Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

“美国红杉资本指出,AI 供应链分为六层”,展开说说这六层吧

Answer

美国红杉资本指出的 AI 供应链从下到上分为六层,具体情况如下:

  1. 第一层是芯片代工厂(如台积电),保持着高利润水平。
  2. 第二层是芯片设计商(如英伟达),同样具有高利润。
  3. 第三层是工业能源供应商(如电力公司),因数据中心需求激增而受益。
  4. 第四层是云厂商,处于重金投入阶段,不仅斥巨资建设数据中心,还在训练自有模型或大举投资 AI 模型开发商。
  5. 第五层是 AI 模型开发商,目前面临亏损。
  6. 第六层即最上层是面向最终客户的应用服务商,虽充满潜力,但依赖消费者和企业付费,当前市场规模有限,尚不足以支撑整个供应链的经济模型。
Content generated by AI large model, please carefully verify (powered by aily)

References

展望2025,AI行业有哪些创新机会? | 峰瑞报告

据SensorTower统计,2024全年全球AI移动应用内付费收入预计为30亿美元,其中图像和视频类AI应用占据主导地位,收入占比高达53%;对话机器人类别排名第二,占比29%;其他类别合计不足20%。从地区分布来看,北美和欧洲贡献了三分之二的市场份额,是AI应用的主要消费市场。这也是众多中国AI公司积极出海的重要原因之一。▎云厂商成为AI供应链的“链主”美国红杉资本在《The AI Supply Chain Tug of War》一文中指出,AI供应链当前呈现出一种脆弱的平衡状态。他们将AI供应链从下到上分为六层,各层的盈利能力存在显著差异。第一层的芯片代工厂(如台积电)和第二层的芯片设计商(如英伟达)是当前的主要赢家,依然保持高利润水平;第三层的工业能源供应商(如电力公司)也因数据中心需求激增而受益良多。而作为供应链核心承载方的第四层云厂商,却处于重金投入阶段,不仅斥巨资建设数据中心,还在训练自有模型或大举投资AI模型开发商,处于供应链第五层的AI模型开发商目前同样面临亏损。供应链的第六层,也就是最上层则是面向最终客户的应用服务商。尽管充满潜力,但他们依赖消费者和企业付费,当前市场规模有限,尚不足以支撑整个供应链的经济模型。这使得大型云厂商成为整个供应链最主要的风险承担者。作为AI产业的中枢,云厂商不仅掌握着庞大的商业生态和技术资源,还拥有数千亿美元的市场规模。正因如此,它们在产业链中的地位无可撼动,是毋庸置疑的“链主”。▎行业格局:头部阵营基本稳定1、头部大模型

走入AI的世界

关于AI产业的产业链结构,大致可分为:上游的基础设施层(数据与算力)、中游的技术层(模型与算法)、下游的应用层(应用与分发),详细内容参见图5。图5 AI产业链图谱-1对于这上中下游分别有哪些值得我们重点关注的企业(或产品),我在公开互联网上苦寻良久,始终找不到一张满意的图(要么维度不全,要么举例不准,有失公允),于是我做了大量的信息收集和汇总工作,并结合几家知名咨询机构的文档,绘制了这样一张图。图6 AI产业链图谱-2图6中有大量细节,其中各家公司的logo排列顺序综合考虑了其市占率,行业影响力,代表性等因素,积淀深厚的老牌大厂和值得关注的亮眼新星均有体现,未避免广告嫌疑,在这里不展开对其进行详细说明了,如果有大家不了解不认识的公司/平台(或产品),非常推荐你搜索了解一下(注:此图绘制于2024年5月)。

