Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

coze知识库是否稳定且保密

Answer

Coze 知识库目前存在一些不稳定的情况。例如,在国内版中,某些官方和第三方插件的 API 调用及返回结果不太稳定,可能导致部分信息无法完全显示。但对于以问答为主的客服场景,其表现相对稳定。同时,目前存在不稳定版本,需要不断调试完善。关于保密方面,文中未提及相关内容。

Content generated by AI large model, please carefully verify (powered by aily)

References

【智能体】用Coze在微信里搭建一个机器人,还能挖掘销售线索

网址:Coze.cn2、创建[heading2]2、人设与回复逻辑设置[content][heading2]3、创建知识库[content]选择文本创建知识库选择飞书,因为我的很多资料都在飞书里面存着[heading3]3.1飞书知识库[content]在飞书里面选择对应的文件夹,一次做多智能选择20个文件(如果文件大于20个可以多建几个知识库)可以选择自动进行数据清洗,数据清洗不是要不数据清楚,而是把数据进行类结构化整理数据清洗进度内容中的图片资料也会保留测试对话,基本反馈正常,目前coze存在不稳定版本,需要不断调试完善。[heading3]3.2 Excel知识库[content]同时也可以增加其他形式的知识库上传表格的知识库不要过于复杂,不要有合并表格情况,同时系统不认不同的Sheet数据处理完成就显示100%进度加工出来的数据,点击添加Bot,就增加到知识库中测试发布测试返回[heading3]3.3网页知识库[content]选择有自动采集和手动采集两种方式,手动采集需要安装插件,操作稍微有点小复杂,等下节课程我们专门分享。这里我们选择批量添加,写入画小二官网的地址https://www.huaxiaoer.com.cn/这里你可以根据需求添加自己的网站然后就将网站所有的页面都扫描出来,点击确认。将全站数据解析并保存到知识库里面按照默认自动清洗数据数据清洗进度将网站所有数据清洗出来将网站添加到知识库里面

这可能是讲 Coze 的知识库最通俗易懂的文章了

1."猫咪喜欢吃各种各样的食物,包括鱼、鸡肉和干粮。"2."猫咪的饮食习惯取决于它们的年龄、健康状况和品种。"3."幼猫需要更多的蛋白质,而成年猫则需要均衡的营养。"4."确保猫咪的饮食中包含足够的水分非常重要,以避免肾脏问题。"假设用户查询:“猫咪的饮食习惯是什么?”合理的文档切割会让系统返回如下更完整的结果:文档块2:“猫咪的饮食习惯取决于它们的年龄、健康状况和品种。”文档块3:“幼猫需要更多的蛋白质,而成年猫则需要均衡的营养。”这样,用户得到的回答是连贯且完整的。我希望你可以通过上面这个例子了解文档切割对于RAG的重要性,那我们该如何将文档切割的更合理呢?各个免费的平台一般都提供了两种文档切割方式,分别是:智能切割:由系统通过上下文理解进行切割手动切割:用户可以指定固定的分隔符来对文档进行切割如果我们想通过利用Coze等免费平台搭建知识库,在当下的技术水平下,智能切割并不是一个很好的方式,因为目前来讲Coze等免费平台提供的智能切割方式效果一般。那是不是Coze的知识库就完全不能用了?当然不是,对于某一个业务场景,RAG的表现都是比较稳定的,那就是以问答为主的客服场景。这里最主要的原因就是问答场景的格式非常固定,那就是问答对,只要我们在切割的时候将一个问答对切成一个文档片,那么在检索的时候效果就会非常好。这里给大家一个QA问答对的格式:

Coze 全方位入门剖析 - 免费打造自己的 AI Agent(国内版)

