Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

RAG是什么

Answer

RAG(Retrieval-Augmented Generation)即检索增强生成,是一种结合检索和生成能力的自然语言处理架构,旨在为大语言模型(LLM)提供额外的、来自外部知识源的信息。

大模型需要 RAG 进行检索优化,是因为大模型存在一些缺点,如:

  1. 无法记住所有知识,尤其是长尾知识,受限于训练数据和学习方式,对长尾知识的接受能力不高。
  2. 知识容易过时且不好更新,微调效果不佳且有丢失原有知识的风险。
  3. 输出难以解释和验证,存在内容黑盒、不可控及受幻觉干扰等问题。
  4. 容易泄露隐私训练数据。
  5. 规模大,训练和运行成本高。

而 RAG 具有以下优点:

  1. 数据库对数据的存储和更新稳定,不存在模型学不会的风险。
  2. 数据库的数据更新敏捷,可解释,且对原有知识无影响。
  3. 数据库内容明确、结构化,加上模型的理解能力,能降低大模型输出出错的可能。
  4. 便于管控用户隐私数据,且可控、稳定、准确。
  5. 可降低大模型的训练成本,新知识存储在数据库即可,无需频繁更新模型。

RAG 的核心流程是根据用户提问,从私有知识中检索到“包含答案的内容”,然后把“包含答案的内容”和用户提问一起放到 prompt(提示词)中,提交给大模型,此时大模型的回答就会充分考虑到“包含答案的内容”。其最常见应用场景是知识问答系统。

一个 RAG 的应用可抽象为 5 个过程:

  1. 文档加载:从多种不同来源加载文档。
  2. 文本分割:把文档切分为指定大小的块。
  3. 存储:包括将切分好的文档块进行嵌入转换成向量的形式,以及将向量数据存储到向量数据库。
  4. 检索:通过检索算法找到与输入问题相似的嵌入片。
  5. 输出:把问题以及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示生成更合理的答案。
Content generated by AI large model, please carefully verify (powered by aily)

References

问:RAG 是什么?

RAG(Retrieval-Augmented Generation),即检索增强生成,是一种结合检索和生成能力的自然语言处理架构,它旨在为大语言模型(LLM)提供额外的、来自外部知识源的信息。简单来说,就是通过检索的模式,为大语言模型的生成提供帮助,从而使大模型生成的答案更符合要求。[heading2]为什么LLM需要RAG?[content]众所周知,大模型已经在很多领域和问题下都取得了很好的效果,那为什么还需要RAG进行检索优化呢?[heading3]LLM的缺点[content]1.LLM无法记住所有知识,尤其是长尾的。受限于训练数据、现有的学习方式,对长尾知识的接受能力并不是很高;长尾数据是指数据集中某些类别数量较少,而其他类别样本数较多的不平衡“长尾”状态。例如在自然语言处理中,一些少见的词汇出现频率很低,而常见的词汇出现频率很高。2.LLM的知识容易过时,而且不好更新。只是通过微调,模型的接受能力其实并不高而且很慢,甚至有丢失原有知识的风险;3.LLM的输出难以解释和验证。一方面最终的输出的内容黑盒且不可控,另一方面最终的结果输出可能会受到幻觉之类的问题的干扰;4.LLM容易泄露隐私训练数据。用用户个人信息训练模型,会让模型可以通过诱导泄露用户的隐私;5.LLM的规模大,训练和运行的成本都很大。[heading3]RAG的优点[content]1.数据库对数据的存储和更新是稳定的,不像模型会存在学不会的风险。2.数据库的数据更新可以做得很敏捷,增删改查可解释,而且对原有的知识不会有影响。3.数据库的内容是明确、结构化的,加上模型本身的理解能力,一般而言数据库中的内容以及检索算法不出错,大模型的输出出错的可能就大大降低。4.知识库中存储用户数据,为用户隐私数据的管控带来很大的便利,而且可控、稳定、准确。5.数据库维护起来,可以降低大模型的训练成本,毕竟新知识存储在数据库即可,不用频繁更新模型,尤其是不用因为知识的更新而训练模型。

RAG性能提升策略和评估方法(产品视角)

作者:牛大局原文:[RAG性能提升策略和评估方法(产品视角)](https://iac2rhlh02p.feishu.cn/wiki/WL4Lwx5dyigl4zkZQojc7esQnWf)[heading1]一、前言[content]相信经过一年的知识沉淀,RAG是什么大家都不陌生了。RAG是检索增强生成(Retrieval-Augmented Generation)的缩写,它是一种结合了检索模型和生成模型的技术。其核心目的是通过某种途径把知识告诉给AI大模型,让大模型“知道”我们的私有知识,变得越来越“懂”我们。RAG的核心流程是根据用户提问,从私有知识中检索到“包含答案的内容”,然后把“包含答案的内容”和用户提问一起放到prompt(提示词)中,提交给大模型,此时大模型的回答就会充分考虑到“包含答案的内容”。RAG的最常见应用场景知识问答系统:RAG可以用于构建问答系统,用户提出问题,RAG模型从大规模的文档集合中检索相关的文档,然后生成回答。