Others are asking
编辑PPT的ai
以下是一些关于编辑 PPT 的 AI 产品及相关信息: 1. Gamma:在线 PPT 制作网站,可通过输入文本和想法提示快速生成幻灯片,支持嵌入多媒体格式,如 GIF 和视频,网址:https://gamma.app/ 2. 美图 AI PPT:由美图秀秀开发团队推出,通过输入简单文本描述生成专业 PPT 设计,有丰富模板库和设计元素,适用于多种场合,网址:https://www.xdesign.com/ppt/ 3. Mindshow:AI 驱动的 PPT 辅助工具,提供智能设计功能,如自动布局、图像选择和文本优化等,网址:https://www.mindshow.fun/ 4. 讯飞智文:科大讯飞推出的 AI 辅助文档编辑工具,利用语音识别和自然语言处理技术,提供智能文本生成、语音输入、文档格式化等功能,网址:https://zhiwen.xfyun.cn/ 此外,还有以下相关内容: 与 GPT4 交流制作 PPT 大纲的经验,通过迭代可获得较好的电商 PPT 大纲,WPS AI 能优化大纲和制作 PPT,还能进行主题配色和字体修改。 教师可利用 AI 减负,如通用 AI(通义、文心、智谱等)结合提示词,专用工具推荐如百度文库的橙篇,它集多种功能于一身,能满足科研、学术等领域需求。同时,还有免费工具讯飞智文和付费工具百度文库可用于 AI 制作 PPT,并展示了相关自动 PPT 效果。AI 辅助 PPT 的原理和作用包括提升效率和质量等。
2025-01-23
小白学习AI
对于小白学习 AI,以下是一些建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,还可以参考《雪梅 May 的 AI 学习日记》,其适合纯 AI 小白,学习模式是输入→模仿→自发创造。学习内容可在 waytoAGI 社区发现自己感兴趣的 AI 领域,学习最新的内容。该日记中的学习资源都是免费开源的。 在理解技术原理与建立框架方面,可通过以下通俗易懂的内容: 1. 视频一主要回答了什么是 AI 大模型,原理是什么。 生成式 AI 生成的内容,叫做 AIGC。 相关技术名词: AI 即人工智能。 机器学习包括监督学习、无监督学习、强化学习。监督学习是有标签的训练数据,无监督学习是学习的数据没有标签,强化学习是从反馈里学习,最大化奖励或最小化损失。 深度学习参照人脑有神经网络和神经元。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 即大语言模型。 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型。
2025-01-23
有没有歌词生成音乐的AI
以下是一些能够实现歌词生成音乐的 AI 工具: 1. 歌词爆改机@阶跃星辰繁星计划:这是一个微信小程序,可以把一首歌曲的歌词爆改成想要的版本,并生成专属音乐,UI 绝美。玩法链接:https://mp.weixin.qq.com/s?__biz=MzkyNzY0NDc4Nw==&mid=2247484386&idx=1&sn=a74db6692f4dd5735f66c47cb82fc5b9&scene=21wechat_redirect 2. LAIVE:这是一个利用 AI 技术一次性生成音乐、歌词、主唱等的创作平台。使用者可以选择自己喜欢的类型和情调,上传参考音源,AI 可以通过分析生成音乐。并且可以选择主唱和修改歌词,目前为开放测试阶段。链接:https://www.laive.io/ 输入促销代码 LAIVEcreator 可获得 50 代币(入口在个人资料),令牌有效期为输入代码后的 30 天,促销码失效日期为 4 月 17 日。
2025-01-23
xAI
以下是关于 xAI 的相关信息: 2024 年,Elon Musk 的 xAI 完成了 60 亿美元的 B 轮融资,公司估值达 240 亿美元。本轮融资由红杉资本、Valor Equity Partners 和 Fidelity 等参与。 7 月 15 日,马斯克在 Twitter Spaces 上完成了 xAI 首场且公开的动员大会,xAI 包括马斯克在内的 12 位成员,其中华人占 1/3,包括吴宇怀、杨格、张国栋以及戴自航。 xAI 的总体目标是构建一个优秀的 AGI,并以理解宇宙的真实本质为愿景,马斯克从物理学的视角探讨了一些关于宇宙的未解之谜,例如外星人的存在和重力的本质等。 xAI 的团队成员们希望让模型能够发现真相,不仅仅是重复从训练数据中学到的知识,而是能够提供真正的新见解和新发现。 