接下来,我们来测试下我的AI Bot:你会发现这里的回答只回答了大模型帮我们生成的结果,而其他航班信息以及天气相关的信息是没有给到我们结果的,究其原因是Coze国内版目前还是刚发布不久,有些官方和第三方插件的API调用和返回结果还是不太稳定,导致这里的结果不能完全显示出来,以下是我实际遇到的一些调用报错情况:不过这个问题我相信官方会尽快解决的,毕竟Coze这个平台的功能其实是挺完善和强大的,也做得很符合国情和本土化。最后我们再试几次,来看看最终的成功效果:可以看到成功的回答了我们的问题,这个回答是根据我们的提示词和插件+工作流的组合回答,所以回答的结果是非常详细的。如果之后加上自己的知识库甚至是可以根据用户定制化来使用数据库功能的话,那么我相信这个AI Bot的使用场景会更加符合一个APP该有的产品化功能。你可以想象一下,这个AI Bot的MVP我只用了一个晚上就完成了,出来的效果真的相当不错了,换作是传统开发的话,这个功能至少需要一个月的时间,而且还不一定能做得这么好。最后再说一句,如果是有条件使用国外版的小伙伴,我相信效果一定会更加好,因为国外版有免费的GPT4大模型的使用,插件和工作流功能更加丰富和稳定,而且还有更多的自定义插件和工作流功能,这样就可以更加灵活的根据自己的需求来定制化自己的AI Bot了。这个是我演示上述步骤后发布的AI Bot,其ID是:7333630516673167394,有兴趣的可以直接在Coze平台上搜索这个ID来体验一下我的AI Bot。

Others are asking
Coze制作智能体如何设置拍照按钮
以下是关于在 Coze 制作智能体中设置拍照按钮的相关信息: 搭建证件照应用页面:创建应用并设置第一个 div 容器,页面分为上中下三块或左右两块,进行组件设置调整,包括容器的高度、宽度、排列方向,文本组件的字体、颜色、加粗等属性,处理图片上传,对左侧图片进行数据绑定等。 前端页面搭建技巧:在 DIV10 中选择子容器、复制搭建元素,调整表单组件的尺寸、按钮文案和上传文件类型等设置。 业务逻辑流程设计:包括用户上传照片、图片理解、图像生成、智能换脸、背景修改等步骤,还提及了各步骤中的参数设置、提示词调整和测试方法。 一键改图工作流的设置:工作流未用大模型,每次生成结果唯一,无种子概念,无法保存特定结果。调好后可配东北大花袄等背景,修改名字便于排查问题。添加立即生成事件,表单有多种事件,可设置提交时调用工作流,限制上传文件数量,表单提交时可设置禁用态。进行数据绑定与效果查看,工作流数据绑定要先清空,避免手动输入变量,选工作流时要注意准确。图片生成方式可调好第一张图片后复制成三张,根据背景颜色区分,通过连接节点选择对应图片输出。预览调试方法在用户界面不发布也可调试,有预览功能。识别图片特征有误时需在工作流里优化提示词,可考虑使用视频模型。
2025-02-22
coze的进阶教程有哪些,我需要有整个的搭建过程教程的,可以是共学活动里面的
以下是一些 Coze 的进阶教程和搭建过程的资源: 5 月 7 号():大聪明分享,主题为“Agent 的前世今生”,每个分享人分享最初接触 Coze 的经历以及现在用 Coze 做什么。流程为 20:00@🌈AJ 主持开场,20:00 21:00 大聪明分享,21:00 21:30 关于 Coze 随便聊聊。 5 月 8 号():大圣分享,主题为“我眼中的 AI Agent 以及通过搭建知识库实例入门 Coze”,20:00 21:20 大圣分享。 5 月 9 号():艾木分享,主题为“Agent 系统的核心构成:Workflow 和 Multiagent Flow(以‘Dr.Know’和‘卧底’为例),线上答疑。流程为 20:00 21:00 艾木分享,21:00 21:30 线上答疑。 5 月 10 号():罗文分享,主题为“一个方法解锁 COEZ 所有插件的用法+如何自动化解锁每天抓取 X 内容+改写+发布到飞书”,20:00 21:00 罗文分享。 5 月 11 号():Itao 分享,主题为“和 AI 成为搭子”,线上答疑。流程为 20:00 21:00 Itao 分享,21:00 21:30 线上答疑。 此外,还有以下案例合集和教程:
2025-02-22
coze
