain 的接口规范。 2. 可扩展性:能利用 LangChain 的云服务部署和运行应用,无需担心资源和性能限制,也能使用分布式计算功能加速应用。 3. 可视化:通过 LangSmith 可视化工作流程,查看输入输出及组件性能状态,还能用于调试和优化,发现解决问题和瓶颈。 应用场景: 1. 专业问答:构建医疗、法律或金融等专业领域的问答应用,从专业数据源检索信息帮助大模型回答问题。 2. 文本摘要:构建新闻或论文等的摘要应用,从多个数据源检索相关文本帮助大模型生成综合摘要。 3. 文本生成:构建诗歌、故事等生成应用,从不同数据源检索灵感帮助大模型生成更有趣和创意的文本。 调优实践: 1. 更换大模型:从 ChatGLM26B 替换成 baichuan213b,针对特定场景,后者性能提升一倍左右。 2. 更换 embedding 模型:将 embedding 模型从 LangChain Chatchat 默认的 m3ebase 替换为 bgelargezh,后者更优。 3. 测试不同 Top k 的值:比较 Top 5、Top 10、Top 15 的结果,发现 Top 10 时效果最优。 4. 对文档名称进行处理:人工重命名文件对结果提升不明显,但勾选【开启中文标题加强】选项后,回答的无关信息减少,效果有所提升。目前效果虽有提升,但仍未达到可用水平,后续将尝试其他调优策略。
2025-02-25
coze平台中的数据库应用,怎么判断数据是那个用户的,插入数据库节点时,需要明确用户uuid吗
在 Coze 平台中判断数据属于哪个用户,插入数据库节点时通常需要明确用户的唯一标识,如用户 UUID 或类似的唯一标识。 例如,在自动总结公众号内容并定时推送到微信的工作流中,考虑到可能有多个用户同时使用,使用了 server 酱的 sendkey 作为用户的唯一标识(重命名为 suid)。在数据库节点中查询是否已经推送过文章时,需要文章的 url 和用户的 suid 这两个值来判断。 在增加记账记录的工作流中,通过大语言模型将用户输入的非结构化数据转变为结构化数据存入数据库时,也需要明确相关的用户标识。 在 COZE 工作流中,数据库节点的设置包括输入参数的设置(如参数名、参数值、引用来源)以及在 SQL 输入中添加相应的代码。 总之,明确用户标识对于准确判断数据归属和进行数据库操作是很重要的。
2025-02-25
在办公场景中,deepseek有哪些最新的应用场景?
在办公场景中,DeepSeek 有以下最新的应用场景: 1. 作为赋能职场的多场景 AI 工具,支持从创意到实现的全流程智能化服务,能快速将创意转化为高质量视频,具备角色一致性技术与分镜自动成片功能,并且支持美学意象风格短片创作。 2. 提供基础模型和深度思考模型两种模式,分别适用于高效便捷任务和复杂推理分析任务。 3. 可用于制作可视化图表、PPT 大纲及设计海报等,通过智能体框架实现人机高效协作。 相关报告发布在,如: 民生证券:《 华创证券:《 此外,清华大学陶炜博士生团队撰写的《》详细介绍了 DeepSeek 的应用场景,包括智能对话、文本生成、语义理解、计算推理等,并通过多个实际场景(如工作、学习、生活和社交)展示了如何利用 DeepSeek 解决问题,还强调了提示语设计的重要性,指出通过精准的提示语可以引导 AI 生成高质量的内容,并提出了提示语设计的策略和技巧。
2025-02-25