马斯克指出 OpenAI 现在已经变得封闭且非常追求利润,与其最初的宗旨背道而驰。 这场直播会议的全部内容按时间顺序整理成了以下 12 个话题:xAI 创始成员的开场自述、xAI 的使命:宇宙本质与智能体、AGI 与个人计算资源、Twitter 数据与 xAI 的关系、创办 xAI 的初衷是什么?、特斯拉 Dojo,芯片以及训练推理、如何保证 xAI 的独立性?、xAI 如何造福人类?、真正的 AI 能理解物理世界、监管应与技术发展并行、xAI 会如何与外部合作?、xAI 与 OpenAI 差异,以及 Optimus。 创办 xAI 的初衷是允许 AI 说出它真正认为是真的东西,不要欺骗或保持政治正确,避免让 AI 面对不可能的目标和强迫其撒谎。
2025-01-23
AI生成PPT的流程
以下是 AI 生成 PPT 的流程: 1. 确定大纲: 可以让 GPT4 生成 PPT 大纲,但可能在理解题目和生成大纲上花费较多时间。例如,需要仔细思考题目要求,将题目抛给 GPT4 帮助理解,确定主题。 2. 导入大纲到工具生成 PPT: 以爱设计为例,其他工具操作方式大同小异,基于 Markdown 语法生成。 如使用 Process ON 工具: 网址:https://www.processon.com/ 输入大纲和要点:有两种方式,包括导入大纲和要点(手动复制或通过特定步骤导入),以及输入主题自动生成大纲和要求。 选择模版并生成 PPT:点击下载,选择导入格式为 PPT 文件,选择模版后再点击下载。若使用 Process ON 且没有会员,可在某宝买一天会员。 3. 优化整体结构: 按照公司要求,自行优化字体、图片等元素,删改内容以达到心理预期。 4. 手动修改细节: 例如修改字体、纠正事实性错误等。
2025-01-23
新手小白,如何从0开始搭建AI Agent
对于新手小白从 0 开始搭建 AI Agent,以下是一些建议: 1. 规划阶段: 制定任务的关键方法,总结任务目标与执行形式。 将任务分解为可管理的子任务,确立逻辑顺序和依赖关系。 设计每个子任务的执行方法。 2. 实施阶段: 在 Coze 上搭建工作流框架,设定每个节点的逻辑关系。 详细配置子任务节点,并验证每个子任务的可用性。 3. 完善阶段: 整体试运行 Agent,识别功能和性能的卡点。 通过反复测试和迭代,优化至达到预期水平。 此外,还需要了解一些关于 AI Agent 的基本概念: AI Agent 是基于大型语言模型(LLM)和其他技术实现的智能实体,其核心功能在于自主理解、规划决策、执行复杂任务。 AI Agent 包括 Chain(通常一个 AI Agent 可能由多个 Chain 组成,一个 Chain 视作是一个步骤,可以接受一些输入变量,产生一些输出变量,大部分的 Chain 是大语言模型完成的 LLM Chain)、Router(可以使用一些判定,甚至可以用 LLM 来判定,然后让 Agent 走向不同的 Chain)、Tool(Agent 上可以进行的一次工具调用,例如对互联网的一次搜索,对数据库的一次检索)。 常见的 AI Agent 有 Responser Agent(主 agent,用于回复用户)、Background Agent(背景 agent,用于推进角色当前状态)、Daily Agent(每日 agent,用于生成剧本,配套的图片,以及每日朋友圈)。这些 Agent 每隔一段时间运行一次(默认 3 分钟),会分析期间的历史对话,变更人物关系、反感度等,抽简对话内容,提取人物和用户的信息成为“增长的记忆体”,按照时间推进人物剧本,有概率主动聊天(与亲密度正相关,跳过夜间时间)。
2025-01-23
从评审导师的角度优化“人工智能驱动企业供应链效率影响研究——基于专精特新中小企业的实证数据”这个工商学术研究生学位论文题目
作为评审导师,以下是对这个论文题目的一些优化建议: “人工智能对专精特新中小企业供应链效率的驱动作用及影响研究——基于实证数据分析” 这样的表述更加清晰地突出了人工智能的驱动作用,并且明确了是基于实证数据进行的分析。您觉得如何?
2025-01-08
作为汽车厂家的供应链,应学习哪些AI工具来为车厂服务