以下是关于 Coze 的相关信息: 重磅更新:Coze 可以接入抖音评论区,帮用户自动回复评论。若想快速上手,可参考视频。不知 Coze 是什么,可参考文章: 安装 Coze Scraper: 通过应用商店安装: 1. 打开 Chrome 浏览器。 2. 点击在 Chrome 应用商店中打开 Coze Scrapper 扩展程序。 3. 单击添加至 Chrome。 4. 在弹出的页面,单击添加扩展程序。 本地安装: 1. 单击下载安装包,然后解压下载的文件。 2. 打开 Chrome 浏览器。 3. 在浏览器中输入 chrome://extensions 打开扩展程序页面,确认开发者模式处于打开状态。 4. 点击加载已解压的扩展程序,选择已解压的文件夹。 Coze 记账管家: 什么是 COZE:字节跳动旗下子公司推出的 AI Agent 构建工具,允许用户在无编程知识的基础上,使用自然语言和拖拽等方式构建 Agent;目前 coze 可以白嫖海量的大模型免费使用,有丰富的插件生态。 什么是记账管家:基于 COZE 平台的能力搭建的一个记账应用;可以直接和 coze 说收入或支出情况,coze 会自动记账并计算账户余额,每一笔记账记录都不会丢失。点击以下卡片体验记账管家。
2025-02-21
有没有关于使用coze制作在线客服的案例或教程
以下是关于使用 Coze 制作在线客服的案例和教程: 画小二:通过 Coze 定制开发插件案例,包括创建智能体、添加插件等,还可发布到微信成为专职客服技能,并有手把手的会员教程和 AIGC 商业案例实操课海报。 扣子案例合集:包含保姆级教程,如如何用扣子搭建一个免费好用的“图片转表格”AI 客服等。 Agent 相关比赛中的 Coze 相关教程:包括不同分享人的主题分享及流程安排,如大聪明、大圣、艾木、罗文、Itao 的分享,均有回放地址可供查看。
2025-02-21
coze
以下是关于 Coze 的相关信息: 重磅更新:Coze 可以接入抖音评论区,帮您自动回复用户的评论。若想快速上手,可参考视频。若还不了解 Coze 是什么,可参考文章。 安装 Coze Scraper: 通过应用商店安装: 1. 打开 Chrome 浏览器。 2. 点击在 Chrome 应用商店中打开 Coze Scrapper 扩展程序。 3. 单击添加至 Chrome。 4. 在弹出的页面,单击添加扩展程序。 本地安装: 1. 单击下载安装包,然后解压下载的文件。 2. 打开 Chrome 浏览器。 3. 在浏览器中输入 chrome://extensions 打开扩展程序页面,确认开发者模式处于打开状态。 4. 点击加载已解压的扩展程序,选择已解压的文件夹。 Coze 记账管家——数据库使用教程: COZE 是字节跳动旗下子公司推出的 AI Agent 构建工具,允许用户在无编程知识的基础上,使用自然语言和拖拽等方式构建 Agent,目前可以白嫖海量大模型免费使用,有丰富的插件生态。 记账管家是基于 COZE 平台的能力搭建的一个记账应用,可以直接和 coze 说您今天的收入或者支出情况,coze 会自动记账,并计算账户余额,每一笔记账记录都不会丢失。点击以下卡片体验记账管家。
2025-02-20
coze工作流教程
以下是关于 Coze 工作流的教程信息: 可能是全网最好的 Coze 教程之一,能一次性带你入门 Coze 工作流,即使是非技术出身的爱好者也能上手跟学,一站式学会 AI Agent 从设计到落地的全流程方法论。 阅读指南:长文预警,请视情况收藏保存。 核心看点:通过实际案例逐步演示,用 Coze 工作流构建能稳定按模板要求生成结构化内容的 AI Agent;开源 AI Agent 的设计到落地的全过程思路;10+项常用的 Coze 工作流的配置细节、常见问题与解决方法。 适合人群:任何玩过 AI 对话产品的一般用户(若没用过,可先找个国内大模型耍耍);希望深入学习 AI 应用开发平台(如 Coze、Dify),对 AI Agent 工作流配置感兴趣的爱好者。 注:本文不单独讲解案例所涉及 Prompt 的撰写方法。文末「拓展阅读」中,附有相关 Prompt 通用入门教程、Coze 其他使用技巧等内容,以供前置或拓展学习。 扣子案例合集社区内容分享:
2025-02-20
用AI建立本地的知识库,推荐哪些?