手把手教你本地部署大模型以及搭建个人知识库

因为利用大模型的能力搭建知识库本身就是一个RAG技术的应用。所以在进行本地知识库的搭建实操之前,我们需要先对RAG有一个大概的了解。以下内容会有些干,我会尽量用通俗易懂的描述进行讲解。我们都知道大模型的训练数据是有截止日期的,那当我们需要依靠不包含在大模型训练集中的数据时,我们该怎么做呢?实现这一点的主要方法就是通过检索增强生成RAG(Retrieval Augmented Generation)。在这个过程中,首先检索外部数据,然后在生成步骤中将这些数据传递给LLM。我们可以将一个RAG的应用抽象为下图的5个过程:文档加载(Document Loading):从多种不同来源加载文档。LangChain提供了100多种不同的文档加载器,包括PDF在内的非结构化的数据、SQL在内的结构化的数据,以及Python、Java之类的代码等文本分割(Splitting):文本分割器把Documents切分为指定大小的块,我把它们称为“文档块”或者“文档片”存储(Storage):存储涉及到两个环节,分别是:将切分好的文档块进行嵌入(Embedding)转换成向量的形式将Embedding后的向量数据存储到向量数据库检索(Retrieval):一旦数据进入向量数据库,我们仍然需要将数据检索出来,我们会通过某种检索算法找到与输入问题相似的嵌入片Output(输出):把问题以及检索出来的嵌入片一起提交给LLM,LLM会通过问题和检索出来的提示一起来生成更加合理的答案[heading2]文本加载器(Document Loaders)[content]文本加载器就是将用户提供的文本加载到内存中,便于进行后续的处理