作为汽车厂家的供应链,以下是一些值得学习的 AI 工具: 1. 自动驾驶相关工具:如用于图像识别、传感器数据分析和决策制定的工具,以支持自动驾驶技术在汽车生产中的应用。 2. 车辆安全系统工具:例如能够分析来自摄像头和传感器数据,以增强车辆安全性能的工具,如自动紧急制动、车道保持辅助和盲点检测系统等。 3. 个性化用户体验工具:可以根据驾驶员偏好和习惯调整车辆设置的工具,如座椅位置、音乐选择和导航系统等。 4. 预测性维护工具:通过分析车辆实时数据来预测潜在故障和维护需求的工具,有助于提高车辆可靠性和效率。 5. 生产自动化工具:在汽车制造过程中用于自动化生产线、提高生产效率和质量控制的工具。 6. 销售和市场分析工具:能够分析市场趋势、消费者行为和销售数据,以帮助制定营销策略和优化产品定价的工具。 7. 电动化和能源管理工具:在电动汽车的电池管理和充电策略中发挥作用,优化电池使用和充电时间的工具。 8. 共享出行服务工具:如用于优化路线规划、调度车辆和定价策略,提高服务效率和用户满意度的工具。 9. 语音助手和车载娱乐工具:如 AI 驱动的语音助手,允许驾驶员通过语音命令控制车辆功能、获取信息和娱乐内容。 10. 车辆远程监控和诊断工具:可以远程监控车辆状态,提供实时诊断和支持的工具。 此外,在 CAD 绘图方面,存在一些辅助或自动生成 CAD 图的 AI 工具和插件,如: 1. CADtools 12:Adobe Illustrator 插件,添加了 92 个绘图和编辑工具。 2. Autodesk Fusion 360:集成了 AI 功能的云端 3D CAD/CAM 软件。 3. nTopology:基于 AI 的设计软件,可创建复杂的 CAD 模型。 4. ParaMatters CogniCAD:根据设计目标和约束条件自动生成 3D 模型。 5. 主流 CAD 软件中的生成设计工具:如 Autodesk 系列、SolidWorks 等提供的工具。 但使用这些 CAD 相关的 AI 工具通常需要一定的 CAD 知识和技能,对于初学者,建议先学习基本的 3D 建模技巧。
2025-01-07
汽车厂家的供应链应该学习AI哪些内容
汽车厂家的供应链可以学习以下 AI 相关内容: 1. 可信 AI 工具:如保障技术和技术标准,用于支持供应链风险管理。通过描述制造商应采取的确保 AI 系统安全的措施,技术标准可为采购者和用户提供信心,鼓励 AI 的采用。 2. 应用案例: 自动驾驶技术:利用 AI 进行图像识别、传感器数据分析和决策制定,实现自主导航和驾驶。 车辆安全系统:增强车辆安全性能,如自动紧急制动、车道保持辅助和盲点检测等。 个性化用户体验:根据驾驶员偏好和习惯调整车辆设置。 预测性维护:分析车辆实时数据,预测潜在故障和维护需求。 生产自动化:用于汽车制造的自动化生产线,提高生产效率和质量控制。 销售和市场分析:分析市场趋势、消费者行为和销售数据,制定营销策略和优化产品定价。 电动化和能源管理:在电动汽车的电池管理和充电策略中发挥作用。 共享出行服务:优化路线规划、调度车辆和定价策略。 语音助手和车载娱乐:通过语音命令控制车辆功能、获取信息和娱乐内容。 车辆远程监控和诊断:远程监控车辆状态,提供实时诊断和支持。
2025-01-07
如何利用AI技术提升供应链企业的人效?
利用 AI 技术提升供应链企业的人效可以从以下几个方面入手: 1. 预测性维护:通过 AI 模型分析设备运行数据,预测设备故障,减少因设备故障导致的人力浪费和停工时间,提高人员工作效率。 2. 质量控制:利用 AI 检测产品缺陷,降低人工质检的工作量,提高质检的准确性和效率。 3. 供应链管理:AI 可以根据历史数据和市场变化,自动生成采购计划、库存预测、物流优化等内容,减少人工规划和决策的时间和错误,提升人员在供应链管理中的效率。 4. 客户服务:基于对话模型的 AI 客服机器人,可以自动处理常见问题,让人员能够专注于更复杂和重要的客户需求。 在制造业领域,AI 技术在供应链管理方面的应用包括: 1. 设备维护和故障诊断:利用 AI 模型分析设备运行数据,预测设备故障,并自动生成维修建议,提高设备可靠性,保障供应链的稳定运行。 2. 工艺规划和优化:结合大语言模型的自然语言处理能力,可以自动生成制造工艺流程、设备选型、质量控制等方案,优化生产过程,提高供应链的响应速度和灵活性。 3. 产品设计和开发:利用 AI 生成工具如 Adobe Firefly、Midjourney 等,可以根据文字描述快速生成产品的 3D 模型、渲染图、插图等设计元素,大幅提高产品设计效率,缩短供应链的前置时间。 总的来说,AI 技术能够在供应链的各个环节发挥重要作用,提高企业的效率和竞争力。
2024-12-15
你了解哪儿些大模型在电商行业供应链物流领域的应用,如果能举例阿里、淘宝、抖音、京东等涉及到电商的公司进行说明就更好了