以下是为您推荐的用 AI 建立本地知识库的方法和相关软件: 1. AnythingLLM: 包含了所有 Open WebUI 的能力,并额外支持选择文本嵌入模型和向量数据库。 安装地址:https://useanything.com/download 。 安装完成后进入配置页面,主要分为三步:选择大模型、选择文本嵌入模型、选择向量数据库。 构建本地知识库时,有 Workspace 的概念,可创建独有的 Workspace 与其他项目数据隔离。首先创建工作空间,然后上传文档并在工作空间中进行文本嵌入,接着选择对话模式(包括 Chat 模式和 Query 模式),最后进行测试对话。 2. Obsidian 加 Cursor: 可利用 Obsidian 的浏览器剪藏插件和 AI 插件,但配置复杂,可能存在恶性 Bug 。 可以用 Cursor 等 AI IDE 解决问题,主要有三类作用:帮助用模糊问题检索笔记库;基于笔记库进行研究,结合多个笔记软件给出建议;生成和修改笔记,如生成整个笔记文件或修改笔记文案。 希望以上内容对您有所帮助。
2025-02-22
与dify类似的知识库有那些?哪个更适合商用?
以下是一些与 Dify 类似的知识库: 1. Notion:功能强大,支持多种格式和复杂的结构,适用于各种类型的知识管理。 2. Confluence:常用于团队协作和企业知识共享。 3. Evernote:方便记录和整理各种类型的信息。 至于哪个更适合商用,这取决于具体的需求和使用场景。如果对可视化的知识库管理工具、简单易用且能快速集成到应用中有较高需求,Dify 是不错的选择。Notion 则在灵活性和扩展性方面表现出色,适合对知识结构有复杂要求的商业场景。Confluence 更侧重于团队协作和企业级的知识共享。 使用 Dify 构建知识库的具体步骤如下: 1. 准备数据:收集需要纳入知识库的文本数据,包括文档、表格等格式。对数据进行清洗、分段等预处理,确保数据质量。 2. 创建数据集:在 Dify 中创建一个新的数据集,并将准备好的文档上传至该数据集。为数据集编写良好的描述,描述清楚数据集包含的内容和特点。 3. 配置索引方式:Dify 提供了三种索引方式供选择,包括高质量模式、经济模式和 Q&A 分段模式。根据实际需求选择合适的索引方式,如需要更高准确度可选高质量模式。 4. 集成至应用:将创建好的数据集集成到 Dify 的对话型应用中,作为应用的上下文知识库使用。在应用设置中,可以配置数据集的使用方式,如是否允许跨数据集搜索等。 5. 持续优化:收集用户反馈,对知识库内容和索引方式进行持续优化和迭代。定期更新知识库,增加新的内容以保持知识库的时效性。 Dify 有两种使用方式: 1. 云服务版本。直接在官网 dify.ai 上注册账号使用。 2. 部署社区版。开源,可商用,但是不能作为多租户服务使用。对个人使用完全无限制。 部署前提条件:2 核 4G 云服务器一台(约 159 元)。
2025-02-22
如何权构建个人AI知识库,请提供详尽的方案,并提供相关工具应用案例。