Others are asking
RAG
RAG(RetrievalAugmented Generation,检索增强生成)是一种结合检索和生成能力的自然语言处理架构。 通用语言模型通过微调可完成常见任务,而更复杂和知识密集型任务可基于语言模型构建系统,访问外部知识源来实现。Meta AI 研究人员引入 RAG 来完成这类任务,它将信息检索组件和文本生成模型结合,可微调且内部知识修改高效,无需重新训练整个模型。 RAG 接受输入后会检索相关支撑文档并给出来源,与原始提示词组合后送给文本生成器得到最终输出,能适应事实随时间变化的情况,让语言模型获取最新信息并生成可靠输出。 LLM 存在一些缺点,如无法记住所有知识尤其是长尾知识、知识容易过时且不好更新、输出难以解释和验证、容易泄露隐私训练数据、规模大导致训练和运行成本高。而 RAG 具有数据库存储和更新稳定、数据更新敏捷且可解释、降低大模型输出出错可能、便于管控用户隐私数据、降低大模型训练成本等优点。 在 RAG 系统开发中存在 12 大痛点及相应的解决方案。
2025-02-24
rag 模型微调
RAG(检索增强生成)模型微调相关知识如下: 通用语言模型通过微调可完成常见任务,如分析情绪和识别命名实体。对于更复杂和知识密集型任务,可基于语言模型构建系统并访问外部知识源。Meta AI 引入的 RAG 方法把信息检索组件和文本生成模型结合,可微调且内部知识修改高效,无需重新训练整个模型。 RAG 接受输入并检索相关支撑文档,给出来源,与输入原始提示词组合后送给文本生成器得到输出,能适应事实变化,获取最新信息并生成可靠输出。 通用的 RAG 微调方法如 Lewis 等人(2021)提出的,使用预训练的 seq2seq 作为参数记忆,用维基百科的密集向量索引作为非参数记忆。 在微调阶段: 检索器微调的常用方法包括直接微调、添加可训练的 Adapter 模块、LSR、LLM Reward RL。 生成器微调的主要方法包括直接微调、GPT4 蒸馏、基于反馈的强化学习。 协同微调是在 RAG 系统中同时对检索器和生成器进行微调,如 RADIT 分别对 LLM 和检索器进行微调。 同时,RAG 提高了嵌入模型质量,传统 RAG 解决方案中的问题也得到解决。
2025-02-24
siliconflow可以搭建rag知识库吗
SiliconFlow 本身并不能直接搭建 RAG 知识库。但一般搭建 RAG 知识库的步骤通常包括以下方面: 1. 准备数据:收集需要纳入知识库的文本数据,包括文档、表格等格式,并对数据进行清洗、分段等预处理,确保数据质量。 2. 创建知识库: 访问相关平台的知识库索引,如阿里云百炼,单击创建知识库。在创建知识库界面填入知识库名称与描述。 选择文件,类目位置单击默认类目,文件名称选择准备好的数据文件。 进行数据处理,使用默认的智能切分或根据需求选择合适的处理方式。 3. 配置相关设置:如在 Dify 中提供了三种索引方式供选择,包括高质量模式、经济模式和 Q&A 分段模式,可根据实际需求选择合适的索引方式。 4. 集成至应用:将创建好的数据集集成到相应的应用中,作为应用的上下文知识库使用,并在应用设置中配置数据集的使用方式。 5. 持续优化:收集用户反馈,对知识库内容和索引方式进行持续优化和迭代,定期更新知识库,增加新的内容以保持时效性。 需要注意的是,不同的平台和工具在具体操作上可能会有所差异。
2025-02-24
搭建rag
搭建 RAG 主要包括以下步骤: 1. 导入依赖库:加载所需的库和模块,如 feedparse 用于解析 RSS 订阅源,ollama 用于在 python 程序中跑大模型,使用前需确保 ollama 服务已开启并下载好模型。 2. 从订阅源获取内容:通过特定函数从指定的 RSS 订阅 url 提取内容,若需接收多个 url 稍作改动即可。然后用专门的文本拆分器将长文本拆分成较小的块,并附带相关元数据,如标题、发布日期和链接,最终合并成列表返回用于后续处理。 3. 为文档内容生成向量:使用文本向量模型 bgem3,从 hf 下载好模型后放置在指定路径,通过函数利用 FAISS 创建高效的向量存储。 4. 了解 RAG 概念:大模型训练数据有截止日期,当需要依靠不在训练集中的数据时,通过检索增强生成 RAG。RAG 应用可抽象为 5 个过程,包括文档加载(从多种来源加载)、文本分割(切成指定大小的块)、存储(嵌入转换为向量形式并存入向量数据库)、检索(通过检索算法找到相似嵌入片)、输出(问题和检索出的嵌入片提交给 LLM 生成答案)。 5. LangChain 和 RAG 的结合:LangChain 是专注于大模型应用开发的平台,提供一系列组件和工具构建 RAG 应用。包括数据加载器(将数据转换为文档对象)、文本分割器(分割文档)、文本嵌入器(将文本转换为嵌入)、向量存储器(存储和查询嵌入)、检索器(根据文本查询返回相关文档对象)、聊天模型(生成输出消息)。使用 LangChain 构建 RAG 应用的一般流程如下。
2025-02-24
关于RAG和知识库的应用
RAG(检索增强生成,Retrieval Augmented Generation)是一种利用大模型能力搭建知识库的技术应用。当需要依靠不包含在大模型训练集中的数据时,可通过该技术实现。 RAG 的应用可抽象为以下 5 个过程: 1. 文档加载(Document Loading):从多种不同来源加载文档,如 PDF 等非结构化数据、SQL 等结构化数据以及 Python、Java 之类的代码等。LangChain 提供了 100 多种不同的文档加载器。 2. 文本分割(Splitting):文本分割器把 Documents 切分为指定大小的块,称为“文档块”或“文档片”。 3. 存储(Storage):涉及两个环节,一是将切分好的文档块进行嵌入(Embedding)转换成向量的形式,二是将 Embedding 后的向量数据存储到向量数据库。 4. 检索(Retrieval):数据进入向量数据库后,通过某种检索算法找到与输入问题相似的嵌入片。 5. Output(输出):把问题以及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示生成更加合理的答案。 离线数据处理的目的是构建知识库这本“活字典”,知识会按照某种格式及排列方式存储在其中等待使用。在线检索则是利用知识库和大模型进行查询的过程。以构建智能问答客服为例,可了解 RAG 所有流程中的 What 与 Why。 相关资源: 文本加载器:将用户提供的文本加载到内存中,便于后续处理。 海外官方文档:https://www.coze.com/docs/zh_cn/knowledge.html 国内官方文档:https://www.coze.cn/docs/guides/use_knowledge
2025-02-24
ragflow
RAGflow 能力拆解: 文档拆分方式: 通用模式:主要参考每个块的 token 数量,同时考虑语意完整性,切分段落点通常在句号或叹号等完整句子结束处。拆分结果和 langchain 的拆分大同小异。 Q&A 问答对:将左边内容加上“问题:”,右边内容加上“回答:”,数据清洗工作量大。 简历:解析容易失败,需要匹配关键词才能解析,建议官方给出简历模板。 手册:一整段文字提取,分割处在页面分页、段落分段处,块大小通常较大。 表格:拆分后每一行被当成一个块,第一行的表头插入到每一块头部。对没有特殊字符的表格信息处理较好,对图片内的公式做了 OCR 检测。 数据清洗:RAGflow 提供分段后的数据处理,可自行添加、修改数据或为数据加标签。测试发现,RAGflow 召回会同时使用向量相似度和关键词相似度并加权得到混合相似度,关键词相似度不仅匹配文本段内容还匹配关键词标签内容,单个实体在关键词中出现即为 100%。需要在检索获得的内容块中同时包含“问题信息”和“答案信息”,大模型才能解答。RAGflow 没提供对外接口,做聊天或其他应用时不方便。 大模型 RAG 问答行业最佳案例及微调、推理双阶段实现模式:基于模块化RAG 自定义 RAG Flow: 原创刘焕勇老刘说 NLP 于 2024 年 1 月 29 日 18:31 发表于北京。在上一篇文章中介绍了模块化RAG 的相关工作,重点论述了每个模块中的构成细节。本文将从三个方面深入探讨 RAG Flow 的设计思路,分别是典型的 RAG Flow 模式、特定的 RAG 流实现以及最佳的行业案例。在典型的 RAG Flow 模式方面,将介绍 3 种微调阶段模式和 4 种推理阶段模式供大家参考思考。
2025-02-22