目前在电商行业供应链物流领域,一些大模型的应用还处于不断发展和探索的阶段。 阿里巴巴:可能利用其强大的技术能力和数据优势,通过大模型优化物流路径规划、库存管理和订单预测等方面,提高物流效率和降低成本。 淘宝:或许借助大模型来分析消费者的购买行为和偏好,从而更精准地进行商品推荐,并优化物流配送的调度。 抖音:可能运用大模型对用户的兴趣和行为进行深度挖掘,以实现更高效的商品匹配和物流配送安排。 京东:有可能利用大模型改进仓储管理、物流配送的智能调度,以及预测商品的需求和销售趋势。 但需要注意的是,具体的应用情况和效果会受到多种因素的影响,包括数据质量、算法优化、业务场景的复杂性等。
2024-09-25
AI如何根据历史数据和市场变化,自动生成采购计划、库存预测、物流优化等内容,提高供应链管理效率
AI技术在供应链管理中的应用可以大大提高采购计划、库存预测和物流优化的效率。以下是如何利用AI根据历史数据和市场变化自动生成这些内容的详细步骤: 1. 数据收集和预处理 首先,需要收集大量的历史数据和实时市场数据。这些数据可以来自企业内部系统(如ERP、WMS)和外部数据源(如市场情报、经济指标)。 数据类型: 历史销售数据:包括销售数量、时间、地点等。 库存数据:当前库存水平、历史库存变化、仓储信息。 采购数据:采购订单、供应商信息、采购周期等。 市场数据:市场需求预测、经济指标、季节性变化等。 数据预处理: 数据清洗:处理缺失值、异常值和重复数据。 数据整合:将来自不同来源的数据整合成统一格式。 特征工程:提取关键特征,如时间序列特征、季节性特征等。 2. 采购计划自动生成 利用AI模型分析历史采购和销售数据,结合市场变化,生成优化的采购计划。 方法: 时间序列分析:使用ARIMA、Prophet等模型预测未来的需求量。 机器学习算法:如随机森林、XGBoost,通过学习历史数据中的模式来预测需求。 深度学习:如LSTM、GRU,适合处理复杂的时间序列数据。 具体步骤: 1. 需求预测:预测未来一段时间内的产品需求量。 2. 供应商选择和评估:根据历史绩效和市场条件,选择最佳供应商。 3. 采购量确定:结合库存水平、需求预测和供应商能力,确定每个产品的采购量。 4. 优化采购时间:利用AI优化采购时间,以最低成本满足需求。 3. 库存预测 利用AI技术进行库存预测,确保在最低库存水平下满足需求,减少库存持有成本和缺货风险。 方法: 库存优化模型:如Economic Order Quantity 。 库存水平预测:基于历史数据和需求预测,计算安全库存和再订货点。 机器学习算法:如支持向量机(SVM)、KNN,通过学习历史库存变化和需求波动,预测未来库存需求。 具体步骤: 1. 需求预测:预测未来的产品需求。 2. 库存水平计算:根据需求预测、订单交付时间、当前库存水平,计算安全库存和再订货点。 3. 库存补货策略:制定补货策略,确定何时和多少补货。 4. 物流优化 AI技术可以优化物流路径、运输方式和仓储布局,降低物流成本,提高运输效率。 方法: 路线优化:利用优化算法(如遗传算法、蚁群算法)优化运输路线,减少运输成本和时间。 运输方式选择:根据货物类型、运输距离、成本等因素,选择最佳的运输方式(如海运、空运、陆运)。 仓储布局优化:利用AI优化仓库布局,提高仓储效率和利用率。 具体步骤: 1. 运输需求分析:分析需求预测和库存计划,确定运输需求。 2. 路线规划:利用优化算法规划最佳运输路线。 3. 运输方式选择:根据成本和时间要求,选择合适的运输方式。 4. 仓储优化:利用AI优化仓库布局和操作,提高仓储效率。 案例示例:使用AI进行供应链优化 以下是一个使用AI进行供应链优化的具体示例: 需求预测: 1. 收集过去两年的销售数据和市场数据。 2. 使用LSTM模型对未来6个月的需求进行预测。 3. 将预测结果与当前库存水平进行比较,确定需要补货的产品和数量。 采购计划: 1. 根据需求预测结果,使用EOQ模型计算每个产品的最优采购量。 2. 结合供应商历史绩效数据,选择最佳供应商并确定采购时间。 库存管理: 1. 使用支持向量机(SVM)模型预测未来的库存水平。 2. 根据预测结果调整安全库存和再订货点,制定补货计划。 物流优化: 1. 利用蚁群算法优化运输路线,降低运输成本。 2. 根据货物类型和运输距离选择最佳运输方式。 3. 利用AI优化仓库布局,提高货物存取效率。 总结 通过利用AI技术,企业可以实现自动化和智能化的采购计划、库存预测和物流优化。这不仅可以提高供应链管理的效率,还能降低成本,减少库存风险,提升客户满意度。为了实施这些AI技术,企业需要投入时间和资源进行数据收集、模型开发和系统集成,同时需要培养数据分析和AI技术的人才。
2024-05-30