以下是构建个人 AI 知识库的详尽方案及相关工具应用案例: 方案: 1. 知识收集:学习如何有效地收集、整理和检索信息,例如分新闻、观点、访谈、论文翻译来进行提炼。 2. 知识管理:通过实际操作,体验工具在知识管理方面的应用。 3. 数据处理:使用工具对数据进行转换、提取和呈现,如从图像和图形中提取数据。 4. 内容总结:总结视频内容、翻译和改换风格等。 工具应用案例: 1. 知识收集与整理: 通义听悟整理录音笔记:https://tingwu.aliyun.com 用 React 实现选中即解释 本机跑大语言模型工具:https://ollama.com 选词翻译、解读、拓展:https://snapbox.app 与各种 AI 机器人聊天:https://opencat.app 、https://chathub.gg/ 、https://www.elmo.chat/ 定义提示语,根据不同类型提取有用信息:https://memo.ac/zh/ 2. 数据获取与处理: 下载视频:Mac 用 Downie,Windows 推荐 IDM 淘宝数码荔枝店购买 开源免费屏幕录制工具 OBS:https://obsproject.com/ 用 losslessCut 快速切块 3. 构建知识库: 将文本转换成向量(如使用 embeddings API),先把大文本拆分成若干小文本块(chunk),将小文本块转换成 embeddings 向量并在向量储存库中保存,当用户提问时,通过比对向量提取关联度最高的文本块与问题组合成新的 prompt 发送给 GPT API。 例如对于一篇包含多个文本块的文章,如“文本块 1:本文作者:越山。xxxx。”“文本块 2:公众号越山集的介绍:传播效率方法,分享 AI 应用,陪伴彼此在成长路上,共同前行。”等,当提问“此文作者是谁?”时,可通过比较 embeddings 向量找出关联度最高的文本块。 4. 工具入门: 提示词:现成好用的 Prompt: AI Agent:Agent 工具 小白的 Coze 之旅: AI Pic:现在主流的 AI 绘图工具网站:
2025-02-22
如何生成企业自己的知识库
生成企业自己的知识库可以参考以下内容: 理论基础: 大模型训练数据有截止日期,当需要依靠不在训练集中的数据时,可通过检索增强生成 RAG(Retrieval Augmented Generation)实现。 RAG 应用包括文档加载(从多种来源加载文档,如 PDF 等非结构化数据、SQL 等结构化数据及代码)、文本分割(把文档切分为指定大小的块)、存储(将切分好的文档块嵌入转换成向量形式并存储到向量数据库)、检索(通过检索算法找到与输入问题相似的嵌入片)、输出(把问题及检索出的嵌入片提交给 LLM 生成答案)。 使用 Coze 知识库: 海外官方文档:https://www.coze.com/docs/zh_cn/knowledge.html 国内官方文档:https://www.coze.cn/docs/guides/use_knowledge Coze 实操 徒手捏 Bot: 搭建流程: 用户输入问题。 大模型通过知识库搜索答案。 大模型根据知识库的内容生成答案。 数据库将用户问题和答案进行存储。 将答案展示给用户。 创建工作流: Start 节点:默认节点,定义输入变量“question”,由 Bot 从外部获取信息传递过来。 知识库节点:输入为用户的查询,输出为从知识库中查询出来的匹配片段。注意查询策略包括混合查询、语义查询和全文索引。 变量节点:有设置变量给 Bot 和从 Bot 中获取变量的能力。 此外,您还可以参考以下作业: 5 月 7 号:创建 https://www.coze.com 账号、创建 https://www.coze.cn 账号、加入共学的 team(看备注)、有精力的话提前阅读、尝试创建自己的第一个 Bot 用来免费使用 GPT4。 5 月 10 日罗文:认领一个插件制作插件说明,可参考。 上述两个作业在 5 月 8 号分享结束之后就可以上手进行了,5 月 9 号会针对工作流和多 Agent 模式进行进一步的讲解。大家制作的 Bot 都可以在飞书群中进行投稿,然后会有专门的同学记录到 Bot 收集板。
2025-02-22
deepseek本地部署知识库
以下是关于 DeepSeek 本地部署知识库的相关信息: 您可以参考以下链接获取更多详细内容: DeepSeek 资料库:照着做可直接上手🔗 需要注意的是,日报中提到本地部署并不适合普通用户,纳米 AI 搜索是目前较为稳定的第三方替代方案,其满血版推理能力接近官方但速度较慢,高速版速度快、体验流畅但推理能力稍弱。体验地址:🔗或下载纳米 AI 搜索 APP 。
2025-02-21
waytoagi 的飞书知识库智能问答机器人是怎么做的
waytoagi 的飞书知识库智能问答机器人是基于飞书 aily 搭建的。在飞书 5000 人大群里内置了名为「waytoAGI 知识库智能问答」的智能机器人,它会根据通往 AGI 之路的文档及知识进行回答。 其具有以下功能和特点: 1. 自动问答:自动回答用户关于 AGI 知识库内涉及的问题,可以对多文档进行总结、提炼。 2. 知识搜索:在内置的「waytoAGI」知识库中搜索特定的信息和数据,快速返回相关内容。 3. 文档引用:提供与用户查询相关的文档部分或引用,帮助用户获取更深入的理解。 4. 互动教学:通过互动式的问答,帮助群成员学习和理解 AI 相关的复杂概念。 5. 最新动态更新:分享有关 AGI 领域的最新研究成果、新闻和趋势。 6. 社区互动:促进群内讨论,提问和回答,增强社区的互动性和参与度。 7. 资源共享:提供访问和下载 AI 相关研究论文、书籍、课程和其他资源的链接。 8. 多语言支持:支持多语言问答,满足不同背景用户的需求。 使用方法: 1. 在飞书群里发起话题时即可,它会根据 waytoAGI 知识库的内容进行总结和回答。 2. 可以在 WaytoAGI 飞书知识库首页找到加入飞书群的链接(二维码需在获取),然后点击加入,直接@机器人即可。 3. 也可以在 WaytoAGI.com 的网站首页,直接输入问题,即可得到回答。 搭建问答机器人的相关情况: 1. 2024 年 2 月 22 日的会议介绍了 WaytoAGI 社区的成立愿景和目标,以及其在飞书平台上的知识库和社区的情况。 2. 讨论了利用 AI 技术帮助用户更好地检索知识库中的内容,引入了 RAG 技术,通过机器人来帮助用户快速检索内容。 3. 介绍了基于飞书的知识库智能问答技术的应用场景和实现方法,可以快速地给大模型补充新鲜的知识,提供大量新的内容。 4. 讨论了如何使用飞书的智能伙伴功能来搭建 FAQ 机器人,以及智能助理的原理和使用方法。 5. 飞书智能伙伴创建平台(英文名:Aily)是飞书团队旗下的企业级 AI 应用开发平台,提供了一个简单、安全且高效的环境,帮助企业轻松构建和发布 AI 应用,推动业务创新和效率提升。为企业探索大语言模型应用新篇章、迎接企业智能化未来提供理想选择。
2025-02-20
使用AI过程中如何确保信息的保密性?
在使用 AI 过程中,确保信息保密性可以从以下几个方面入手: 1. 数据处理环节:将数据清洗、提取、模型选择、训练和结果解释等环节分开处理,针对每个环节优化 AI 性能,同时便于发现和修正问题。 2. 提问方式:对于复杂问题,采用逐步深化和细化的方式提问。先提出宽泛问题,再根据回答进一步细化或深化。 3. 提供学习内容:为 AI 系统提供大量高质量的数据和示例,包括详细的操作指南、行业最佳实践、案例研究等,同时编写详细的流程和知识(knowhow)。 4. 利用专业术语引导:在 Prompt 中使用专业领域术语,如法律术语,引导 AI 回答方向,使其更精准地提供所需信息。 5. 验证与反馈:大模型的语料存在滞后性,使用 AI 回答后要进行交叉验证,确保信息准确性。同时结合自身专业知识进行引导,筛选和判断回答是否符合相关要求。 6. 数据隐私保护: 应通过内置保护措施防止滥用数据,用户对自身数据的使用有决定权。 设计选择应确保默认包含隐私保护,包括确保数据收集符合合理预期,只收集特定情境下严格必要的数据。 系统开发者应寻求用户许可并尊重其关于数据收集、使用、访问、转移和删除的决策,无法做到时应采用替代的隐私保护措施。 同意应仅在能适当和有意义给予的情况下用于证明数据收集的合理性,同意请求应简洁、易懂,并赋予用户对数据收集和使用情境的决定权。 对敏感领域(如健康、工作、教育、刑事司法和金融)的数据和推断应加强保护和限制,对青少年相关数据应优先保护。 应避免不受检查的监视,监视技术应受到加强监督,包括对其潜在危害的预部署评估和范围限制,以保护隐私和公民自由。 7. 政府监管: 要求最强大的 AI 系统开发者向美国政府分享安全测试结果和其他关键信息。 制定标准、工具和测试,以确保 AI 系统安全、可靠和值得信赖。 为防止利用 AI 制造危险生物材料,制定新的生物合成筛选标准。 建立检测 AI 生成内容和验证官方内容的标准和最佳实践,以保护美国人免受 AI 导致的欺诈和欺骗。
2025-01-15
大模型和小模型区别是什么?是否大模型都属于生成式AI,小模型属于判别式AI,为什么大模型有幻觉小模型没有?
大模型和小模型的区别主要体现在以下几个方面: 1. 规模和参数数量:大模型通常具有更多的参数和更复杂的架构,能够处理更大量和更复杂的数据。 2. 能力和性能:大模型在语言理解、生成等任务上往往表现更出色,能够生成更准确、丰富和连贯的内容。 3. 应用场景:大模型适用于广泛的通用任务,而小模型可能更专注于特定的、较狭窄的领域。 并非大模型都属于生成式 AI,小模型都属于判别式 AI。生成式 AI 能够生成新的内容,如文本、图片等;判别式 AI 则主要用于对输入进行分类或判断。模型的分类与其大小并无直接的必然联系。 大模型出现幻觉的原因主要是其通过训练数据猜测下一个输出结果,可能会因错误或不准确的数据导致给出错误的答案。而小模型相对来说数据量和复杂度较低,出现幻觉的情况相对较少,但这并非绝对,还取决于模型的训练质量、数据的准确性等多种因素。优质的数据集对于大模型减少幻觉现象非常重要。
2025-02-21
是否有《普通人如何抓住deepseek红利》清华大学链接
以下是关于《普通人如何抓住 DeepSeek 红利》的相关链接: 清华大学新闻与传播学院撰写的报告:https://waytoagi.feishu.cn/record/T2yDrJ4NjeJFmccnBgzc5A7InIq 相关 PPT 课件:https://bl7rsz9526.feishu.cn/wiki/Gec9wxIGhiqSsAkrqzPc3ObLnpb (由清华大学新闻与传播学院、新媒体研究中心、元宇宙文化实验室、@新媒沈阳团队的陶炜博士生团队制作)
2025-02-20
目前通过AI工具的结合是否可以根据已调研完成的病例数据输出一份医学报告
目前,通过 AI 工具的结合,在一定程度上可以根据已调研完成的病例数据输出医学报告。例如 GPT4V 在医学图像理解方面显示出了有效性,能够为各种医学图像生成完整的放射学报告。在一些案例中,如腹部 X 射线图像和右膝的 MRI 图像,GPT4V 能正确识别研究并提供准确诊断。但也存在一些错误,比如在手部/腕部 X 射线图像中错过远侧桡骨骨折,在胸部 CT 中错误识别结节位置和产生测量误差。尽管生成的报告能保持高质量格式,可作为模板减轻医学专业人士起草报告的工作负担,但由医学专业人士评估生成的报告以确保其正确性和准确性仍是至关重要的。
2025-02-20
知识库中是否有搭建在线RAG知识库的相关内容?
知识库中有搭建在线 RAG 知识库的相关内容。 RAG(RetrievalAugmented Generation)即检索增强生成,是一种结合检索和生成能力的自然语言处理架构,旨在为大语言模型提供额外的、来自外部知识源的信息。 自顶向下,RAG 的流程分为离线数据处理和在线检索两个过程。离线数据处理的目的是构建知识库,知识按某种格式及排列方式存储在其中等待使用。在线检索是利用知识库和大模型进行查询的过程。 对于 RAG 来讲,检索的质量直接影响生成的结果,常见的检索方法有关键词检索和语义检索。关键词检索是最传统和基础的方法,基于查询词与文档中词语的精确或近似匹配,实现简单但难以处理同义词和上下文语义。语义检索将查询和文档映射到同一语义空间,通过计算向量相似度判断相关性,能捕捉深层语义但计算成本较高。 在构建知识库的流程中,在线检索各个流程的“是什么”与“为什么”同等重要。例如在检索环节,选择合适的检索方法或组合对系统性能至关重要。 大模型存在无法记住所有知识尤其是长尾知识、知识容易过时且不好更新、输出难以解释和验证、容易泄露隐私训练数据、规模大导致训练和运行成本高等缺点,而 RAG 具有数据库存储和更新稳定、数据更新敏捷且可解释、降低大模型输出出错可能、便于管控用户隐私数据、降低大模型训练成本等优点。
2025-02-14
音频文件转为MP3格式的AI有哪些?是否需要付费?
目前市面上将音频文件转为 MP3 格式的 AI 工具较多,常见的有格式工厂、迅捷音频转换器等。这些工具部分提供免费服务,但也有一些功能或高级版本需要付费。具体的付费情况会因工具的不同而有所差异。
2025-02-13
ai的研究是否可以分为神经网络与知识图谱两个大的分类?
AI 的研究可以分为多个不同的分类,并非仅仅局限于神经网络与知识图谱这两个大的分类。 在常见的分类中: 非监督学习:最著名的是聚类,只需提供大量数据,让 AI 自行找出有趣信息。 迁移学习:在任务 A 中学习的内容可用于帮助完成任务 B,在计算机视觉领域有较多应用。 强化学习:根据输出好坏给予奖励或惩罚,利用“奖励信号”让 AI 自动学习最大化奖励,但需要大量数据。 生成对抗网络:由生成器和判别器构成,两者不断训练和竞争,提高生成真实数据的能力,广泛应用于多种领域。 此外,从技术和应用的角度来看: 知识图谱:在搜索等场景中展示关键信息,如人物相关信息、酒店信息等。 在企业中建构人工智能方面,NLG 可作为全新场景讨论,生成内容分为根据任务要求生成标准结果和根据信息进行内容创作两类,分别偏向 B 端和 C 端。NLP 能做的事情较标准化,LLM 的出现对其有提升和冲击。知识图谱领域本身有多种技术路径,与 LLM 可能是互补关系。 对于希望精进的学习者,还需要了解 AI 的背景知识,包括基础理论、历史发展、数学基础(统计学、线性代数、概率论),掌握算法和模型(监督学习、无监督学习、强化学习),学会评估和调优(性能评估、模型调优),以及神经网络基础(网络结构、激活函数)等。
2025-02-12